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Inverse scattering at a fixed energy k?

e For all # € S9! we send plane waves e*?* toward an unknown object.

e For all ¥ € S?~1 we measure the scattered waves.
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Inverse scattering at a fixed energy k?

e For all # € S9! we send plane waves e*?* toward an unknown object.

e For all ¥ € S?~1 we measure the scattered waves.

e If we consider e’k to be a sound wave (in air or in water for example),
the task is to recover the speed of sound ¢(x) at each x.

e If we consider e’*?* to be the wavefunction of a beam of neutrons fired
at a nucleus, the task is to recover the nuclear potential V/(x) at each x.
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The PDEs

The plane waves satisfy the Helmholtz equation
—Au=k?u

and so we expect our scattered waves to satisfy distorted versions of this.
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The PDEs

The plane waves satisfy the Helmholtz equation
—Au=k?u

and so we expect our scattered waves to satisfy distorted versions of this.

Sonar: The scattered waves are supposed to satisfy the accoustic equation
—Au = ’;—ju.
We normalise so that the speed of sound is 1 away from the object.

Nuclear: The scattered waves are supposed to satisfy the time
independent Schrodinger equation

—Au = k?u— Vu.

e Writing V = k?(1 — 1), the models are equivalent.
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The PDEs

The plane waves satisfy the Helmholtz equation
—Au=k?u

and so we expect our scattered waves to satisfy distorted versions of this.

Sonar: The scattered waves are supposed to satisfy the accoustic equation
—Au = ’;—ju.
We normalise so that the speed of sound is 1 away from the object.

Nuclear: The scattered waves are supposed to satisfy the time
independent Schrodinger equation

—Au = k?u— Vu.
e Writing V = k?(1 — %), the models are equivalent.

e So from now on we consider only the quantum problem.
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,

and we want the solution u = uy that looks most like e’k
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,
and we want the solution u = uy that looks most like e’k

e That is, uy solves the Lippmann—Schwinger equation
ug = eik0~x - (—A o kz)_l[VUQ]
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,
and we want the solution u = uy that looks most like e’k
e That is, uy solves the Lippmann—Schwinger equation
g = eF0x _ (—A — kz)_l[Vue]
which can be written as

up(x) = 0 / Golx — y)V(y)un(y) dy,
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,
and we want the solution u = uy that looks most like e’k
e That is, uy solves the Lippmann—Schwinger equation
g = eF0x _ (—A — kz)_l[Vue]
which can be written as

up(x) = e / Go(x — Y)V(y)up(y) dy.

where in 2D Kix
_ikx., e 1
Go(x —y)=e ey £ 4 o(—).
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,
and we want the solution u = uy that looks most like e’k
e That is, uy solves the Lippmann—Schwinger equation
g = eF0x _ (—A — kz)_l[Vua]
which can be written as

up(x) = e / Go(x — Y)V(y)up(y) dy.
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e So our scattered solutions are supposed to satisfy
(—A — kK?)u = —Vu,
and we want the solution u = uy that looks most like e’k
e That is, uy solves the Lippmann—Schwinger equation
g = eF0x _ (—A — kz)_l[Vua]
which can be written as

up(x) = e / Go(x — Y)V(y)up(y) dy.

where in 2D Kix
_ikx., e 1
Go(x —y) = e *MY S 4 o).
VkIx| (\/\XI)
e Thus
. ik|x| 1
_ ikO-x X €
up(x) = e A( ,|X|)\/m+o( )

vl

e The challenge is then to recover V from A.
Keith Rogers (ICMAT-CSIC) 2D Potential Recovery 20th of August, 2014 4 /18



Reduction to the DN map

o Let usolve Au= (V — k?)u with u|spq = f.
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Reduction to the DN map

e Let usolve Au= (V — k?)u with ulspq = f. Then

Ay : f — Vu-n|pq, J

e The first step is to recover this map from the scattering amplitude A.

