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Toda lattice

We begin with the doubly infinite periodic lattice

ẋ(n, t) = y(n, t),

ẏ(n, t) = exp(x(n − 1, t)− x(n, t)) − exp(x(n, t) − x(n + 1, t)).

Suppose we perturb a finite number of particles. What happens
eventually, for large times?



Flaschka transformation and the Lax pair

Setting

an(t) =
1

2
exp(

1

2
(x(n, t) − x(n + 1, t))),

bn(t) = −
1

2
y(n, t),

we get

ḃn(t) = 2(an(t)
2 − an−1(t)

2),

ȧn(t) = an(t)(bn+1(t)− bn(t)).

Jacobi self-adjoint operator: L : ℓ2 → ℓ2.
Skew-self-adjoint operator: B : ℓ2 → ℓ2.

(Lu)n = an−1un−1 + bnun + anun+1,

(Bu)n = −bn−1un−1 + bnun+1,

Toda lattice becomes dL/dt = LB − BL



Periodic Toda is explicitly solvable
Periodic Toda is explicitly solvable in terms of theta functions
(Novikov, etc., Date-Tanaka 70s)
There exist real numbers E0 < E1 < ........ < E2g+1

s.t.spec(L) = ∪g
j=0[E2j ,E2j+1]} (generically g + 1= period of

lattice).
Let M be the Riemann surface associated with the function
∏2g+1

j=0 (z − Ej ), g ∈ N. M is a compact, hyperelliptic Riemann
surface of genus g . Then

aper (n, t)
2 = ã2

θ(z(n + 1, t))θ(z(n − 1, t))

θ(z(n, t))2
,

bper (n, t) = b̃ +
1

2

d

dt
log
( θ(z(n, t))

θ(z(n − 1, t))

)

.

The constants ã, b̃ depend only on the Riemann surface, i.e. on
E0 < E1 < · · · < E2g+1.
Here θ(z) is the Riemann theta function associated with M and
zℓ(n, t) = αℓ − nβℓ + tηℓ, where again αℓ, βℓ, ηℓ depend only on
the Riemann surface.



Theta function

θ(z) =
∑

m∈Zg exp 2πi
(

mz + mτ m
2

)

, z ∈ C
g



Short Range Perturbation of Constant Background (K.
1993)

Plot of a(., t) for three fixed consecutive times. The
background is: ast(n, 0) = 1, bst(n, 0) = 0



Short Range Perturbation of Periodic Background (K.,
Teschl 2007)

Periodic background: aper (n, 0) = 1, bper (n, 0) = (−1)n



Explicit formulae

For long times the perturbed Toda lattice is asymptotically close to
the following limiting lattice:

∞
∏

j=n

(
alim(j , t)

aper (j , t)
)2 =

θ(z(n, t))

θ(z(n + 1, t))

θ(z(n + 1, t) + δ(n, t))

θ(z(n, t) + δ(n, t))
×

× exp

(

1

2πi

∫

C(n/t)

log(1− |R |2)ω∞
−
∞+

)

,

δℓ(n, t) =
1

2πi

∫

C (n/t)

log(1− |R |2)ζℓ,

zℓ(n, t) =αℓ − nβℓ + tηℓ,

where: θ Riemann theta function, ζℓ, ωpq Abelian differentials,
C (n/t) contour depending on the stationary phase points of the
RHP, αℓ, βℓ, ηℓ are functions of the spectrum (via Abel integrals),
and R is the reflection coefficient of the perturbed lattice.



Numerical Comparison

Numerical comparison for genus one case, which can be computed
in terms of elliptic functions:



Rieman-Hilbert factorization

The so-called nonlinear stationary − phase − steepest − descent

method for the asymptotic analysis of Rieman-Hilbert factorization
problems has been very successful in providing
(i) rigorous results on long time, long range and semiclassical
asymptotics for solutions of completely integrable equations and
correlation functions of exactly solvable models,
(ii) asymptotics for orthogonal polynomials of large degree,
(iii) the limiting eigenvalue distribution of random matrices of large
dimension (and thus universality results, i.e. independence of the
exact distribution of the original entries, under some conditions),
(iv) proofs of important results in combinatorial probability (e.g.
the limiting distribution of the length of longest increasing
subsequence of a permutation, under uniform distribution).



Stationary phase

Even though the stationary phase idea was first applied to a
Riemann-Hilbert problem and a nonlinear integrable equation by
Alexander Its (1982) the method became systematic and rigorous
in the work of Deift and Zhou (1993).
In analogy to the linear stationary-phase and steepest-descent
methods, where one asymptotically reduces the given exponential
integral to an exactly solvable one, in the nonlinear case one
asymptotically reduces the given Riemann-Hilbert problem to an
exactly solvable one.



