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Abstract: Let (M, g) be a globally hyperbolic Lorentzian manifold. The
light observation set PU (q) corresponding to the source point q ∈ M and
the open observation domain U ⊂ M is the intersection of the future light
cone L+

q emanated from q and the domain U . Let p− and p+ be points
in U such that there is a time-like curve µ ⊂ U from p− to p+. Also, let
V ⊂ M be a relatively compact and open set such that V in the causal
past of p+ but does not intersect the causal past p−. Assume that one
is given the set U , as a manifold, the conformal class of the metric g|U ,
and the collection of the light observation sets PU(q) for all q ∈ V . This
corresponds to the observations in U that one obtains from point sources
located in V . These data is shown to uniquely determine the topological
and differentiable structures of V and the conformal class of the metric g
on V .
AMS classification: 53C50, 35J25, 83C05.
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1. Introduction and main results

We consider the inverse problem of the reconstruction of a region of a
smooth Lorentzian manifold (M, g) of type (1, n − 1), n ≥ 3, from light
observation sets. Physically, this corresponds to the case of a passive
observer, who registers light or gravitational waves coming from rapidly
varying or suddenly appearing sources in the Universe, like e.g. super-
nova, quasars, variable stars, see [12]. Due to the existence of the conju-
gate points (or physically speaking, gravitational lensing or Einstein rings)
such observations can by strongly distorted. In particular, the observa-
tion times of light signals, that have been caused by the same event but
have traveled along different routes through a gravitational lens, may dif-
fer more than a year [21]. In this paper we assume that such point sources
form a dense set in a region V of M . Then, we first show that V can
be reconstructed as a topological manifold from these data. After that,
we show that the differentiable structure of V and the conformal class of
g|V can be reconstructed. Though the main interest of this paper is on
passive observations, its results are used in our related paper [15] where
we consider inverse problems with active observers which produce special
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sources in order to imitate points sources of the type considered in this
paper. The results are also related to other inverse scattering problems in
relativity, see e.g. [8, 9, 22].

To formulate the result, we first introduce some definitions. The metric
signature of g is (−,+,+, . . . ,+). In this paper we assume that (M, g) is
time-oriented so that we can define future and past pointing time-like and
causal paths. For p, q ∈ M we denote p ≪ q if p 6= q and there is a future
pointing time-like path from p to q. We denote p < q, if p 6= q and there
is a future pointing causal path from p to q and denote p ≤ q when either
p = q or p < q. By the chronological future of p ∈ M , I+(p), we mean
the set of all points q, such that p ≪ q. By the causal future of p, J+(p),
we mean the set of all points q, such that p ≤ q. Similarly, we introduce
the chronological past, I−(p), and the causal past, J−(p), see [19]. Note
that I±(p) are always open. In this paper, we assume that (M, g) is
globally hyperbolic, see Sec. 2 below. In this case, J±(p) are closed and
cl(I±(p)) = J±(p). To the knowledge of the authors, it is not presently
known if there exist homeomorphic 4-dimensional, globally hyperbolic,
Lorentzian manifolds that are not diffeomorphic but they are known to
exist in higher dimensions, see [6]. The topology of such manifolds, even
with asymptotically flat vacuum spacetimes can be very complicated, [10,
11]. A map Ψ : (V1, g1) → (V2, g2) is a conformal diffeomorphism if Ψ :
V1 → V2 is a diffeomorphism and Ψ∗g1 = e2f(x)g2(x) with some scalar
function f(x). We say that a curve α([t1, t2]) is a pre-geodesic if α(t) is
C1-smooth curve such that α̇(t) 6= 0 on t ∈ [t1, t2], and α([t1, t2]) can be re-
parametrized so that it becomes a geodesic. A conformal diffeomorphism
preserves the light-like pre-geodesics by [3, Th. 9.17]. Also, we say that
Ψ : V1 → V2 preserves causality if x < y implies that Ψ(x) < Ψ(y).

U

q

V

q q

pj

Figure 1. Left: The future light cone L+
q from the point q is shown as

a red cone. The point q is the tip of the cone. The observation set U is
shown in blue. The light observation point set PU(q) with a point source
at q is the intersection L+

q ∩ U . Middle: In Thm. 1.2, we consider a
set V ⊂ I−(p+) \ J−(p−). The boundary of V is shown in the figure as
a black curve. The red line is a light ray from a point q ∈ V that is
observed in the blue set U . These observations are shown to determine V
as a differentiable manifold and the conformal class of the metric on it.
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Right: The black curves are the paths µaj and the red curves are light-like
geodesics from q. Some light rays intersect µaj at pj = µaj (faj (q)) before
their cut points, but light-rays from q may intersect a geodesics µa after
their cut points. For any q0 ∈ V we can find aj ∈ A, j = 1, 2, . . . , n and a
neighborhood of q0 where the observation time functions q 7→ faj (q) define
a smooth coordinate system.

Let LpM = {ξ ∈ TpM \ {0}; g(ξ, ξ) = 0}. Also, L+
p M ⊂ LpM and

L−
p M ⊂ LpM denote the future and the past light-like vectors in TpM .

For W ⊂ M, let L+W =
⋃

p∈W L+
p M ⊂ TM . Let expq : TqM → M be

the exponential map on (M, g). The geodesic starting at p in the direction
ξ ∈ TpM \ {0} is the curve γp,ξ(t) = expp(ξt), t ≥ 0.

Let µ : [−1, 1] → M be a smooth future pointing time-like path and
U ⊂ M be an open neighborhood of µ([−1, 1]). Let −1 < s− < s+ < 1
and p± = µ(s±). Let V ⊂ I−(p+) \ J−(p−) be a relatively compact open
set, see Fig. 1 (Left and Middle).

Definition 1.1. For q ∈ V , let L+
q = expq

(
L+
q M

)
∪ {q} = {γq,ξ(t) ∈

M ; ξ ∈ L+
q M, t ≥ 0}. The light observation set of q is

PU(q) = L+
q ∩ U ∈ 2U .

The collection of these sets is PU (V ) = {PU(q); q ∈ V } ⊂ 2U . Note
PU(V ) is defined as an unindexed set, that is, for an element PU(q) ∈
PU(V ) we do not know what is the corresponding point q.

Above, 2U = {U ′; U ′ ⊂ U} is the power set of U . Below, when Φ :
U1 → U2 is a map, we say that the power set extension of Φ is the map

Φ̃ : 2U1 → 2U2 given by Φ̃(U ′) = {Φ(z); z ∈ U ′} for U ′ ⊂ U .