e First by Nachman'’s formula (1988),
Av —No =St = St

Sulf] == /6 Gr)f)dy, A+ V—I)Gy(xy) = d(x~ ).
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Reduction to the DN map

e Let usolve Au= (V — k?)u with ulspq = f. Then

Ay : f — Vu-n|pq, J

e The first step is to recover this map from the scattering amplitude A.
e First by Nachman's formula (1988),
Av —No =St = St
Sulfl = [ G dy.  (A+V=K)Gulxy) = 3lx—y).

e Then adapting the 3D work of Stefanov (1991), we obtain
Gy — Go = Formula(A).
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Reduction to the DN map

e Let usolve Au= (V — k?)u with ulspq = f. Then

Ay : f — Vu-n|pq, J

e The first step is to recover this map from the scattering amplitude A.
e First by Nachman's formula (1988),
Av —No =St = St
Sulfl = [ G dy.  (A+V=K)Gulxy) = 3lx—y).
e Then adapting the 3D work of Stefanov (1991), we obtain
Gy — Go = Formula(A).

e The challenge is then to recover V from Ay — Ag.
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What does it mean to recover V from Ay — Ay?
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What does it mean to recover V from Ay — Ay?

[1] Prove that only one potential V can give rise to a given Ay — Ao.

e Bukhgeim (2008), Vect
o Blsten (2011), VeWPs e>0, p>2
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[2] Give a formula which gives V in terms of Ay — Ao.
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What does it mean to recover V from Ay — Ay?

[1] Prove that only one potential V can give rise to a given Ay — Ao.

e Bukhgeim (2008), Vect
o Blsten (2011), VeWPs e>0, p>2
e Imanuvilov—Yamamoto (2012), VelP, p>2

[2] Give a formula which gives V in terms of Ay — Ao.

e Bukhgeim (2008) + Novikov—Santacesaria (2011), Vel
e Astala—Faraco-R. (2014), V e H/?
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What does it mean to recover V from Ay — Ay?

[1] Prove that only one potential V can give rise to a given Ay — Ao.

e Bukhgeim (2008), Vect
o Blsten (2011), VeWPs e>0, p>2
e Imanuvilov—Yamamoto (2012), VelP, p>2

[2] Give a formula which gives V in terms of Ay — Ao.

e Bukhgeim (2008) + Novikov—Santacesaria (2011), Vel
e Astala—Faraco-R. (2014), V e H/?

[3] Give an algorithm which can compute V given Ay — Ag.
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What does it mean to recover V from Ay — Ay?

[1] Prove that only one potential V can give rise to a given Ay — Ao.

e Bukhgeim (2008), Vect
o Blsten (2011), VeWPs e>0, p>2
e Imanuvilov—Yamamoto (2012), VelP, p>2

[2] Give a formula which gives V in terms of Ay — Ao.

e Bukhgeim (2008) + Novikov—Santacesaria (2011), Vel
e Astala—Faraco-R. (2014), V e H/?
[3] Give an algorithm which can compute V' given Ay — Ag.

e Tejero
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On mathematical retreat

On the border between France and Spain (near Baztan, Navarra)
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Alessandrini’s identity

<(/\V_/\o)[U!aQ],V!aQ> = /Q Vuv. J
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Alessandrini’s identity

<(/\V_/\o)[U!aQ],V!aQ> = /Q Vuv. J

Proof : As Au= Vu and Av =0, by integration by parts,

/Vuv:/Auv
Q Q
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Alessandrini’s identity

<(/\V_/\o)[U!aQ],V!aQ> = /Q Vuv. J

Proof : As Au= Vu and Av =0, by integration by parts,

/Vuv:/Auv
Q Q
—/ Vu~nv—/Vu-Vv
o0 Q
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Alessandrini’s identity
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Alessandrini’s identity

