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{
(∂2

t − L(x, ∂x))u(t, x) = 0 in R × Ω,
Nu|∂Ω = 0 on R × ∂Ω

L0(x, ∂x) =
n∑

i,j=1

aij(x)∂xi∂xj, N =
n∑

i,j=1

aij(x)νi∂xj

(A.1) aij(x) = taji(x) real n × n-matrices, constant for large |x|
(A.2) 　L0(x, ξ)　positive definite

(A.3)　 λi(x, ξ)　constant multiplicity

We formulate a scattering theory in the Lax-Phillips sense.

We would study relations between singularities of the scattering

kernel and properties of the scatterer.



Formulation of the scattering theory

U(t) : t(u(0, ·), ∂tu(0, ·)) 7−→ t(u(t, ·), ∂tu(t, ·))

a group of unitary operators on a Hilbert space H

We employ the equation in the free space (without the boundary):

(∂2
t − L(x, ∂x))u0(t, x) = 0 in R × Rn.

We can obtain the wave operators W± : f± 7→ f such that

U(±∞)f ' U0(±∞)f±, W± : H0 7→ H is unitary.

We make the translation representation T±
0 :

T±
0 : H0 7−→ L2(R1

s ;N) is unitary (N = L2(Sn−1)),

(T±
0 U0(t)f)(s) = (T±

0 f)(s − t).



The scattering operator S is defined through T±
0 :

S = T+
0 (W+) −1W−(T−

0 ) −1: L2(R1
s ;N) → L2(R1

s ;N) unitary

S is expressed with the kernel S(s, θ, ω) (the scattering kernel):

(Sk)(s, θ) = k(s, θ) +

∫ ∫
S(s − s̃, θ, ω̃)k(s̃, ω̃)ds̃dω̃

For the incident δ-function wave
(
like δ(const ωx− t)

)
, the scattered

wave is approximated by

∫
S(θx − t, θ, ω)dθ.

S(θx − t, θ, ω) means the scattered wave in the direction θ.



Represetation of S(s, θ, ω)

λl(ω) : the eigen-value of L0(ω)

Pl(ω) : the orthogonal projection to the eigen-space

δ(t − λl(ω)−1/2ωx)Pl(ω) is the plane wave of the λl-mode.

For the incident wave of this type let vl be the scattered wave:

 (∂2
t − L0(∂x))vl(t, x;ω) = 0 in R × Ω,

Nvl|∂Ω = cl(ω)Nδ(t − λl(ω)−1/2ωx)Pl(ω),
vl = 0 if t << 0.

We assume that every slowness surface is strictly convex:

(A.4) The Gauss curvature of {ξ : λl(ξ) = 1} does not vanish.

Then S(s, θ, ω) is represented with vl(t, x;ω):



Theorem 1 (Soga: Osaka J. Math. 1992).

Let L(x, ∂x) = L0(∂x) and assume (A.1) ∼ (A.4). Then we have

S(s, θ, ω) =
n∑

i,j=1

λi(ξ)
−n/4

∫
∂Ω

{
Pi(ξ)

(∂n−2
t Nvj)(λi(θ)

−1/2θx − s, x;ω)

−λi(ξ)
−1/2Pi(ξ)(

tNθx)(∂n−1
t vj)(λi(θ)

−1/2θx − s, x;ω)
}
dSx.

This can be extended to the case of the variable coefficient
if L(x, ∂x) has the unique continuation property.

The representation was obtained for the scalar-valued wave equation
by Majda (CPAM 1977), Melrose (CPAM 1980), Soga (J. Kyoto U.
1983), ....

Constructing the asymptotic expansion of vj(t, x, ;ω), we can exam-
ine sing supp S(s, θ, ω) by Theorem 1.

This is the same approach as Majda (CPAM 1977) did for the scalar-
valued wave equation.



Theorem 2 (Soga: Osaka J. Math. 1992).