Non-self-adjointness

The term nonlinear steepest descent method is often used. In
fact, there is a distinction between the stationary-phase idea and
the steepest-descent idea: actual steepest descent contours appear
in non-self-adjoint problems.
The distinction partly mirrors the
self − adjoint/non − self − adjoint dichotomy of the underlying
Lax operator;
see Kamvissis K .McLaughlin Miller (2003)
An extra feature appearing only in the nonlinear asymptotic theory
is the Lax − Levermore variational problem, discovered in 1979,
before the work of Its, Deift and Zhou, but reappearing here in the
guise of the so-called g − function which is catalytic in the process
of deforming Riemann-Hilbert factorization problems to exactly
solvable ones.
Non-self-adjoint case: Kamvissis Rakhmanov (2005)



THE LINEAR METHOD

Suppose one considers the Cauchy problem for, say, the linearized
KdV
ut − uxxx = 0.
It can off course be solved via Fourier transforms. The end result
of the Fourier method is an exponential integral. To understand
the long time asymptotic behavior of the integral one needs to
apply the stationary-phase method .
The underlying principle, going back to Stokes and Kelvin, is that
the dominating contribution comes from the vicinity of the
stationary phase points. Through a local change of variables at
each stationary phase point and using integration by parts we can
calculate each contributing integral asymptotically to all orders
with exponential error. It is essential here that the phase xξ − ξ3t
is real and that the stationary phase points are real.



Airy integral
On the other hand, suppose we have something like the Airy
exponential integral

Ai(z) = 1
π

∫

∞

0
cos(s3/3 + zs)ds

and we are interested in z → ∞. Set s = z1/2t and x = z3/2. So
Ai(x2/3) = x1/3

2π

∫

∞

−∞
exp(ix(t3/3 + t))dt.

The phase is h(t) = t3

3 + t and the zeros of h′(t) = (t2+1) are ±i .
As they are not real, before we apply any stationary-phase method,
we have to deform the integral off the real line and along particular
paths: these are the steepest descent paths. They are given by the
simple characterization Imh(t) = constant. In our particular
example, the curves of steepest descent are the imaginary axis and
the two branches of a hyperbola. By deforming to one of these
branches, we finally end up with Laplace type integrals and then
apply the same method as above (local change of variables plus
integration by parts) to recover valid asymptotics to all orders.



THE NONLINEAR METHOD

The nonlinear method generalizes the ideas above, but also
employs new ones.
The analog of the Fourier transform is the scattering coefficient
r(ξ) for the Jacobi operator: L : ℓ2 → ℓ2.

(Lu)n = an−1un−1 + bnun + anun+1



Scattering for the Decaying Case

Joukowski transformation

2λ = z + 1/z

The continuous spectrum [−1, 1] is mapped to the unit circle
|z | = 1.
This is convenient but also essential!



Scattering for the Decaying Case

(Lu)n = an−1un−1 + bnun + anun+1

Lφ(n, z) = λφ(n, z); φ(n, z) ∼ zn, n → ∞

Lψ(n, z) = λψ(n, z); ψ(n, z) ∼ z−n, n → −∞.

We can write φ(n, z) = A+
n z

nvn(z) and ψ(n, z) = A+
n z

−nun(z)

where A+
n = Π∞

k=n(2ak)
−1, A−

n = Πn−1
k=−∞(2ak)

−1 A = A+
n A

−
n .

Furthermore vn(z) = 1 + Σ∞
n=1vn,kz

k , un(z) = 1 + Σ∞
n=1un,kz

k .

Both series converge uniformly in |z | ≤ 1.



Scattering for the Decaying Case

On the other hand, when z 6= ±1,

φ(n, z), ψ(n, z) and φ(n, z−1), ψ(n, z−1)

are two sets of independent solutions of the second order difference
equation Lχ = λχ. Hence there exist A(z),B(z), α(z), β(z) such
that

φ(n, z) = B(z)ψ(n, z) + A(z)ψ(n, z−1)

ψ(n, z) = β(z)φ(n, z) + α(z)φ(n, z−1)

z ∈ C , z 6= ±1.

We get

vn(z) =
A−
n

A+
n

B(z)z−2nun(z) +
A−
n

A+
n

A(z)un(z
−1).



Scattering

Next define U1(n, z) = ψ(n, z), U2(n, z) =
φ(n,z)
A(z) = T (z)φ(n, z).