Theorem 1.2. Let (Mj, gj), j = 1, 2, be two open, C∞-smooth, time-
oriented, globally hyperbolic Lorentzian manifolds of type (1, n−1), n ≥ 3.
Let µ(j) : [−1, 1] → Mj be smooth time-like paths on (Mj, gj) and Uj be
open neighborhoods of µ(j)([−1, 1]). Assume that there exists a conformal
diffeomorphism Φ : (U1, g1|U1) → (U2, g2|U2) satisfying Φ(µ(1)(s)) = µ(2)(s)
for s ∈ [−1, 1]. Let p±j = µ(j)(s±), −1 < s− < s+ < 1, and Vj be open,

relatively compact subsets of I−(p+j ) \ J−(p−j ) ⊂ Mj such that the power

set extension Φ̃ of Φ satisfies

Φ̃(PU1(V1)) = PU2(V2).(1)

Then there is a conformal diffeomorphism Ψ : (V1, g1|V1) → (V2, g2|V2) that
preserves the causality. Moreover, if U1 ∩ V1 6= ∅, then ΦU1∩V1 = ΨU1∩V1.

In addition to optical or X-ray astronomy, Theorem 1.2 may be ap-
plied to gravitational wave astronomy: If the events in the early Uni-
verse have created enough gravitational waves, so-called primordial gravi-
tational waves [16], by Thm. 1.2 the structure of spacetime, could in prin-
ciple be determined using gravitational wave observations, even before
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the recombination time when the Cosmic Microwave Background (CMB)
emerged. By recent observations, it appears that measurements of such
gravitational waves can be done by observing their effect on the CMB, [5].

When Mj , j = 1, 2, have significant Ricci-flat parts, Theorem 1.2 can
be strengthened.

Corollary 1.3. Assume that (Mj , gj) and Uj, Vj, j = 1, 2 satisfy the
conditions of Theorem 1.2 with the resulting conformal map Ψ : V1 → V2

as in Theorem 1.2. Moreover, assume that Φ|U1 : (U1, g1) → (U2, g2) is an
isometry and Vj are Ricci-flat. Also, assume that all components of Vj

intersect Uj, j = 1, 2. Then the map Ψ is an isometry.

2. Preliminary constructions

A Lorentzian manifold (M, g) of type (1, n− 1) is globally hyperbolic if
(M, g) has no non-trivial closed causal curves and for any q < p, the set
J(q, p) = J+(q)∩J−(p) is compact, see [4] and [19, Def. 14.20]. Through-
out this paper we assume that (M, g) is globally hyperbolic.

In addition to the Lorentzian metric g, we introduce on M a smooth
Riemannian metric g+, see [18], which makes it possible to introduce a
Riemannian distance on M and a Sasaki distance in TM .

Let µ
(1)
a : [−1, 1] → U (1) be a family of future pointing time-like paths

indexed by a ∈ A, where A is a metric space and µ(1) = µ
(1)
a0 with a0 ∈

A. We assume that (a, s) 7→ µ
(1)
a (s) is a continuous and open map A ×

[−1, 1] → M1.

We define µ
(2)
a (s) = Φ(µ

(1)
a (s)) for a ∈ A and s ∈ [−1, 1]. Then, by

taking the sets U1 and U2 = Φ(U1) smaller, we may assume that Uj are
open sets of the from

Uj =
⋃

a∈A

µ(j)
a ([−1, 1]), j = 1, 2.(2)

Below, we assume that (2) is valid.

Remark 2.1. Given a smooth time-like path µ(1) : [−1, 1] → U1, its
neighborhood U (1), and the metric tensor g1 in U1, we can alway con-

struct the paths µ
(1)
a satisfying the above assumptions and make then U

smaller so that (2) is valid. Indeed, let z0 = µ(1)(−1) and η0 = µ̇(1)(−1)
and let Zj, j = 1, 2, . . . , n be a frame of vectors at µ(−1) and Zj(s),
s ∈ [−1, 1], be parallel translation of this frame along µ(1)([−1, s]). More-
over, let κj(s) be such that ∇µ̇(1)(s)µ̇

(1)(s) = κj(s)Zj(s). Let W be an
ε0-neighborhood of (z0, η0) in TM in the g+-Sasaki metric and let A con-
sists of a = (z, η, (Yj)

n
j=1) where (z, η) ∈ W and (Yj)

n
j=1 is a frame in

TzM such that the g+-Sasaki distance of (z, Yj) to (z0, Zj) is less than ε0.
This space can be endowed with a structure that makes it an n(n + 2)-

dimensional Riemannian manifold. Then we can define µ
(1)
a to be the path

with µ
(1)
a (−1) = z, µ̇

(1)
a (−1) = η, and ∇

µ̇
(1)
a (s)

µ̇
(1)
a (s) = κj(s)Yj(s), where
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Yj(s) are the parallel translation of Yj along the curve µ
(1)
a ([−1, s]). When

ε0 > 0 is small enough, we know that these curves exist and µ
(1)
a ([−1, 1]) ⊂

U1 for all a ∈ A. Then we can replace the neighborhood U1 of µ(1)([−1, 1])
by the set defined by formula (2). Finally, note that if µ(1) is a unit speed
time-like geodesic, that is, a freely falling observer, then all above con-

structed µ
(1)
a are time-like geodesics.

To simplify notations, let us continue with the constructions on just one
Lorentzian manifold, (M, g) and assume that we are given the data

the differentiable manifold U , the conformal class of g|U ,(3)

the paths µa : [−1, 1] → U , a ∈ A, and the set PU(V ),

where V ⊂ I−(p+)\J−(p−) is a relatively compact open set. Note that the
set U and the conformal class of g|U determines all light-like pre-geodesics
in U by [3, Th. 9.17].

Let s−2 ∈ (−1, s−) and s+2 ∈ (s+1, 1) and p±2 = µa0(s±2). By making
the set A smaller if necessary, we may assume that for all a ∈ A we have

µa(s−2)∈I
+(µa0(−1)) ∩ I−(p−), µa(s+2)∈I

−(µa0(1)) ∩ I+(p+).(4)

Let us consider points x, y ∈ M . For x < y, we define the time separa-
tion function τ(x, y) ∈ [0,∞) to be the supremum of the lengths L(α) =∫ 1

0

√
−g(α̇(s), α̇(s)) ds of the piecewise smooth causal paths α : [0, 1] → M

from x to y. If the condition x < y does not hold, we define τ(x, y) = 0.
We note that τ(x, y) satisfies the reverse triangle inequality

τ(x, y) + τ(y, z) ≤ τ(x, z) for x ≤ y ≤ z.(5)

As M is globally hyperbolic, the time separation function (x, y) 7→ τ(x, y)
is continuous in M ×M by [19, Lem. 14.21] and by [19, Lem. 14.22], the
sets J±(q) are closed. For q < p there is a causal geodesic γ([0, 1]) with
γ(0) = q and γ(1) = p such that L(γ) = τ(q, p), see [19, Lem. 14.19].
This geodesic is called a longest path from q to p.

When (x, ξ) is a non-zero vector, we define T (x, ξ) ∈ (0,∞] to be the
maximal value for which γx,ξ : [0, T (x, ξ)) → M is defined.

