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Inverse scattering at a fixed energy k2

• For all θ ∈ Sd−1 we send plane waves e ikθ·x toward an unknown object.

• For all ϑ ∈ Sd−1 we measure the scattered waves.

• If we consider e ikθ·x to be a sound wave (in air or in water for example),
the task is to recover the speed of sound c(x) at each x .

• If we consider e ikθ·x to be the wavefunction of a beam of neutrons fired
at a nucleus, the task is to recover the nuclear potential V (x) at each x .
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The PDEs

The plane waves satisfy the Helmholtz equation

−∆u = k2u

and so we expect our scattered waves to satisfy distorted versions of this.

Sonar: The scattered waves are supposed to satisfy the accoustic equation

−∆u = k2

c2 u.

We normalise so that the speed of sound is 1 away from the object.

Nuclear: The scattered waves are supposed to satisfy the time
independent Schrödinger equation

−∆u = k2u − Vu.

• Writing V = k2(1− 1
c2 ), the models are equivalent.

• So from now on we consider only the quantum problem.
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• So our scattered solutions are supposed to satisfy

(−∆− k2)u = −Vu,
and we want the solution u = uθ that looks most like e ikθ·x .

• That is, uθ solves the Lippmann–Schwinger equation

uθ = e ikθ·x − (−∆− k2)−1[Vuθ]

which can be written as

uθ(x) = e ikθ·x −
∫

G0(x − y)V (y)uθ(y) dy ,

where in 2D

G0(x − y) = e
−ik x
|x| ·y e ik|x |√

k|x |
+ o
( 1√
|x |

)
.

• Thus

uθ(x) = e ikθ·x − A
(
θ, x
|x |
) e ik|x |√

k |x |
+ o
( 1√
|x |

)
.

• The challenge is then to recover V from A.
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Reduction to the DN map

• Let u solve ∆u = (V − k2)u with u|∂Ω = f .

Then

ΛV : f 7→ ∇u · n|∂Ω,

• The first step is to recover this map from the scattering amplitude A.

• First by Nachman’s formula (1988),

ΛV − Λ0 = S−1
V − S−1

0 ,

SV [f ] :=

∫
∂Ω

GV (x , y)f (y) dy , (−∆ + V − k2)GV (x , y) = δ(x − y).

• Then adapting the 3D work of Stefanov (1991), we obtain

GV − G0 = Formula(A).

• The challenge is then to recover V from ΛV − Λ0.
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What does it mean to recover V from ΛV − Λ0?

[1] Prove that only one potential V can give rise to a given ΛV − Λ0.

• Bukhgeim (2008), V ∈ C 1

• Bl̊asten (2011), V ∈W p,ε, ε > 0, p > 2
• Imanuvilov–Yamamoto (2012), V ∈ Lp, p > 2

[2] Give a formula which gives V in terms of ΛV − Λ0.

• Bukhgeim (2008) + Novikov–Santacesaria (2011), V ∈ C 1

• Astala–Faraco–R. (2014), V ∈ H1/2

[3] Give an algorithm which can compute V given ΛV − Λ0.

• Tejero
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On mathematical retreat

On the border between France and Spain (near Baztan, Navarra)
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Alessandrini’s identity

〈
(ΛV − Λ0)[u|∂Ω], v |∂Ω

〉
=

∫
Ω
Vuv .

Proof :

As ∆u = Vu and ∆v = 0, by integration by parts,∫
Ω
Vuv =

∫
Ω

∆uv

=

∫
∂Ω
∇u · n v −

∫
Ω
∇u · ∇v

=
〈

ΛV [u], v
〉
−
∫

Ω
∇u · ∇v

=
〈

ΛV [u], v
〉
−
∫
∂Ω

u∇v · n +

∫
Ω
u∆v

=
〈

ΛV [u], v
〉
−
〈
u,Λ0[v ]

〉
=
〈

(ΛV − Λ0)[u], v
〉

�
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Bukhgeim’s solutions to Laplace’s equation

• Consider the phases

ψn,x(z) = n
8

(
(z1 − x1)2 − (z2 − x2)2 + 2(z1 − x1)(z2 − x2)i

)
.

• Identifying (z1, z2) with z1 + iz2, we have ψn,x(z) = n
8 (z − x)2.

Thus e iψn,x and e iψn,x are holomorphic and antiholomorphic, respectively.

• Writing
∆ = (∂z1 + i∂z2)(∂z1 − i∂z2),

we see that e iψn,x , e iψn,x are solutions to ∆v = 0.

• The solutions grow exponentially but |e iψn,x e iψn,x | = 1.
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The heuristic

Suppose that the potential V is smooth and that e iψn,x were a solution to

∆u = Vu.

Then by Alessandrini’s identity,

〈
(ΛV − Λ0)[e iψn,x ], e iψn,x

〉
=

∫
Ω
V e iψn,x e iψn,x

=

∫
V (z) e i

n
4

(
(z1−x1)2−(z2−x2)2

)
dz .