<(/\V_/\o)[U!aQ],V!aQ> = /Q Vuv. J

Proof : As Au= Vu and Av =0, by integration by parts,

/Vuv:/Auv

Q Q

/ Vu~nv—/Vu-Vv
o0

Q
Av|u], v> — /QVU -Vv

<
</\V[u],v>—/aQqu-n+/QuAv
<

Av|u], v> - <u,/\0[v]>

Keith Rogers (ICMAT-CSIC) 2D Potential Recovery 20th of August, 2014



Alessandrini’s identity

<(/\V_/\o)[U!aQ],V!aQ> = /Q Vuv. J

Proof : As Au= Vu and Av =0, by integration by parts,

/Vuv:/Auv

Q Q

/ Vu~nv—/Vu-Vv
o0

Q
Av|u], v> — /QVU -Vv

<
</\V[u],v>—/aQqu-n+/QuAv
<
<

Av|u], v> - <u,/\0[v]>

(A — Ao)[ul, v>
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Bukhgeim's solutions to Laplace’s equation

e Consider the phases

Ynx(2) = %((21 —x1)’ = (22— x)?+2(z1 —x)(z — Xz)/>. J
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Bukhgeim's solutions to Laplace’s equation

e Consider the phases

Ynx(2) = %((21 —x1)’ = (22— x)?+2(z1 —x)(z — XQ)/'>. J

o Identifying (21, z2) with z1 + iz2, we have ¥, (2) = §(z — x)*.

Thus e and e™¥»x are holomorphic and antiholomorphic, respectively.

e Writing
A= (821 + i822)(6zl - ’622)’

we see that e/¥nx, e/¥nx are solutions to Av = 0.
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Bukhgeim's solutions to Laplace’s equation

e Consider the phases

Ynx(2) = %((21 —x1)’ = (22— x)?+2(z1 —x)(z — XQ)/'>. J

o Identifying (21, z2) with z1 + iz2, we have ¥, (2) = §(z — x)*.

Thus e and e™¥»x are holomorphic and antiholomorphic, respectively.

e Writing
A= (821 + i822)(6zl - ’622)’

we see that e/¥nx, e/¥nx are solutions to Av = 0.

e The solutions grow exponentially but [e/¥nxe/¥nx| = 1.
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.

Then by Alessandrini’s identity,

(=R sy = [ v o
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.

Then by Alessandrini’s identity,

(= Aol s — [ v eonsge

—

V(z) ef (P —z=x)) 4
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.

Then by Alessandrini’s identity,

(=R sy = [ v o

- / V(z) ' (@—nf-@—)) 4.

Thus by the method of stationary phase,

v
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.

Then by Alessandrini’s identity,

(= Rl ) — /Q

Thus by the method of stationary phase,

%<(/\V o AO)[eid]n’X]v e@"’x> = / V(z) 41 %((ZI—X1)2_(22—X2)2) d=z
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.

Then by Alessandrini’s identity,

(= Rl ) — /Q

Thus by the method of stationary phase,

i _ Pnx] oPnx) — LI} ((z1-x)~(22—%)?)
(0 = ho)lena), ey = [ V(z) - & oz
= Vx Ky(x)

v
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Suppose that the potential V is smooth and that e’¥nx were a solution to

Au = Vu.
Then by Alessandrini’s identity,

(= Rl ) — /Q

Thus by the method of stationary phase,

%<(/\V o AO)[eid]n’X]v e@"’x> = / V(z) 41 %((ZI—X1)2_(22—X2)2) d=z

= Vx Ky(x)
— V(x) as n— oo.

v

Keith Rogers (ICMAT-CSIC) 2D Potential Recovery 20th of August, 2014 10 / 18



Making the heuristic precise

As before, but with e replaced by u = e/¥nx(1 + w),
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n T n s
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Q
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Making the heuristic precise

As before, but with e replaced by u = e/¥nx(1 + w),

n T n s
_<(AV — No)lu], e'w"’x> = —/ V ue¥nx
Q

47 4

:/Vleiwn'xei¢"vx+/VWiei¢"’X6i¢"’x.
41 47
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Making the heuristic precise