For (x, ξ) ∈ L+M , x ∈ J−(p+), the value T+2(x, ξ) = sup{t ≥ 0 ; γx,ξ(t) ∈
J−(p+2)} is finite by [19, Lem. 14.13]. Since J−(p+2) is closed and γx,ξ
are future-pointing curves, T+2 : L+W → R, W = J−(p+2), is upper
semicontinuous. Moreover, since the set

K = {(x, ξ) ∈ L+M ; x ∈ cl (V ), ‖ξ‖g+ = 1}(6)

is compact, there is c0 ∈ R+ such that T+2(x, ξ) ≤ c0 for all (x, ξ) ∈ K.
For (x, ξ) ∈ L+M , we define the cut locus function

ρ(x, ξ) = sup{s ∈ [0, T (x, ξ)); τ(x, γx,ξ(s)) = 0},(7)

c.f. [3, Def. 9.32]. The points x1 = γx,ξ(t1) and x2 = γx,ξ(t2), t1, t2 ∈
[0, t0], t1 < t2, are cut points on γx,ξ([0, t0]) if t2 − t1 = ρ(x1, ξ1) where
ξ1 = γ̇x,ξ(t1). In particular, the point p(x, ξ) = γx,ξ(s)|s=ρ(x,ξ), if it exists,
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is called the first cut point on the geodesic γx,ξ([0, T (x, ξ)). Using [3,
Thm. 9.33], we see that the function ρ(x, ξ) is lower semi-continuous on
a globally hyperbolic Lorentzian manifold (M, g).

Recall that γx,ξ(t) is a conjugate point on γx,ξ([0, T (x, ξ)) if the differen-
tial of the map expx is not invertible at tξ. By [3, Th. 9.15], on a globally
hyperbolic manifold, p(x, ξ) is either the first conjugate point along γx,ξ,
or the first point on γx,ξ where there is another light-like geodesic γx,η from
x to p(x, ξ), η 6= cξ.

Returning to the longest paths, if q < p but τ(q, p) = 0, then there is a
light-like geodesic γq,ξ([0, t]) from q to p so that there are no cut points on
γq,ξ([0, t)), see [19, Thm. 10.51 and Prop. 14.19]. Note that if γq,ξ([0, t])
is a light-like geodesic from q to p = γq,ξ(t) such that there are cut-points
on the geodesic γq,ξ([0, t)), (5) and (7) yield τ(q, p) > 0.

Moreover, it follows from [19, Prop. 10.46] that if q can be connected to
p with a causal path which is not a light-like pre-geodesic then τ(q, p) > 0.
Let us apply this fact to a path from q to p which is the union of the future
pointing light-like pre-geodesics γq,η([0, t0]) ⊂ M and γx1,θ([0, t1]) ⊂ M ,
where x1 = γq,η(t0), p = γx1,θ(t1) and t0, t1 > 0. Let ξ = γ̇q,η(t0). Then,
if there is no c > 0 such that ξ = cθ, or equivalently, the union of these
geodesic is not a light-like pre-geodesics, we have τ(q, p) > 0. In particular,
this implies that there exists a time-like geodesic from q to p. In the
following we call this kind of argument for a union of light-like geodesics
a short-cut argument.

2.0.1. Observation time functions.

Definition 2.2. Let a ∈ A, and q ∈ J−(p+) \ I−(p−). The observation
time function fa : J

−(p+) \ I−(p−) → [−1, 1] is defined by

fa(q) = inf({s ∈ ([−1, 1]; µa(s) ∈ J+(q)} ∪ {1}).

Moreover, let Ea(q) = µa(fa(q)).

Above, Ea(q) is the earliest point on µa at which light from q is observed.
The following lemma is a slight generalization of [15, Lemma 2.2]. We
repeat its proof for the convenience of the reader.

Lemma 2.3. Let a ∈ A and q ∈ J−(p+) \ I−(p−). Then

(i) It holds that s−2 ≤ fa(q) ≤ s+2.

(ii) We have Ea(q) ∈ J+(q) and τ(q, Ea(q)) = 0. Moreover, the function
s 7→ τ(q, µa(s)) is continuous, non-decreasing on the interval s ∈ [−1, 1]
and is strictly increasing on [fa(q), 1].

(iii) Assume that p ∈ U . Then p = Ea(q) with some a ∈ A if and only if
p ∈ PU(q) and τ(q, p) = 0. Furthermore, these are equivalent to the fact
that there are ξ ∈ L+

q M and t ∈ [0, ρ(q, ξ)] such that p = γq,ξ(t).

(iv) The function q 7→ fa(q) is continuous on J−(p+) \ I−(p−).
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Proof. (i) This property follows from (4).
(ii) Since J+(q) is closed, Ea(q) ∈ J+(q). The continuity of τ(q, µa(s))

follows from the continuity of τ(x, y) on M ×M .
If τ(q, µa(fa(q))) would be strictly positive, we would have µa(fa(q)) ∈

I+(q) and there would exist s < fa(q) such that µa(s) ∈ I+(q). As this is
not possible, we have τ(q, µa(fa(q))) = 0.

Consider s < s′. Since µa is a time like-path, τ(µa(s), µa(s
′)) > 0. Thus,

when s′ > s ≥ fa(q), the inequality (5) yields τ(q, µa(s)) < τ(q, µa(s
′)).

For s < fa(q) we have µa(s) 6∈ J+(q) and τ(q, µa(s)) = 0.
(iii) It is sufficient to prove the claim when p 6= q. First, assume that

p = Ea(q). Then p ∈ J+(q) and by (ii), we have τ(q, p) = 0. The existence
of the light-like geodesic follows from the above.

Second, assume that p ∈ J+(q) and τ(q, p) = 0. This implies by [19,
Prop. 14.19] that there exists a light-like geodesic γq,ξ([0, t]) from q to p.
If γq,ξ([0, t)) would have a cut-point, then τ(q, p) > 0 which is not possible.
Thus, t ∈ [0, ρ(q, ξ)].

Third, assume that p = γq,ξ(t) with ξ ∈ L+
q M and 0 ≤ t ≤ ρ(q, ξ). Then

τ(q, p) = 0. Let a ∈ A and s0 ∈ [−1, 1] be such that p = µa(s0). By (i),
τ(q, µa(s)) > 0 for s > fa(q) and thus s0 ≤ fa(q). However, q ≤ p = µa(s0)
and thus s0 ≥ fa(q). Thus s0 = fa(q) and p = Ea(q).