Thus by the method of stationary phase,

n

4π

〈
(ΛV − Λ0)[e iψn,x ], e iψn,x

〉
=

∫
V (z)

n

4π
e i

n
4

(
(z1−x1)2−(z2−x2)2

)
dz

= V ∗ Kn(x)

→ V (x) as n→∞.
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Making the heuristic precise

As before, but with e iψn,x replaced by u = e iψn,x (1 + w),

n

4π

〈
(ΛV − Λ0)[u], e iψn,x

〉
=

n

4π

∫
Ω
V u e iψn,x

=

∫
V

n

4π
e iψn,x e iψn,x +

∫
V w

n

4π
e iψn,x e iψn,x .

We expect ∫
V

n

4π
e iψn,x e iψn,x → V (x) as n→∞, (conv)

so we also need to prove∫
V w

n

4π
e iψn,x e iψn,x → 0 as n→∞. (remainder)
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What about w?

We have e iψn,xw = u − e iψn,x , so that

∆[e iψn,xw ] = ∆u = Vu = Ve iψn,x (1 + w).

Defining ∆ψw := e−iψn,x ∆[e iψn,xw ], we obtain ∆ψw = V (1 + w).

Key observation: ∆ψ is not so terrible :

∆ψF = e−iψ∂z∂z
[
e iψF

]
= e−iψ∂z

[
e iψ∂zF

]
= e−iψe−iψ∂z

[
e iψe iψ∂zF

]
.

So we happily write w = ∆−1
ψ [V (1 + w)].

Key estimate: ‖e iψn,x e iψn,xF‖Ḣ−s 6 Cn−s‖F‖Ḣs .
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Connection with the time dependent nonelliptic equation

Writing Kn(y) = n
4π e

i n
4

(y2
1−y2

2 ), it remains to prove

V ∗ Kn(x)→ V (x) as n→∞. (conv)

As V ∗ Kn =
(
V̂ K̂n

)∨
, we see that

V ∗ Kn =
(
V̂ (ξ) e−i

1
n

(ξ2
1−ξ2

2)
)∨

=: e i
1
n
�V ,

which, at time t = 1/n, solves

i∂tu +�u = 0, u(·, 0) = V ,

where � = ∂x1x1 − ∂x2x2 .

Thus (conv) can be interpreted as the convergence of the solution to a
time dependent equation to its initial data as time tends to zero.

Theorem

If V ∈ H1/2 then (conv) holds for all x ∈ Ω\E with dimH(E ) 6 3/2.
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Sketch of Proof

By Frostman’s lemma, it suffices to prove that

µ
{
x ∈ Ω : lim sup

n→∞
|e i

1
n
�V (x)− V (x)| 6= 0

}
= 0 (∗)

whenever µ satisfies cα(µ) := supr>0 r
−αµ(Br ) <∞ with α > 3/2.

Then (∗) follows by a density argument from∥∥ sup
n>1
|e i

1
n
�V |

∥∥
L1(dµ)

6 C
√
‖µ‖cα(µ) ‖V ‖H1/2 , α > 3/2.

After factorising the problem into two one–dimensional problems and
bounding an oscillatory integral, this follows from∫

Ω

∫
Ω

dµ(x)dµ(y)

|x1 − y1|1/2|x2 − y2|1/2
6 C‖µ‖cα(µ),

which follows from a dyadic decomposition away from the singularities:
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Potential Recovery

Corollary

• For all compactly supported V ∈ H1/2,

V (x) = lim
n→∞

n

4πi

〈
(ΛV − Λ0)[u], e iψn,x

〉
, ∀ x ∈ Ω\E ,

where dimH(E ) 6 3/2 and u = e iψn,x (1 + w).

• There exist compactly supported V ∈ Hs with s < 1/2 for which this
recovery process fails completely.

Theorem

For V ∈ Hs with s > 0, we can identify Γ : H1/2(∂Ω)→ H1/2(∂Ω),
depending only on ψn,x and ΛV , such that

u = (I− Γ)−1[e iψn,x ] on ∂Ω.
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What do we take on ∂Ω to get u = e iψn,x(1 + w)?

Recall that w = ∆−1
ψ [V (1 + w)].

Writing

e iψn,xw = e iψn,x ∆−1
ψ [V (1 + w)]

= e iψn,x ∆−1
ψ [e−iψn,xVu] =:

∫
V (η)u(η)G (·, η) dη,

it is unsurprising that ∆ηG = 0. Then, by Alessandrini’s identity,

u − e iψn,x = e iψn,xw =
〈

(ΛV − Λ0)[u|∂Ω],G
〉
.

By writing Γ[f ] := Tr ◦
〈

(ΛV − Λ0)[f ],G
〉

, we have

(I− Γ)[u|∂Ω] = e iψn,x |∂Ω,

and I− Γ can be inverted as before.
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Numerical implementation

Original:

Recovered:
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