Since φ(n, z) ∼ A+
n z

n and ψ(n, z) ∼ A−
n z

−n near z = 0, we have
U1(n, z) ∼ A−

n z
−n, U2(n, z) ∼ (A−

n )
−1zn, near z = 0.

We end up with a Riemann-Hilbert problem

(

U+
2 U+

1

)

=
(

U−
1 U−

2

)

(

1− |r(z)|2 −r̄(z)
r(z) 1

)

with asymptotics
(

U1 U2

)

∼
(

A−
n z

−n (A−
n )

−1zn
)

at z = 0
and

(

U1 U2

)

∼
(

A−
n z

n (A−
n )

−1z−n
)

at infinity.



Riemann-Hilbert problem

Defining
y1(n, z) =

U2(n,z)
zn

, |z | < 1, y1(n, z) =
U1(n,z)

zn
, |z | > 1,

y2(n, z) =
U1(n,z)
z−n , |z | < 1, y2(n, z) =

U2(n,z)
z−n , |z | > 1,

and letting Y = (y1, y2), we end up with the Riemann-Hilbert
matrix factorization problem:

Y+ = Y−

(

1− |r(z)|2 −r̄(z)z2n

r(z)z−2n 1

)

with Y (∞) =
(

(A−
n )

−1 A−
n

)

. Also Y (0) =
(

A−
n (A−

n )
−1
)

.



Problem

There is a problem here. The normalization at infinity involves
A+
n ,A

−
n which is after all the solution. We can get rid of this by

using a particular symmetry.

SYMMETRY: Q(z) =

(

0 1
1 0

)

(Q(0))−1Q(z−1)

(

0 1
1 0

)

.

THEOREM. Let Q be the solution of the RHP with same jump
and converging to the identity at infinity. Then

Y =
(

( 1+β
α )1/2 ( α

1+β )
1/2
)

Q

where Q(0) =

(

α β
γ δ

)

.

From Y (0) one recovers the solution of the Toda lattice, since
Y (0) =

(

A−
n (A−

n )
−1
)

.



Riemann-Hilbert Problem for the decaying Toda Lattice

Let r(z , 0) be the reflection coefficient for the initial data.
Let Q be analytic off the unit circle and = I at infinity, with

Q+ = Q−

(

1− |r(z)|2 −r̄(z)z2nexp[(z − z−1) t2 ]
r(z)z−2nexp[−(z − z−1) t2 ] 1

)

Set
Y =

(

( 1+β
α )1/2 ( α

1+β )
1/2
)

Q

where Q(0) =

(

α β
γ δ

)

.

Then Y (0) =
(

A−
n (A−

n )
−1
)

, and one recovers an from

A−
n = Πn−1

k=−∞
(2ak)

−1.



Stationary Phase Analysis

There are two stationary phase points zsp, z
∗
sp.

The Riemann-Hilbert Problem for the decaying Toda Lattice is
reduced asymptotically to two factorization problems, their
contours being small crosses, centered at zsp, z

∗
sp respectively,

that can be solved explicitly!!! in terms of parabolic cylinder
functions.

cf. the linear stationary phase method, where the dominating
contribution to an exponential integral comes from the vicinity of
the stationary phase points.
In fact, after some rescaling and approximating the ”local”
integrals can be computed explicitly.
Similar things happen here, although more technical.
Approximating a Riemann-Hilbert Problem by another requires
some harmonic analysis and introducing some singular equations,
equivalent to the given RHPs.



Important Observation

To make use of the symmetry one needs to use both copies of the
spectral complex plane, that is both sheets of the underlying
hyperelliptic curve. In the case of genus zero, they can be mapped
to the complex plane via the Joukowski transformation. This is no
more possible in thbe case of the periodic lattice with genus
greater than zero. We therefore need to postulate the
Riemann-Hilbert problem on a Riemann surface.



Important Observation

The inverse scattering theory for the perturbed periodic lattice was
constructed by Egorova-Michor-Teschl (2005). Jost functions are
defined as solution of the eigenvalue problem with asymptotics
defined in terms of the Baker-Akhiezer functions of genus g.

lim
n→±∞

w(z)∓n(ψ±(z , n, t) − ψq,±(z , n, t)) = 0,

where w(z) is the quasimomentum map

w(z) = exp(

∫ p

E0

ω∞+,∞−

), p = (z ,+).