As before, but with e replaced by u = e/¥nx(1 + w),

n — n —
_ /\ _ /\ 7e’wn,x> — _/ V e’wn,x
ar (W — M)l ar Jo
= / Vieiwnyxeian,x + / V Wieizp",XeiEn,x'
47 4
We expect
/ % %eiw"’xe"wnvx — V(x) as n— oo, (conv)
T
so we also need to prove
/ Vw %eiw"“e@"% —0 as n— oo. (remainder)
T
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What about w?
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We have e¥nxw = y — e/¥nx_ so that

A[eid’n,x W] — Au — VU = Veiﬁ)n,x(l —'— W)
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We have e¥nxw = y — e/¥nx_ so that

A[eid’n,x W] — Au — VU = Veiﬁ)n,x(l —'— W)

Defining Ayw := e~ ¥nxAle™"*w], we obtain Ayw = V(1 + w).
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We have e¥nxw = y — e/¥nx_ so that

A[eid’n,x W] — Au — VU = Veiﬁ)n,x(l —'— W)

Defining Ayw := e~ ¥nxAle™"*w], we obtain Ayw = V(1 + w).

Key observation: A, is not so terrible :
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We have e¥nxw = y — e/¥nx_ so that
Al w] = Au = Vu = VeV (1 + w).
Defining Ayw := e~ ¥nxAle™"*w], we obtain Ayw = V(1 + w).

Key observation: A, is not so terrible :

AyF = e_"waz(?;[e’wF] = e ¥, [e"%;F}
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We have e¥nxw = y — e/¥nx_ so that
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We have e¥nxw = y — e/¥nx_ so that

A[eid’n,x W] — Au — VU = Veiﬁ)n,x(l —'— W)

Defining Ayw := e~ ¥nxAle™"*w], we obtain Ayw = V(1 + w).

Key observation: A, is not so terrible :
AyF = e_"waz(?;[e’wF] = e ¥, [e"%;F}
— e e g, [e@e’wa;F].

So we happily write w = AJI[V(l + w)].
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We have e¥nxw = y — e/¥nx_ so that

A[eid’n,x W] — Au — VU = Veiﬁ)n,x(l —'— W)

Defining Ayw := e~ ¥nxAle™"*w], we obtain Ayw = V(1 + w).

Key observation: A, is not so terrible :
AyF = e_"wc?z@;[e'wF] = e ¥, [e"%;F}
— e e g, [e@e’wa;F].

So we happily write w = AJI[V(l + w)].

Key estimate: ||e"‘f’"’Xe@"vXF||Hfs < Cn8||F|| gys- J
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Connection with the time dependent nonelliptic equation

. (202 . .
Writing Kn(y) = = e'2i=¥) it remains to prove

V x Kp(x) = V(x) as n— oo. (conv)J
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Connection with the time dependent nonelliptic equation

Writing K,(y) = 4= € 2492 it remains to prove

V x Kp(x) = V(x) as n— oo. (conv)J
As Vx K, = (VR,,)V we see that

~ . \% .
Vi Ky = (V(§) e D) 70,
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Connection with the time dependent nonelliptic equation

Writing K,(y) = 4= € e'10752) it remains to prove

V x Kp(x) = V(x) as n— oo.

(conv)J

As Vx K, = (VR,,)V we see that
k= (Ve b’ — itoy,
which, at time t = 1/n, solves

iOtu+0Ou=0, u(-,0)=V,

where O = 0xx — Oxoxo-
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Vi Ky = (V(§) e D) 70,
which, at time t = 1/n, solves

iOtu+0Ou=0, u(-,0)=V,

where O = 0xx — Oxoxo-

Thus (conv) can be interpreted as the convergence of the solution to a
time dependent equation to its initial data as time tends to zero.
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Connection with the time dependent nonelliptic equation

Writing K,(y) = 4= € e'10752) it remains to prove

V x Kp(x) = V(x) as n— oo. (conv)J
As Vx K, = (VR,,)V we see that

~ . \% .
Vi Ky = (V(§) e D) 70,

which, at time t = 1/n, solves

iOtu+0Ou=0, u(-,0)=V,

where O = 0xx — Oxoxo-

Thus (conv) can be interpreted as the convergence of the solution to a
time dependent equation to its initial data as time tends to zero.