(iv) Assume that xj → x in J−(p+) \ I−(p−) as j → ∞. Let sj =
fa(xj) and s = fa(x). Since τ is continuous, for any ε > 0 we have
limj→∞ τ(xj , µa(s+ ε)) = τ(x, µa(s+ ε)) > 0 and thus for j large enough
sj ≤ s + ε. Thus lim supj→∞ sj ≤ s. Assume next that lim infj→∞ sj =
s̃ < s and denote ε = τ(µa(s̃), µa(s)) > 0. Then lim infj→∞ τ(xj , µa(s)) ≥
lim infj→∞ τ(µa(sj), µa(s)) ≥ ε, and as τ is continuous in M × M , we
obtain τ(x, µa(s)) ≥ ε, which is not possible as s = fa(x). This proves
that x 7→ fa(x) is continuous. �

By Lemma 2.3 (iii), for any q ∈ J−(p+) \ I−(p−) and a ∈ A, we have
Ea(q) ∈ PU(q). Since PU (q) ⊂ J+(q), we see using Def. 2.2 that the light
observation set PU(q) and the path µa determine the functions

fa(q) = min{s ∈ [−1, 1]; µa(s) ∈ PU(q)}, Ea(q) = µa(fa(q)).(8)

2.0.2. The set of the earliest observations.

Definition 2.4. Let q ∈ J−(p+) \ I−(p−). Let

DU(q) = {(y, η) ∈ L+U ; y = γq,ξ(t) ∈ U, η = γ̇q,ξ(t),

with some ξ ∈ L+
q M, 0 ≤ t ≤ ρ(x, ξ)},(9)

Dreg
U (q) = {(y, η) ∈ L+U ; y = γq,ξ(t) ∈ U, η = γ̇q,ξ(t),

with some ξ ∈ L+
q M, 0 < t < ρ(x, ξ)}.

We say that DU(q) is the direction set of q and Dreg
U (q) is the regular

direction set of q.
Let EU(q) = π(DU(q)) and Ereg

U (q) = π(Dreg
U (q)) where π : TU → U

is the canonical projection, π(y, η) = y. We say that EU(q) is the set of
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the earliest observations of q in U and Ereg
U (q) is the set of regular earliest

observation points of q. We denote the collection of the earliest observation
sets by EU(V ) = {EU(q) ∈ 2U ; q ∈ V }.

Note that EU(q) = {Ea(q); a ∈ A} and that the lower semicontinuity
of ρ(x, ξ) implies that Ereg

U (q) ⊂ U and Dreg
U (q) ⊂ TU are smooth (n− 1)

dimensional submanifolds.
Assume that x = µa(s) ∈ PU(q). Then, if there is y ∈ PU(q) such that

y ≪ x then (5) implies that τ(q, x) ≥ τ(q, y) + τ(y, x) > 0. On the other
hand, if there is no y ≪ x, y ∈ PU(q), it follows from the proof of Lemma
2.3(iii) that y ∈ EU(q). Hence

EU(q) = {x ∈ PU(q); there are no y ∈ PU (q) such that y ≪ x}.(10)

3. Constructive solution of the inverse problem

Formulas (8) and EU(q) = {Ea(q); a ∈ A} imply that PU(V ) determines
the set EU(V ). Hence to prove Theorem 1.2 it is enough to prove the
following result:

Theorem 3.1. Assume the conditions of Theorem 1.2 are valid except for
condition (1) which is replaced by

Φ̃(EU1(V2)) = EU2(V2).

Then the conclusions of Theorem 1.2 remain valid.

Next we aim to prove this result. To simplify the notations, we return
to the case when we have only one manifold (M, g) and assume that we
are given data (3). We need the following auxiliary result:

Proposition 3.2. (i) Let y ∈ U , η ∈ L+
y M , r1 > 0, and q ∈ V be such

that q 6∈ γy,η([−r1, 0]) and γy,η([−r1, 0]) ⊂ U . Then (y, η) ∈ DU(q) if and
only if γy,η([−r1, 0]) ∈ EU(q).

(ii) Let y ∈ U , η ∈ L+
y M , and t̂ > 0 be the largest number such that the

geodesic γy,η((−t̂, 0]) is defined and has no cut points. Then for q ∈ V we

have q ∈ γy,η((−t̂, 0)) if and only if (y, η) ∈ Dreg
U (q).

Proof. (i) Suppose (y, η) ∈ DU(q). Then y ∈ EU(q) and τ(q, y) = 0.
Since q 6∈ γy,η([−r1, 0]) ⊂ U , there is t > r1 such that γy,η(−t) = q and
for ξ = γ̇y,η(−t) we have γy,η([−r1, 0]) = γq,ξ([t − r1, t]) ⊂ PU(q). If
there would be y1 ∈ γy,η([−r1, 0]) such that y1 6∈ EU(q), it follows from
(10) that there is z ∈ PU(q) such that z ≪ y1. Then we would have
z ≪ y1 ≤ y and y ∈ EU(q) which is not possible by (10). This shows that
γy,η([−r1, 0]) ⊂ EU(q).

On the other hand, assume that γy,η([−r1, 0]) ⊂ EU(q). Then Lemma
2.3(ii) implies τ(q, y) = 0. Denote y1 = γy,η(−r1). Since y1 ∈ EU(q) and
y1 6= q, there is ξ ∈ L+

q M and t1 > 0 such that γq,ξ(t1) = y1. Then the
union of the geodesics γq,ξ([0, t1]) and γy,η([−r1, 0]) form a causal path



INVERSE PROBLEMS IN SPACETIME II 9

from q to y. Using short cut arguments, we see that if the union of these
geodesics do not form one light-like pre-geodesic, we have τ(q, y) > 0, that
is not possible. Hence γy,η([−r1, 0]) lies in the continuation of γq,ξ([0, t1]),
that is, there is t > 0 such that γy,η([−r1, 0]) ⊂ γq,ξ([0, t]) and y = γq,ξ(t).
Then, there is c > 0 such that η = cγ̇q,ξ(t). Moreover, if γq,ξ([0, t)) would
contain cut points then [19, Prop. 10.46] implies τ(q, y) > 0, and this
would lead to a contradiction with y ∈ EU(q). Hence, γq,ξ([0, t)) contains
no cut points. Thus, we have shown that t ≤ ρ(q, ξ), y = γq,ξ(t), and
η = cγ̇q,ξ(t). These imply that (y, η) ∈ DU(q).