Set r(ω) = minx∈∂Ω ωx. Then

(i) supp Pi(ω)S(s,−ω, ω)Pj(ω) ⊂ (−∞,−(λi(ω)−1/2+λj(ω)−1/2
)
r(ω)];

(ii) Pi(ω)S(s,−ω, ω)Pi(ω) is singular at s = −2λi(ω)−1/2r(ω).

λi(ω)−1/2r(ω) is the time for which the λi-mode wave reaches ∂Ω

from the origin x = 0.

The singularity of Pi(ω)S(s,−ω, ω)Pj(ω) (i 6= j) at −(λi(ω)−1/2 +

λj(ω)−1/2
)
r(ω)] is very delicate.

This depends on the shape of ∂Ω (cf. M.Kawashita-Soga: J. Math.

Soc. Japan 1990, etc.)

We can examine the asymptotic form of the singularity of

Pi(ω)S(s,−ω, ω)Pi(ω) at s = −2λi(ω)−1/2r(ω) in some cases.



Scattering of the surface waves (the Rayleigh wave, etc.)

We would take scattering of the surface waves into account.

Then we need to reconsider setting of the equation in the free space.

We select the half-space as the free space and perturb the flatness

of the boundary.

In this selection we construct the scattering theory of the Lax-Phillips

type and obtain the representation of the scattering kernel.

Furthermore, we reveal relation between the situation of the bound-

ary and the scattering kernel for the Rayleigh wave.

New difficulties arise in these works because the surface waves do

not have locality in the support.



Let Ω be the perturbed half-space (⊂ R3) and L be the isotopic

operator.

Then, there exist several kinds of waves, i.e., P-wave, S-wave, the

Rayleigh wave, etc. and the phenomena are classified near ∂Ω:

(P) for an incident P-wave, P- and S-waves are reflected,

(SV) for an incident S-wave, P- and S-waves are reflected,

(SH) for an incident S-wave, only S-wave is reflected,

(SVO) for an incident S-wave, S-waves is reflected totally,

(R) there exists the Rayleigh wave.

The translation representation T0 in the free space R3
+ can be con-

structed (M.Kawashita-W.Kawashita-Soga: Comm. PDE 2003):

T0 : H0 −→ L2(R1;N) unitary,

N =
⊕
α=Λ

L2(Sα) Λ = {P, SV, SH, SVO, R}.

Sα is the set of the directions of the incident waves.



We define the scattered waves wα(t, x;ω) corresponding to vl(t, x;ω).

For α = P, SV and SH, wα are of the same type as vl.

For α = SVO and R, the incident waves w0
α are different in the

definitions, i.e. w0
α are of δ-function type only on the boundary and

their supports are spread on the whole space.

We employ some solution w0
α,+(t.x;ω) in the perturbed space asymp-

totically equal to w0
α(t, x;ω) as t → −∞; w0

α(t, x;ω) is of the form on

∂Ω similar to δ(cRt − ωx).

Set wα = w0
α,+ − w0

α (α = SVO, R); we regard wα as the scattered

wave for w0
α.

Then the scattering kernel S(s, θ, ω) =
(
Sαβ(s, θ, ω)

)
α,β∈Λ is repre-

sented with wα and w0
α:



Theorem 3 (M.Kawashita-W.Kawashita-Soga: Trans. AMS 2006).

Sαβ(s, θ, ω) = cαβ

∫
Ω∩R3

+

∫
R

∂s̃w
0
α(s̃, y; θ) (∂2

s − L0)wβ(s̃ − s, y;ω)ds̃dy

+cαβ

∫
∂(Ω∩R3

+)

{ ∫
R

∂s̃w
0
α(s̃, y; θ) N0wβ(s̃ − s, y;ω)ds̃

−
∫

R
N0∂s̃w

0
α(s̃, y; θ) wβ(s̃ − s, y;ω)ds̃

}
dSy.

The proof is based on examination of the Green functions for the

equation changed by the Laplace transformation in t.

In the cases α, β = P, SV, SH, using Theorem 3, we can obtain the

result for sing supp Sαβ(s, θ, ω) in the same way as Theorem 2.

We examine sing supp SRR(s, θ, ω). This means that we observe the

Rayleigh wave scattered in the direction θ for the incident Rayleigh

wave in the direction ω.



