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How one can determine the topology and metric

of the space time?

How one can determine the topology and metric of complicated
structures in space-time with a radar-like device?

How the blue-prints of a "space-time radar" look like?

Figures: Anderson institute and Greenleaf-K.-L.-U.



Some results for hyperbolic inverse problems for linear equations:

◮ Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a
Riemannian manifold with time-indepedent metric.
The used unique continuation fails for non-real-analytic
time-depending coefficients (Alinhac 1983).

◮ Kachalov-Kurylev 1998: Reconstruction with local data.

◮ Eskin 2008: Wave equation with time-depending
(real-analytic) lower order terms.

◮ Helin-Lassas-Oksanen 2012: Combining several measurements
for together for the wave equation.



Outline:

◮ Inverse problems in space-time for passive measurements

◮ Inverse problem for non-linear wave equation

◮ Einstein-scalar field equations



Inverse problems in space-time: Passive

measurements

Can we determine structure of the space-time when we see light
coming from many point sources that vary in time?



Definitions

Let (M, g) be a Lorentzian manifold,

where the metric g is semi-definite.

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0.

ξ ∈ TxM is time-like if g(ξ, ξ) < 0.

A curve µ(s) is time-like if µ̇(s) is time-like.

Example: Minkowski space R
1+3. The metric at

(x0, x1, x2, x3) ∈ R
1+3 is

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.



Definitions

Let (M, g) be a Lorentzian manifold.

LqM = {ξ ∈ TqM \ 0; g(ξ, ξ) = 0},

L+q M ⊂ LqM is the future light cone,

J+(q) = {x ∈ M; x is in causal future of q},

J−(q) = {x ∈ M; x is in causal past of q},

γx ,ξ(t) is a geodesic with the initial point (x , ξ).

(M, g) is globally hyperbolic if

there are no closed causal curves and the set

J−(p1) ∩ J+(p2) is compact for all p1, p2 ∈ M.

Then M can be represented as M = R× N.



More definitions

Let µ = µ((−1, 1)) ⊂ M be a time-like geodesics, p−, p+ ∈ µ.
We consider observations in a neighborhood V ⊂ M of µ.

Let U ⊂ J−(p+) \ J−(p−) be an open, relatively compact set.

The light observation set PV (q) for q ∈ U is the intersection of the
future light cone of q and V ,

PV (q) = expq(L
+
q M) ∩ V = {γq,ξ(r) ∈ V ; ξ ∈ L+q M, r ≥ 0}.
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Theorem

Let (M, g) be an open, globally hyperbolic Lorentzian manifold of

dimension n ≥ 3. Assume that µ is a time-like geodesic containing

points p− and p+, and V ⊂ M is a neighborhood of µ.

Let U ⊂ J−(p+) \ J−(p−) be a relatively compact open set.

Then (V , g |V ) and the collection of the light observation sets,

PV (U) :=

{
PV (q) ⊂ V

∣∣∣∣ q ∈ U

}
,

determine the set U, up to a change of coordinates, and the

conformal class of the metric g in U.
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Reconstruction of the topological structure of U
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Assume that q1, q2 ∈ U are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1

to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).



Reconstruction of the topological structure of U
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Assume that q1, q2 ∈ U are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1

to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).

Using a short cut argument we see that

there is a causal curve from q1 to x1

that is not a geodesic.



Reconstruction of the topological structure of U
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Assume that q1, q2 ∈ U are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1

to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).

Using a short cut argument we see that

there is a causal curve from q1 to x1

that is not a geodesic.

This implies that q1 can be

observed on µ before x1.

The map PV : U 7→ 2TV is continuous

and one-to-one.

As U is compact, the map

PV : U → PV (U) is a homeomorphism.



Possible applications of the theorem

Left: Variable stars in Hertzsprung-Russell diagram on star types.
Right: Galaxy Arp 220 (Hubble Space Telescope)

Artistic impressions on matter falling into a black hole and
Pan-STARRS1 telescope picture.



Outline:

◮ Inverse problems in space-time for passive measurements

◮ Inverse problem for non-linear wave equation

◮ Einstein-scalar field equations

“Can we image a wave using other waves?”



Inverse problem for non-linear wave equation

Let M = R× N, dim(M) = 4. Consider the equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u(x) = 0 for x = (x0, x1, x2, x3) ∈ (−∞, 0)× N,

where supp(f ) ⊂ V , V ⊂ M1 is open,

�gu =

3∑

p,q=0

|det (g(x))|−
1

2

∂

∂xp

(
|det (g(x))|

1

2 gpq(x)
∂

∂xq
u(x)

)
,

f ∈ C 6
0
(V ) is a source, and a(x) is a non-vanishing C∞-smooth

function.
In a neighborhood W ⊂ C 6

0
(V ) of the zero-function, define the

measurement operator (source-to-solution operator) by

LV : f 7→ u|V , f ∈ W ⊂ C 6

0 (V ).