(ii) Let (y, η) ∈ L+U and t̂ > 0 be as in the claim and q ∈ V .
First, assume that q ∈ γy,η(−t1), t1 ∈ (0, t̂). Then, due to the symmetry

of cut points, τ(q, y) = 0 and thus for ξ = γ̇y,η(−t1) we have y = γq,ξ(t1)
and t1 < ρ(q, ξ). Thus (y, η) ∈ Dreg

U (q).
Second, assume that (y, η) ∈ Dreg

U (q). Again, we see that there is t1 > 0
such that q = γy,η(−t1) and for ξ = γ̇y,η(−t1) we have y = γq,ξ(t1) and
t1 < R1 := ρ(q, ξ). Since ρ is a lower semi-continuous, we see that when
ε ∈ (0, (R1 − t1)/2) is small enough, the point x1 = γq,ξ(−ε) and ξ1 =
γ̇q,ξ(−ε) satisfy ρ(x1, ξ1) > R1 − ε > t1 + ε and hence τ(x1, y) = 0. This

yields that t̂ > t1. Thus q ∈ γy,η((−t̂, 0)). �

Using this result we determine the direction sets DU(q) from EU(V ):

Proposition 3.3. Assume that we are given the data (3). Then

(i) For any y ∈ U , we can identify from the set EU(V ) the element EU(q)
for which q = y, if it exists. For such elements L+

y M ⊂ DU(q).

(ii) Let q ∈ V and (y, η) ∈ L+U . Then (y, η) ∈ Dreg
U (q) if and only if there

exists a light-like pre-geodesic α([t1, t2]) ⊂ U such that y = α(t), η = α̇(t),
t1 < t < t2, and α([t1, t2]) ⊂ EU(q).
(iii) When EU(q) ∈ EU(V ) is given, one can determine the sets DU(q),
Dreg

U (q), and Ereg
U (q).

Proof. (i) We observe that q = y if and only if for y ∈ EU(q) there are no
η ∈ L+

y M and t0 > 0 such that γy,η([−t0, 0]) ⊂ EU(q). Claim (i) follows
from this observation.

(ii) Let q ∈ V and ξ ∈ L+
q V and (y, η) = (γq,ξ(1), γ̇q,ξ(1)). Using Def-

inition 2.4 we see that (y, η) ∈ Dreg
U (q) if and only if γq,ξ(1) ∈ U and

ρ(q, ξ) > 1. This is equivalent to the fact that there are t1 ∈ (0, 1) and
t2 > 1 such that γq,ξ([t1, t2]) ⊂ U and (γq,ξ(t2), γ̇q,ξ(t2)) ∈ DU(q). Also, by
Lemma 3.2 (i) this is equivalent to the fact that there are t1 ∈ (0, 1) and
t2 > 1 such that γq,ξ([t1, t2]) ⊂ EU(q). This proves (ii).

(iii) Let EU(q) be given. Since the conformal class of g|U is given, we
can identify all light-like pre-geodesics in U . Thus by using (ii), we can
verify for any (y, η) ∈ L+U whether it holds that (y, η) ∈ Dreg

U (q) or
not. Thus we can determine the set Dreg

U (q). Then the set DU(q) can
be determined as the closure of the set Dreg

U (q) in TU . Finally, the set
Ereg
U (q) = π(Dreg

U (q)) can be constructed using the map π : TU → U . �
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3.0.1. Construction of V as a topological and differentiable manifold. For
q ∈ J−(p+) \ I−(p−) we define the function Fq : A → R by Fq(a) = fa(q).
Also, we denote by F : J−(p+) \ I−(p−) → R

A the function F(q) = Fq,
that maps q to the function Fq : A → R. We endow the set R

A with the
product topology.

By (8), the set EU(q) determines Fq = F(q) via the formula

Fq(a) = s, where s ∈ [−1, 1] is such that µa(s) ∈ EU(q), a ∈ A.(11)

Also, Fq = F(q) determines EU(q) via the formula

EU(q) = {µa(Fq(a)); a ∈ A}.(12)

Below, we consider the sets F(V ) = {F(q); q ∈ V } ⊂ R
A and EU(V ) =

{EU(q); q ∈ V } ⊂ 2U as two representations for V . We will construct the
topological and differentiable structure of V using F(V ) and the conformal
class of the metric g|V using EU(V ).

Lemma 3.4. Let V ⊂ J−(p+) \ I−(p−) be a relatively compact open set.
Then the map F : V → F(V ) is a homeomorphism.

Proof. By Lemma 2.3 (iv), the map F : J−(p+) \ I−(p−) → R
A is

continuous. Below, let V = cl (V ) be the closure of V in M .

Next we show that the map F : V → F(V )= F(V ) is injective. Since
F(q) determines the set EU(q) uniquely by (12), it is enough to show that
the map EU : V → EU(V ) is injective. To prove this, we assume the
opposite: Assume that there are q1 6= q2 that satisfy EU(q1) = EU(q2). By
Prop. 3.3 (iii), this implies

DU(q1) = DU(q2).(13)

Choose a ∈ A such that qi /∈ µa, i = 1, 2. Let (p, η) ∈ DU(qi) with
p = Ea(qi). Then there are ti > 0 such that qi = γp,η(−ti). Since q1 6= q2,
we have t1 6= t2, and let us assume that t2 > t1. Then, we see there are
ξi ∈ L+

qi
(M) such that

(p, η) = (γqi,ξi(ti), γ̇qi,ξi(ti)), (q1, ξ1) = (γq2,ξ2(t2 − t1), γ̇q2,ξ2(t2 − t1)).

Since ρ(q, ξ) is lower semicontinuous, for any δ1 > 0 there is δ2 > 0
such that ρ(q2, ξ

′
2) > ρ(q2, ξ2)− δ1 when ξ′2 ∈ TqM satisfies ‖ξ′2 − ξ2‖ < δ2.

Choosing δ1 and δ2 to be sufficiently small, we have that there is ξ′2 ∈ Tq2M
that is not parallel to ξ2, ‖ξ

′
2 − ξ2‖ < δ2, and t′2 ∈ (t2 − 2δ1, t2 − δ1) such

that p′ = γq2,ξ′2(t
′
2) ∈ U , p′ 6= q1, and t′2 < ρ(q2, ξ

′
2). Then for η′ = γ̇q2,ξ′2(t

′
2)

we have (p′, η′) ∈ DU(q2). By (13), (p′, η′) ∈ DU(q1), and hence there is
t′1 > 0 such that q1 = γp′,η′(−t′1).

Observe that ξ′1 = γ̇p′,η′(−t′1) and ξ1 are not parallel. Then, we see that
the union of the geodesic γq2,ξ2([0, t2− t1]) and the geodesic γp′,η′([0,−t′1]),
oriented in the opposite direction, form a causal curve from q2 to p′ that is
not a light-like pre-geodesic, and hence τ(q2, p

′) > 0. This is not possible as
p′ ∈ EU(q2). This contradiction proves that EU : V → EU(V ) is injective.
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Since R
A is a Hausdorff space, V is a compact set, and the map F :

V → F(V ) is continuous and injective, we have that F : V → F(V ) is a
homeomorphism. Thus F : V → F(V ) is a homeomorphism. �

Remark 3.5. The above construction is similar to the Kuratowski embed-
ding, K : x 7→ dist(x, · ), from the metric space N to space C(N). Also,
in several inverse problems for Riemannian manifolds with boundary, a
homeomorphic image of the compact manifold N has been obtained by us-
ing the embedding R : x 7→ dist(x, · ), R : N → C(∂N), see [1, 13, 14].