SRR(s, θ, ω) seems connected with the situations of the boundary.

The Dirichlet-Neumann operator has the hyperbolic part H(x, ∂t, ∂x).

The Rayleigh wave comes from the part H(x, ∂t, ∂x).

H(x, ∂t, ∂x) is similar to (∂2
t − c2R∆) outside the perturbed region.

Let (q(t, y′;ω), p(t, y′;ω)) be the bicharacterisic curve for H(x, ∂t, ∂x)

with (q(0, y′;ω), p(0, y′;ω)) = (y′, c−1
R ω).

Assume that any of those curves is non-trapping.

M+
ω (θ) = {y′ ∈ ∂R3

+; lim
t→∞

p(t − s, y′;ω) = c−1
R θ, c−1

R ω y′ = s, s << 0},

s+(θ, ω) = sup
y′∈M+

ω (θ)

lim
t→∞

(c−1
R q(t − s, y′;ω) · θ − t).

Theorem 4. (M.Kawashita-Soga: Meth. Appl. Anal. 2010)

(i) sing supp [SRR(·, θ, ω)] ⊂ (−∞, s+(θ, ω)].

(ii) If M+
ω (θ) is one point, SRR(s, θ, ω) is singular at s = s+(θ, ω).



Asymptotic solutions

Do the solutions exist for any boundary values?

The construction is connected with the reduced wave equation:{
(σ2 − L0(Dx))u(x′, xn) = 0 in Rn−1 × {xn > 0},
u|xn=0 = f(x′) on Rn−1 (Dx = −i∂x).

u(x′, xn) =

∫
eix′ξ′ei|σ|xnzj(ξ

′/|σ|)f̂(ξ′)d−ξ′, (d−ξ′ = (2π)1−n)

f̂(ξ′) ∈ Ker [I − L0(ξ
′/|σ|, zj)].

{zj} are the roots of det [I − L0(ξ
′/|σ|, z)]:

zj real → the body waves
zj non-real → the surface waves

z+
j (j = 1, . . . , k): the outgoing real roots (∂ξnλi(ξ

′/|σ|, zj
+) > 0),

z+
j (j = k + 1, . . . , d): the non-real roots with Im z+

j > 0.

?
Ker [I − L0(ξ

′/|σ|, z+
1 )]+ · · ·+Ker [I − L0(ξ

′/|σ|, z+
d )] = Cn



Ker [I − L0(ξ
′/|σ|, zj)] =

∫
c(zj)

(
I − L0(ξ

′/|σ|, z)
)−1

d−z Cn

(d−z = (2πi)−1)

Theorem 5. Assume (A.1)∼(A.4) and for non-real z+
j

(A.5) multiplicity of z+
j (η′) = dim Ker [I − L0(η

′, z+
j )].

Then there exist matrices hj(η
′) such that

d∑
j=1

∫
c(z+

j )

(
I − L0(η

′, z)
)−1

d−z hj(η
′) = I.

This yields
d∑

j=1

Ker [I − L0(ξ
′/|σ|, zj)] = Cn

The proof is based on complex analysis for
(
I − L0(ξ

′/|σ|, z)
)−1.



Using Theorem 5, we can make an (outgoing) asymptotic solution

for non-glancing f(x′).

The principal part is of the form∫
eix′ξ′

{ ∫
c+

∑d
j=1 ei|σ|xn(z+ϕj(x,ξ′/|σ|))gj(x, ξ′/|σ|, z)(

I −L0(x, ξ′/|σ|, z)
)−1

hj(x, ξ′/|σ|)d−z
}

χ(x′, ξ′)f̂(ξ′)d−ξ′.

ϕj(x, ξ′/|σ|)|xn=0 = 0,

gj(x, ξ′/|σ|, z) = 0 (z 6= z+
j ),

gj(x, ξ′/|σ|, z) = 1 (z = z+
j ).

(
I − L0(x, ξ′/|σ|, z)

)−1 has a simple pole at z = z+
j .