Theorem

Let (M, g) be a globally hyperbolic Lorentzian manifold of

dimension (1 + 3). Let µ be a time-like path containing p− and

p+, V ⊂ M be a neighborhood of µ, and a(x) be a non-vanishing

function. Consider the non-linear wave equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u = 0 in (−∞, 0)× N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator

LV : f 7→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a

change of coordinates, and the conformal class of g in the set

J+(p−) ∩ J−(p+).



Idea of the proof: Non-linear geometrical optics.

The non-linearity helps in solving the inverse problem.

Let u = εw1 + ε2w2 + ε3w3 + ε4w4 + Eε satisfy

�gu + au2 = f , on M1 = (−∞,T )× N,

u|(−∞,0)×N = 0

with f = εf1, ε > 0.
When Q = �−1

g , we have

w1 = Qf1,

w2 = −Q(a w1 w1),

w3 = 2Q(a w1 Q(a w1 w1)),

w4 = −Q(a Q(a w1 w1)Q(a w1 w1))

−4Q(a w1 Q(a w1 Q(a w1 w1))),

‖Eε‖ ≤ Cε5.



Interaction of waves in Minkowski space R
4

Let x j , j = 1, 2, 3, 4 be coordinates such that {x j = 0} are
light-like. We consider waves

uj (x) = v · (x j )m+, (s)m+ = |s|mH(s), v ∈ R, j = 1, 2, 3, 4.

Waves uj are conormal distributions, uj ∈ Im+1(Kj ), where

Kj = {x j = 0} ⊂ R
4, j = 1, 2, 3, 4.

The interaction of the waves uj(x) produce new sources on

K12 = K1 ∩ K2,

K123 = K1 ∩ K2 ∩ K3 = line,

K1234 = K1 ∩ K2 ∩ K3 ∩ K3 = {q} = one point.
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Interaction of two waves

If we consider sources f~ε(x) = ε1f(1)(x) + ε2f(2)(x), ~ε = (ε1, ε2),
and the corresponding solution u~ε of the wave equation, we have

W2(x) =
∂

∂ε1

∂

∂ε2

u~ε(x)

∣∣∣∣
~ε=0

= Q(a u(1) · u(2)),

where Q = �−1
g and

u(j) = Qf(j).

Recall that K12 = K1 ∩ K2 = {x1 = x2 = 0}. Since light-like
co-vectors in the normal bundle N∗K12 are in N∗K1 ∪ N∗K2,

singsupp(W2) ⊂ K1 ∪ K2.

Thus no interesting singularities are produced by the interaction of
two waves.



Interaction of three waves

If we consider sources f~ε(x) =
∑

3

j=1
εj f(j)(x), ~ε = (ε1, ε2, ε3), and

the corresponding solution u~ε, we have

W3 = ∂ε1
∂ε2

∂ε3
u~ε

∣∣
~ε=0

= Q(a u(1) ·Q(au(2) · u(3))) + . . . ,

where Q = �−1
g . The interaction of the three waves happens on

the line K123 = K1 ∩ K2 ∩ K2.
The normal bundle N∗K123 contains light-like directions that are
not in N∗K1 ∪ N∗K2 ∪ N∗K3 and hence new singularities appear.

Using standard tools of microlocal analysis we can analyze
Q(au(1) · au(2)), but not the interaction of 3 waves. Let

Fτ (x) = eτ(i x ·p0−(x−x0)2)φ(x). By studying

〈Fτ ,W3〉L2(M) = 〈Q∗Fτ , a u(1) ·Q(au(2) · u(3))〉L2(M) + . . . ,

as τ → ∞, we can detect if (x0, p0) ∈ WF(W3).



Interaction of waves:

The non-linearity helps in solving the inverse problem.
Artificial sources can be created by interaction of waves using the
non-linearity of the wave equation.

The interaction of 3 waves creates a point source in space that
seems to move at a higher speed than light, that is, it appears like
a tachyonic point source, and produces a new “shock wave” type
singularity.



(Loading talkmovie1.mp4)

Interaction of three waves.
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Interaction of four waves

Consider sources f~ε(x) =
∑

4

j=1
εj f(j)(x), ~ε = (ε1, ε2, ε3, ε4), the

corresponding solution u~ε, and

W4 = ∂ε1
∂ε2

∂ε3
∂ε4

u~ε(x)
∣∣
~ε=0

.

Since K1234 = {q} we have N∗K1234 = T ∗
q M. Thus, when the

conic waves intersect, an artificial point source appears. We have

singsupp(W4) ⊂ (∪4

j=1Kj) ∪Σ ∪ L+
q M,

where Σ is the union of conic waves produced by 3-interactions.
Above, L+

q M = expq(L
+
q M) is the union of future going light-like

geodesics starting from the point q.



Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

(Loading talkmovie2.mp4)

The 4-interaction produces

a spherical wave from the point q

that determines the light

observation set PV (q).

q
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Einstein equations

The Einstein equation for the (−,+,+,+)-type Lorentzian metric
gjk of the space time is

Einjk(g) = Tjk ,

where

Einjk(g) = Ricjk(g)−
1

2
(gpq Ricpq(g))gjk .

In vacuum, T = 0. In wave map coordinates, the Einstein equation
yields a quasilinear hyperbolic equation and a conservation law,

gpq(x)
∂2

∂xp∂xq
gjk(x) + Bjk(g(x), ∂g(x)) = Tjk(x),

∇p(g
pjTjk) = 0.



One can not do measurements in vacuum, so matter fields need to
be added. We can consider the coupled Einstein and scalar field
equations with sources,

Ein(g) = T , T = T(φ, g) + F1, on (−∞,T )× N,

�gφℓ − m2φℓ = Fℓ
2 , ℓ = 1, 2, . . . , L, (1)

g |t<0 = ĝ , φ|t<0 = φ̂.

Here, ĝ and φ̂ are C∞-smooth and satisfy equations (1) with the
zero sources and

Tjk(g , φ) =

L∑

ℓ=1

∂jφℓ ∂kφℓ −
1

2
gjkgpq∂pφℓ ∂qφℓ −

1

2
m2φ2

ℓgjk .

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

∇p(g
pjTjk) = 0, k = 1, 2, 3, 4.



Definition

Linearization stability (Choquet-Bruhat, Deser, Fischer, Marsden)
Let f = (f 1, f 2) satisfy the linearized conservation law

∑L
ℓ=1

f 2

ℓ ∂j φ̂ℓ +
1

2
ĝpk∇̂pf

1

kj = 0, j = 1, 2, 3, 4 (2)

and let (ġ , φ̇) be the corresponding solution of the linearized
Einstein equation. We say that f has the Linearization Stability
(LS) property if there is ε0 > 0 and families

Fε = (F1

ε ,F
2

ε ) = εf + O(ε2),

gε = ĝ + εġ + O(ε2),

φε = φ̂+ εφ̇+ O(ε2),

where ε ∈ [0, ε0), such that (gε, φε) solves the non-linear Einstein
equations and the conservation law

∇gε
j (Tjk(gε, φε) + (F1

ε )
jk) = 0, k = 1, 2, 3, 4.



Let Vĝ ⊂ M be a open set that is a union of freely falling geodesics
that are near µ, L ≥ 5.

Condition A: Assume that at any x ∈ Vĝ the 5 × 5 matrix

[Ajℓ(x)]j ,ℓ≤5 =

[
( ∂j φ̂ℓ(x))ℓ≤5, j≤4

(φ̂ℓ(x))ℓ≤5

]

Vĝ

W
Yis invertible.

Let I k(Y ) be the space of conormal distributions for Y ⊂ M.

Theorem

Let condition A be valid, W ⊂ Vĝ be open, and Y ⊂ W be a

2-dimensional space-like surface. Assume that f = (f 1, f 2) ∈ I k(Y )
is supported in W and f 1 has a principal symbol ajk(y , η) satisfying

ĝ lk(y)ηlajk(y , η) = 0 on N∗Y . Then there is a smoother correction

term fcor ∈ I k−1(Y ) supported in W such that f + fcor has a

linearization stability property with a family Fε supported in W .



Idea of proof: We formulate the direct problem with adaptive
source functions,

Einjk(g) = Pjk −

L∑

ℓ=1

(Sℓφℓ +
1

2
S2

ℓ )gjk + Tjk(g , φ),

�gφℓ − m2φℓ = Sℓ, in M0, ℓ = 1, 2, 3, . . . , L,

Sℓ = Qℓ + S2nd
ℓ (g , φ,∇φ,Q,∇Q,P ,∇P),

g = ĝ , φℓ = φ̂ℓ, in (−∞, 0)× N.

Here Q and Pjk are considered as the primary sources.
The functions S2nd

ℓ are constructed so that the conservation law is
satisfied for all solutions (g , φ).



Let Vĝ ⊂ M be a neighborhood of the geodesic µ and p−, p+ ∈ µ.

Theorem

Assume that the condition A is valid. Let

D = {(Vg , g |Vg
, φ|Vg

,F|Vg
); g and φ satisfy Einstein equations

with a source F = (F1,F2), supp (F) ⊂ Vg , and

∇j(T
jk(g , φ) + F jk

1
) = 0}.

The data set D determines uniquely the conformal type of the

double cone (J+(p−) ∩ J−(p+), ĝ ).



Thank you for your attention!