Our aim is to introduce coordinates in F(V ) near any F(q) that make
F(V ) diffeomorphic to V .

Let Z = {(q, p) ∈ V × U ; p ∈ Ereg
U (q)}. Then for every (q, p) ∈ Z we

there is a unique ξ ∈ L+
q M such that γq,ξ(1) = p and ρ(q, ξ) > 1. We

will denote Θ(q, p) = (q, ξ) that defines a map by Θ : Z → L+V . Below,
let Wε(q0, ξ0) ⊂ TM be an ε-neighborhood of (q0, ξ0) with respect to the
Sasaki-metric induced by g+ on TM .

Lemma 3.6. Let (q0, p0) ∈ Z and (q0, ξ0) = Θ(q0, p0). When ε > 0 is
small enough, the map

X : Wε(q0, ξ0) → M ×M, X(q, ξ) = (q, expq(ξ))(14)

is open and defines a diffeomorphism X : Wε(q0, ξ0) → Uε(q0, p0) :=
X(Wε(q0, ξ0)). When ε is small enough, Θ coincides in Z∩Uε(q0, p0) with
the inverse map of X. Moreover, Z is a (2n − 1)-dimensional manifold
and the map Θ : Z → L+M is C∞-smooth.

Proof. Since the geodesic γq0,ξ0([0, 1]) does not contain cut points and
thus conjugate points, we see that when ε > 0 is small enough, the
set Uε(q0, p0) = X(Wε(q0, ξ0)) ⊂ M × M is open and the map X :
Wε(q0, ξ0) → Uε(q0, p0) has a C∞-smooth inverse map X−1 : Uε(q0, p0) →
Wε(q0, ξ0). Thus X :Wε(q0, ξ0) → Uε(q0, p0) is a diffeomorphism. Note
that X−1(q0, p0) = (q0, ξ0).

If Θ : Z → L+V would not be continuous at (q0, p0) ∈ Z, there would
exists a sequence (qk, pk) ∈ Z converging to (q0, p0) as k → ∞, such that
Θ(qk, pk) ∈ L+M does not converge to (q0, ξ0) = Θ(q0, p0). Since pk ∈
J−(p+2) and the function T+2 is bounded by c0 ∈ R+ in the set K given in
(6), the sequence ‖Θ(qk, pk)‖g+ is uniformly bounded, and by considering
a subsequence we may assume that Θ(qk, pk) → (q0, η) ∈ L+M as k → ∞
and η 6= ξ0. In this case the geodesics γq0,ξ0([0, 1]) and γq0,η([0, 1]) would
be two light-like geodesics connecting q0 to p0 so that ρ(q0, ξ0) ≤ 1. This
would be in contradiction with the assumption that p0 ∈ Ereg

U (q0). This
shows that Θ : Z → L+V is continuous at (q0, p0).

Let ε1 ∈ (0, ε) and Yε1 = Z ∩ Uε1(q0, p0) be a neighborhood of (q0, p0)
in the relative topology of Z ⊂ V × U . When ε1 is small enough, we
have Θ(Yε1) ⊂ Wε(q0, ξ0). Then for (q, p) ∈ Yε1 and (q, ξ) = Θ(q, p) ∈
Wε(q0, ξ0) we have expq(ξ) = p, and hence X(Θ(q, p)) = (q, p). Since
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Θ(q, p) ∈ Wε(q0, ξ0), we have Θ(q, p) = X−1(q, p). Thus for (q, p) ∈ Yε1

the function Θ : Yε1 → TM coincides with the smooth function X−1 :
Yε1 → TM . Since (q0, p0) ∈ Z is arbitrary, this shows that Z is a (2n−1)-
dimensional manifold and Θ : Z → L+M is C∞-smooth. �

Proposition 3.7. Let q0 ∈ I−(p+) \ J−(p−) and (q0, pj) ∈ Z, j =
1, 2, . . . , n and ξj ∈ L+

q0
M be such that γq0,ξj(1) = pj. Assume that ξj,

j = 1, 2, . . . , n are linearly independent. Then, if aj ∈ A and ~a = (aj)
n
j=1

are such that pj ∈ µaj , there is a neighborhood V1 ⊂ M of q0 such that the
corresponding observation time functions

f~a(q) = (faj (q))
n
j=1

define a C∞-smooth coordinates in V1. Moreover, ∇faj |q0, the gradient of
faj with respect to q at q0 satisfies ∇faj |q0 = cjξj with some cj 6= 0.

Proof. Let (q0, p0) ∈ Z and ξ0 ∈ L+
q0
M such that γq0,ξ0(1) = p0. Moreover,

let ε > 0 be so small that the map X : Wε(q0, ξ0) → Uε(q0, p0) has a C∞-
smooth inverse, see (14). We denote this inverse map by X−1(q, p) =
(q, ξ(q, p)) and W = Wε(q0, ξ0) and U = Uε(q0, p0).

We associate with any (q, p) ∈ W the energy E(q, p) = E(γq,ξ(q,p)([0, 1]))
of the geodesic segment γq,ξ(q,p)([0, 1]) from p to q. Here, the energy of a
piecewise smooth curve α : [0, l] → M is defined by

E(α) =
1

2

∫ l

0

g(α̇(t), α̇(t)) dt.

Observe that the sign of E(q, p) depends on the causal nature of γq,p. In
particular, E(q, p) = 0 if and only if ξ(q, p) is light-like. Moreover, since
X−1 is C∞-smooth on U , also E(q, p) is C∞-smooth in U .

Let us return to consider (q0, p0) ∈ Z and let a ∈ A be such that
p0 ∈ µa. Then p0 = µa(s0) with s0 = fa(q).

Let V0 ⊂ V be an open neighborhood of q0 and t1, t2 ∈ (s−2, s+2),
t1 < s0 < t2 be such that V0 × µa([t1, t2]) ⊂ U . Then for q ∈ V0 and
s ∈ (t1, t2) the function Ea(q, s) := E(q, µa(s)) is well defined and smooth.
Using the first variation formula for Ea(q, s), see e.g. [19, Prop. 10.39], we
obtain

∂Ea(q0, s)

∂s

∣∣∣
s=s0

= g (η, µ̇a(fa(q0))) , ∇Ea(q, s0)
∣∣∣
q=q0

= −ξ0,(15)

where ξ0 = ξ(q0, p0) and η = γ̇q0,ξ0(1). Since µ̇a(s) is time-like and future-
pointing and η is light-like and future-pointing, ∂Ea

∂s
(q0, s0) < 0.