If V € HY/2 then (conv) holds for all x € Q\E with dimy(E) < 3/2.
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Sketch of Proof

Keith Rogers (ICMAT-CSIC) 2D Potential Recovery 20th of August, 2014 14 / 18



Sketch of Proof

By Frostman’s lemma, it suffices to prove that

,u{x €Q 1 limsup e n7V(x) — V(x)| # o} =0 (+)

n—oo

whenever p satisfies ¢, (1) := sup,~qo r~*u(Br) < oo with o > 3/2.
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By Frostman’s lemma, it suffices to prove that

,u{x €Q 1 limsup e n7V(x) — V(x)| # o} =0 (+)

n—oo

whenever p satisfies ¢, (1) := sup,~qo r~*u(Br) < oo with o > 3/2.

Then (x) follows by a density argument from

| sup eV |3y < VIl IV sz, > 372
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Sketch of Proof

By Frostman’s lemma, it suffices to prove that

,u{x €Q 1 limsup e n7V(x) — V(x)| # o} =0 (+)

n—oo
whenever p satisfies ¢, (1) := sup,~qo r~*u(Br) < oo with o > 3/2.

Then (x) follows by a density argument from

| 56015 %V1 sy < CVIRTIEl) 1V, o> 372

After factorising the problem into two one—dimensional problems and
bounding an oscillatory integral, this follows from

dp(x)du(y)
< Cllpllca(p),
//Q|X1 vi|12]x5 — yo|1/2 el calr)

which follows from a dyadic decomposition away from the singularities:
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Sketch of Proof
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Potential Recovery

Corollary
e For all compactly supported V e H/2,

V(x) = lim —<(/\V—/\o)[u] > v x € Q\E,

where dimy(E) < 3/2 and u = e™¥nx(1 + w).
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Potential Recovery

Corollary

e For all compactly supported V € H/2,
V(x) = lim —<(/\V—/\o)[u] > ¥ x € Q\E,
where dimy(E) < 3/2 and u = e™¥nx(1 + w).

e There exist compactly supported V € H® with s < 1/2 for which this
recovery process fails completely.
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Potential Recovery

Corollary

e For all compactly supported V € H'/2,

V(x) = lim —<(/\V—/\o)[u] > ¥ x € Q\E,

n—oo 47r]
where dimy(E) < 3/2 and u = e™¥nx(1 + w).

e There exist compactly supported V € H® with s < 1/2 for which this
recovery process fails completely.

For V € H® with s > 0, we can identify T : HY/2(9Q) — H/?(9%),
depending only on 1, x and Ay, such that

u=>1-T)"1[e¥=] on 0Q.
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What do we take on 02 to get u =

Recall that w = A, [V(1+ w)].
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What do we take on 9 to get u = e

Recall that w = A, [V(1+ w)].
Writing
eVrw = e AJHV(1 4 w)]

= et A e Vi = / V(n)u(n)G(- ) dn.

it is unsurprising that A, G = 0.
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What do we take on 9 to get u = e'¥nx(1+ w)?

Recall that w = A, [V(1+ w)].
Writing
eVrw = e AJHV(1 4 w)]
= e a ] e Vil = [ Vin)a(n)6(.n) i
it is unsurprising that A, G = 0. Then, by Alessandrini’s identity,

Uy — e — iy, — <(/\v — No)[ulaqls G>« J
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What do we take on 9 to get u = e'¥nx(1+ w)?

Recall that w = A, [V(1+ w)].
Writing
eVrw = e AJHV(1 4 w)]
= e a ] e Vil = [ Vin)a(n)6(.n) i
it is unsurprising that A, G = 0. Then, by Alessandrini’s identity,

Uy — e — iy, — <(/\v — No)[ulaqls G>« J

By writing I'[f] := T, o <(/\V — No)I[f], G>, we have

(I = N)[uloq] = €"*|aq,

and I — I can be inverted as before.
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Numerical implementation

Original:

Recovered:
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