Factorization Problem on a Hyperelliptic Curve

The analogous problem on the hyperelliptic curve is

m+(p, n, t) = m−(p, n, t)J(p, n, t)

J(p, n, t) =

(

1− |R(p)|2 −R̄(p)Θ̄(p, n, t)e−tφ(p)

R(p)Θ(p, n, t)etφ(p) 1

)

,

where Θ(p, n, t) = θ(z(p,n,t))
θ(z(p,0,0))

θ(z(p∗,0,0))
θ(z(p∗,n,t))

and
φ(p, n

t
) = 2

∫ p

E0
Ω0 + 2n

t

∫ p

E0
ω∞+,∞−

∈ iR

for p ∈ Σ. Here ω∞+∞−
is the Abelian differential of the third kind

with poles at ∞+ and ∞− and Ω0 is the Abelian differential of the
second kind with second order poles at ∞+,∞−. All Abelian
differentials are normalized to have vanishing aj periods.



Divisor Conditions

But m is NO MORE HOLOMORPHIC off the jump contour!
The appropriate divisor condition is that
div(mj1) ≥ −divµ(n, t), div(mj2) ≥ −divµ∗(n, t), j = 1, 2
where the poles are at the Dirichlet eigenvalues for the periodic
problem.
Also we have bad conditions at the two infinities:
m(∞+, n, t) =

(

A+(n, t)
1

A+(n,t)

)

.

m(∞−, n, t) =
(

1
A+(n,t)

A+(n, t)
)

.

If we want to get rid of the bad condition at ∞+ then we need a
symmetry. Then we can consider the normalized RHP and extract
the solution via
A+(n, t) =

√

1+(m12(∞−,n,t))
(m11(∞−,n,t))



Stationary Phase Analysis

There are 2(g + 1) stationary phase points (g + 1 on each sheet)
but only at most 2(1 on each sheet) in a band. So the others do
not contribute (except an exponentially small error).
Gaps correspond to a periodic asymptotics but bands correspond
to a continuously modulated lattice.
The geometry of the lenses is more delicate because of the
Riemann surface background.
Also the auxilliary scalar RHP has to be meromorphic, because of
the Riemann-Roch theorem.



A generalized Cauchy kernel

In the complex plane, the solution of a Riemann–Hilbert problem
can be reduced to the solution of a singular integral equation. In
our case the underlying space is a Riemann surface. Hence we
have to replace the classical Cauchy kernel by a ”generalized”
Cauchy kernel appropriate to our Riemann surface. In order to get
a single valued kernel we need again to admit g poles. Allowing
poles at the nonspecial divisor div(µ) the corresponding Cauchy
kernel is given by



A generalized Cauchy kernel

Ωµ
p = ωp∞+ +

∑g
j=1 Ij(p)ζj ,

where Ij (p) =
∑g

l=1 cjl
∫ p

∞+
ωµl ,0,

ωq,0 is the Abelian differential of second kind with second order
pole at q and s.t.

∫

αk
ωq,0 = 0, all k

and ζj is a basis of holomorphic differentials.
Note that Ij (p) has first order poles at the points µl .
The constants cjl are chosen such that Ωp is single valued.



Connection with a Singular Integral Equation
THEOREM: Set

Ωµ
p =

(

Ωµ
p 0

0 Ωµ∗

p

)

and define the matrix operators as follows.

Given a 2x2 matrix f defined on Σ with Hölder continuous entries,
let
(Cf )(p) = 1

π

∫

Σ f Ωp , for p 6∈ Σ, and (C±f )(q) = limp→q∈Σ(Cf )(p)
from the left and right of Σ respectively (with respect to its
orientation). Then:
1. The operators C± are given by the Plemelj formulas

(C+f )(q)− (C−f )(q) = f (q),

(C+f )(q) + (C−f )(q) =
1

π
PV

∫

Σ

fΩµ
q ,

and extend to bounded operators on L2(Σ).
2. Cf is a meromorphic function off Σ, with divisor given by
((Cf )j1) ≥ −div(µ) and ((Cf )j2) ≥ −div(µ∗).
3. (Cf )(∞+) = 0.



Connection with a Singular Integral Equation

Now, given any b−, b+ ∈ L∞(Σ) with determinant equal to 1, let
the operator Cw : L2(Σ) → L2(Σ) be defined by
Cw f = C+(fw−) + C−(fw+) for a 2× 2 matrix valued f , where
w+ = b+ − I , and w− = I − b−.
THEOREM. Assume that µ solves the singular integral equation
µ = I + Cwµ in L2(Σ). Let Q be defined by the integral formulae

Q = I + C (µw), on M \ Σ,

where w = w+ + w−. Then Q is a solution of the following
meromorphic Riemann–Hilbert problem.

Q+(p) = Q−(p)b
−1
− (p)b+(p), p ∈ Σ,

Q(∞+) = I ,

(Qj1) ≥ −div(µ), (Qj2) ≥ −div(µ∗).
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