It follows from the implicit function theorem that there is an open
neighborhood Va ⊂ V0 of q0 and a smooth function q 7→ s(q, a) defined for
q ∈ Va such that s(q0, a) = fa(q0) and Ea(q, s(q, a)) = 0. Then q 7→ s(q, a)
and q 7→ fa(q) coincide in Va, and it follows from (15) that

∇fa(q)
∣∣∣
q=q0

=
1

c(q0, a)
ξ(q0, p0), c(q0, a) =

∂Ea

∂s
(q0, s))

∣∣∣
s=fa(q0)

,(16)
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where we recall that p0 = µa(s0) = Ea(q) and s0 = fa(q).
Next we choose p1, p2, . . . , pn ∈ Ereg

U (q0) and let ξ1, . . . , ξn ∈ L+
q0
(M) be

such that pi = γq0,ξi(1). We assume that ξ1, . . . , ξn ∈ L+
q0
(M) are linearly

independent. Moreover, let aj ∈ A be such that pj ∈ µaj and ~a = (aj)
n
j=1.

Finally, we denote by q 7→ s(q, aj) the above constructed smooth functions
that are defined in some neighborhoods Vaj ⊂ V of q0

Let V~a =
⋂n

j=1 Vaj and consider the map

f~a : V~a → R
n, f~a(q) = (fa1(q), . . . , fan(q)).

It follows from (16) that the map f~a has a non-degenerate differential at q0
and, therefore, the function f~a : V~a → R

n defines a C∞-smooth coordinate
system in some neighborhood of q0. �

Definition 3.8. Let ~a = (aj)
n
j=1 ∈ An, W ⊂ F(V ) be an open set,

saj = faj ◦F
−1, and s~a = f~a◦F

−1. We say that (W, s~a) are C0-observation
coordinates on F(V ) if the map s~a : W → R

n is an open and injective
map. Also, we say that (W, s~a) are C∞-observation coordinates on F(V )
if s~a ◦F : F−1(W ) → R

n are C∞-smooth local coordinates on V ⊂ M , see
Fig. 1(Right).

Note that, by the invariance of domain theorem, the above s~a : W → R
n

is open if it is injective. Even though for a given ~a ∈ R
A there are several

sets W for which (W, s~a) form C0-observation coordinates, to clarify the
notations, we sometimes denote the coordinates (W, s~a) by (W~a, s~a).

Since F : V → F(V ) is a homeomorphism, we can determine all C0-
observation coordinates on F(V ) using data (3). Next we will consider
F(V ) as a topological manifold endowed with the C0-observation coor-

dinates and denote F(V ) = V̂ . We denote the points of this manifold

by q̂ = F(q). Next we construct a differentiable structure on V̂ that is
compatible with that of V .

Lemma 3.9. Assume that we are given data (3). Then for any C0-
observation coordinates (W~a, s~a) with ~a ∈ An we can determine if (W~a, s~a)

are C∞-observation coordinates on V̂ . Moreover, for any q̂ ∈ V̂ there
exists C∞-observation coordinates (W~a, s~a) such that q̂ ∈ W~a.

Proof. Let q ∈ V . We say that p ∈ EU(q) and a ∈ A are associated if
p ∈ µa. Next, consider p ∈ Ereg

U (q) and a ∈ A that are associated. Note
that then q 6∈ µa. By (16), the function fa(q) satisfies

∇fa(q) = c(q, a) ξ(q, Ea(q)), c(q, a) 6= 0.

Let

K(q) = {(ξj)
n
j=1; ξj ∈ L+

q M, ρ(q, ξj) > 1, γq,ξj(1) ∈ U}

and H : K(q) → Un be the map H((ξj)
n
j=1) = (pj)

n
j=1, where pj = γq,ξj(1).

Then pj ∈ Ereg
U (q) and ξj = Θ(q, pj). As ρ is lower semi-continuous, we see

that K(q) ⊂ (L+
q M)n is open. Clearly, H is continuous and as Θ : Z →
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L+V is continuous and injective, we see that H : K(q) → H(K(q)) =
(Ereg

U (q))n is a homeomorphism. We denote below Y (q) = (Ereg
U (q))n.

Note that for all q̂ ∈ V̂ the data (3) determine the set Y (q) ⊂ Un, where
q = F−1(q̂).

Let us consider the set

K0(q) = {(ξj)
n
j=1 ∈ K(q); ξj, j = 1, . . . , n are linearly independent}.

Clearly, the set K0(q) is dense and open in K(q), and hence Y0(q) :=
H(K0(q)) is open and dense in Y (q).

Let (W~a, s~a), ~a ∈ An be C0-observation coordinates on V̂ , q̂ ∈ W~a, and
q = F−1(q̂). Also, let (pj)

n
j=1 ∈ Y (q) be such that pj are associated with aj .

Similarly, let (W~b
, s~b),

~b ∈ An be another C0-observation coordinates on

V̂ such that q̂ ∈ W~b, and let (p̃j)
n
j=1 ∈ Y (q) be such that p̃j are associated

with bj . Note that then pj = Ereg
aj

(q) and p̃j = Ereg
bj

(q).

In the case when (p̃j)
n
j=1 ∈ Y0(q), q has a neighborhood V1 ⊂ V in

which the function f~b : V1 → R
n give C∞-smooth local coordinates. Thus,

if (p̃j)
n
j=1 ∈ Y0(q), then it holds that (pj)

n
j=1 ∈ Y0(q) if and only if

(i) Functions saj ◦ s
−1
~b

, j = 1, 2, . . . , n are C∞-smooth at s~b(q̂) and

the Jacobian determinant det(D(s~a ◦ s
−1
~b

)) at s~b(q̂) is non-zero.

Denote ~p = (pj)
n
j=1 ∈ Y (q), and define X~p ⊂ Y (q) to be the set of

those (p̃j)
n
j=1 ∈ Y (q), for which there are ~b ∈ An and C0-observation

coordinates (W~b, s~b) such that q̂ = F(q) ∈ W~b, p̃j are associated with bj
for j = 1, 2, . . . , n, and the condition (i) is satisfied. If ~p is in Y0(q), we
see that Y0(q) ⊂ X~p. On the other hand, if ~p is not in Y0(q), we have
Y0(q)∩X~p = ∅. Since the set Y0(q) is open and dense in Y (q), we see that
~p ∈ Y0(q) if and only if the interior of set X~p is a dense subset of Y (q).
This in particular implies that using data (3) we can determine whether
(pj)

n
j=1 is in Y0(q) or not. The C0-observation coordinates (W~a, s~a), ~a ∈

An are C∞-observation coordinates on V̂ if and only if for all q̂ ∈ W~a,
q = F−1(q̂), and pj = Eaj (q), j = 1, 2, . . . , n we have (pj)

n
j=1 ∈ Y0(q).

Thus we can determine all C0-observation coordinates (W~a, s~a) on V̂ that
are C∞-observation coordinates. Moreover, since for all q ∈ V the set

Y0(q) is non-empty, we see that any q̂ = F(q) ∈ V̂ belongs in the domain
some C∞-observation coordinates. �

We endow V̂ = F(V ) with the differentiable structure provided by all

C∞-observation coordinates on V̂ . By Lemma 3.9 and [19, Lem. 1.42] the

C∞-observation coordinates make V̂ a differentiable manifold and its the
differentiable structure is uniquely determined. Since the differentiable
structure of V is determined by the functions f~a that are C∞-smooth
local coordinates, we see using Def. 3.8 that the map

F : V → V̂ = F(V )(17)
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is a diffeomorphism.
3.0.2. Construction of the conformal type of the metric. Let us denote

by ĝ = F∗g the metric on V̂ = F(V ) that makes F an isometry. Next
we show that the set F(V ), the paths µa and the conformal class of the

metric g on U determine the conformal class of ĝ on V̂ .

Lemma 3.10. The data (3) determines a metric G on V̂ = F(V ) that is

conformal to ĝ and the time orientation on V̂ that makes F : V → V̂ a
causality preserving map.

Proof. Let (W~a, s~a) be C∞-observation coordinates on V̂ . Then by (16)
the co-vectors −dsa1 |q̂ and −dsa2 |q̂ are non-parallel future-pointing light-
like co-vectors. Thus their sum determines a future-pointing time-like
co-vector field on W~a. Using a suitable partition of unity we can construct

future-pointing time-like co-vector field X on V̂ .

Let (W~a, s~a) be C∞-observation coordinates on V̂ . Let q̂ ∈ W~a and
q ∈ V be such that q̂ = F(q). Using the data (3), the function Fq =
F(q) : A → R, and the formula (12), we can determine the set EU(q) ⊂ U .
By Prop. 3.3 (iii), this further determines the set Dreg

U (q).
Then, let us fix a point q̂ = F(q) ∈ W~a. Let (y, η) ∈ Dreg

U (q) and let

t̂ > 0 be the largest number such that the geodesic γy,η((−t̂, 0]) ⊂ M is
defined and has no cut points. For q ∈ V , Proposition 3.2 (ii) yields that
q ∈ γy,η((−t̂, 0)) if and only if (y, η) ∈ Dreg

U (q). Hence (y, η) and the data
(3) determine the set

β = {q̂ ∈ W~a; q̂ = F(q), Dreg
U (q) ∋ (y, η)} = F(γy,η((−t̂, 0))) ∩W~a.

This implies that on W~a ⊂ V̂ we can find the image, in the map F ,
of the light-like geodesic segment γy,η((−t̂, 0)) ∩ F−1(W~a) that contains
q = γy,η(−t1). Let α(s), s ∈ (−s0, s0) be a smooth path on W~a such that
∂sα(s) does not vanish, α((−s0, s0)) ⊂ β, and α(0) = q̂. Such smooth
path α(s) can be obtained e.g. by parametrizing β by the arc-length with

respect to some auxiliary smooth Riemannian metric on W~a. Then ξ̂ =

∂sα(s)|s=0 ∈ Tq̂V̂ has the form ξ̂ = cF∗(γ̇y,η(t1)) where c 6= 0. Since we can
do the above construction for all points (y, η) ∈ Dreg

U (q), we determine in

the tangent space Tq̂V̂ the set Γ = F∗({cξ ∈ LqM ; expq(ξ) ∈ EU(q), c ∈
R, c 6= 0}), that is an open, non-empty subset of the light cone at q̂
associated to the metric ĝ. Let us now consider the set Γ in the coordinates
of Tq̂V̂ associated to s~a. Since the light cone is determined by a quadratic
equation in the tangent space, having an open set Γ of the light cone we
can uniquely determine the whole light cone. Using this construction with
all points q̂ ∈ W~a, we can determine all light-like vectors in the tangent
space Tq̂W~a for all q̂ ∈ W~a. The collections of light-like vectors at tangent

spaces of V̂ determine uniquely the conformal class of the tensor ĝ = F∗g
in the manifold V̂ , see [3, Thm. 2.3] (or [3, Lem. 2.1] for a constructive
procedure).
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The above shows that the data (3) determines the conformal class of

the metric tensor ĝ. In particular, we can construct a metric G on V̂ that
is conformal to ĝ and satisfies G(X,X) = −1. �

We have shown that the data (3) determine the topological and the dif-

ferentiable structures on V̂ = F(V ) and a metric G on it that makes the

map F : (V, g|V ) → (V̂ , G) a diffeomorphism and a conformal map. More-

over, we determine the time-orientation on V̂ that makes F a causality
preserving map. This proves Theorem 3.1.

Finally, by Prop. 3.3 (i), for any y ∈ U we can identify if y = q ∈ V
and find the corresponding element F(q) ∈ F(V ). Thus we can find the
set F(V ∩U) and the map F−1 : F(V ∩U) → V ∩U . This yields the last
claim of Thm. 1.2. Thus Theorem 1.2 is proven. �

Proof of Corollary 1.3. By Theorem 1.2, there is a conformal diffeo-
morphism Ψ : (V1, g

(1)) → (V1, g
(2)). By our assumptions, Φ : (U1, g

(1)) →
(U1, g

(2)) is an isometry, the Ricci curvature of g(j) is zero in Vj, and any
point x1 ∈ V1 can be connected to some point y1 ∈ U1 ∩ V1 with a piece-
wise smooth path µx1,y1([0, 1]) ⊂ V1. Note that then Ψ(µx1,y1([0, 1])) ⊂ V2

connects x2 = Ψ(x1) to y2 = Ψ(y1).
To simplify notations we denote ĝ = g(1) and g = Ψ∗g(2). Since Ψ

is conformal, there is f : V1 → R such that ĝ = e2fg on V1, and as
Φ : U1 → U2 is an isometry, f = 0 in U1. By [20, formula (2.73)], see also
[17], the Ricci tensors Ricjk(g) of g and Ricjk(ĝ) of ĝ satisfy on V1

0 = Ricjk(ĝ) = Ricjk(g)− 2∇j∇kf + 2(∇jf)(∇kf)

−(gpq∇p∇qf + 2gpq(∇pf)(∇qf))gjk

where ∇ = ∇g. For the scalar curvature this yields

0 = e2f ĝpqRicpq(ĝ) = gpqRicpq(g)− 3gpq∇p∇qf.

Combining the above with the fact that Ricjk(g) = 0, we obtain

∇j∇kf−(∇jf)(∇kf)+gpq(∇pf)(∇qf)gjk=0.

This equation gives a system of first order ordinary differential equations
for the vector field Y = ∇f along µx1,y1([0, 1]) with initial value Y (x1) =
∇f(x1) = 0, that has the unique solution Y = 0.As f(x1) = 0, we obtain
f(µx1,y1(t)) = 0 for t ∈ [0, 1]. Since all points x ∈ V1 are connected in V1

to the set U1 by piecewise smooth paths, this shows that f = 0. �
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