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Lévy processes with Poisson and Gamma times
Luisa Beghin

Sapienza University of Rome, Italy
luisa.beghin@uniroma1.it

We consider Lévy processes driven by an independent random
time, which will be represented by a Poisson or a Gamma pro-
cess, endowed with a drift. Our attention will be addressed to the
semigroups and the infinitesimal generators of these processes. In
particular, when the leading process is an α-stable, the governing
equation is expressed in terms of new pseudo-differential operators
involving the Riesz-Feller fractional derivative of order α, in (0, 2].
The special case α = 2 is particularly interesting because it con-
cerns the Brownian motion with randomly intermitting times.
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Random intersection graphs
Mindaugas Bloznelis

Vilnius University, Lithuania
mindaugas.bloznelis@mif.vu.lt

Vertices of an intersection graph are represented by subsets
of a finite auxiliary set: two vertices are adjacent whenever the
subsets intersect. Statistical properties of intersection graphs can
be learned from random intersection graphs, where vertices select
their subsets at random. An interesting and important property
of random intersection graphs is that the neighbouring adjacency
relations are statistically dependent. Furthermore, the dependence
structure is similar to that of real affiliation networks (e.g., coau-
thorship network, where two authors are adjacent if they have coau-
thored a publication). This relation to real networks and mathe-
matical tractability of the model makes it an attractive object of
analytical study.

In my talk I shall survey some relatively new results about the
structure of random intersection graphs. Results are asymptotical
(as the number of vertices increase to infinity) and focus on the
role played by the egde dependence in defining the structure of
the graph: giant component, clique number, connectivity, perfect
matching, degree-degree distribution.
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Multiple stochastic integrals and random series 1

Igor S. Borisov
(co-authored with S. E. Khruschev)

Sobolev Institute of Mathematics, Novosibirsk, Russia
sibam@math.nsc.ru

We discuss some approaches to construct multiple stochastic
integrals of the form

∫ b

a

· · ·
∫ b

a

f(t1, . . . , tm)dξ(t1) · · · dξ(tm), (1)

where f(·) is a measurable nonrandom function and ξ(·) is a stochas-
tic process. We study both the classical construction of such an in-
tegral as the mean-square limit of the corresponding integral sums
(see [1]) and nonclassical ones based either on series expansions
of the kernel f(·) or on the expansion of the stochastic product-
differential in a multiple random series (see [2], [3]).
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On the excess over boundary 1

Konstantin A. Borovkov
The University of Melbourne

We consider a dynamic version of the Neyman contagious point
process that can be used for modelling the spacial dynamics of bi-
ological populations, including species invasion scenarios. Starting
with an arbitrary finite initial configuration of points in Rd with
nonnegative weights, at each time step a point is chosen at random
from the process according to the distribution with probabilities
proportional to the points’ weights. Then a finite random number
of new points is added to the process, each displaced from the loca-
tion of the chosen “mother” point by a random vector and assigned
a random weight. Under broad conditions on the sequences of the
numbers of newly added points, their weights and displacement vec-
tors (which include a random environments setup), we derive the
asymptotic behaviour of the locations of the points added to the
process at time step n and also that of the scaled mean measure of
the point process after time step n → ∞.

1This work is supported by the RFBR-grant # 14-01-00220.
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Convergence in law of infinite-dimensional polynomials
and related estimates

V.I. Bogachev (Moscow)

Given two random vectors F = (F1, . . . , Fd) and G = (G1, . . . , Gd) whose components
are polynomials of a fixed degree k in Gaussian random variables (possibly, infinitely
many), we discuss bounds on the total variation distance between the laws of F and G in
terms of the Kantorovich distance between them. These bounds provide some quantitative
information on convergence in variation which can be derived from convergence in law and
improve known recent results due to Nualart, Nourdin, and Polly. Several approaches will
be mentioned, one of which is a new estimate generalizing the classical Hardy–Landau–
Littlewood inequality ‖f ′‖21 ≤ 2‖f‖1‖f ′′‖1 on L1-norms of intermediate derivatives to the
multidimensional case in the form

‖f‖21 ≤ C(d)‖Df‖1‖f‖K
for functions in the first Sobolev class with zero integral, where ‖f‖K is the Kantorovich
norm. Similar dimension–free estimates with Gaussian measures will be presented. Re-
marks about non-Gaussian cases will be made and some simply formulated open problems
will be mentioned.
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Stability Problems in Variable Selection 1

Alexander V. Bulinski
Lomonosov Moscow State University, Russia

bulinski@yandex.ru

In various research domains one studies a response variable Y
depending on some (random) factors X1, . . . , Xn. For instance in
medicine Y can describe the health state of a patient (Y = 1 and
Y = −1 correspond to the occurrence or not of a disease, respec-
tively) and X = (X1, . . . , Xn) incudes genetic and non-genetic fac-
tors (see, e.g., [1]). Let Y take values in a set Y and the values
of X belong to some set X. It is important to indicate a function
f : X → Y to approximate (in a sense) Y by means of f(X). More-
over, since the law of (X, Y ) is unknown it is natural to construct
approximation of Y (to be able to predict the response variable)
using the i.i.d. observations (Y j, Xj), j = 1, . . . , N , with the same
law as (X, Y ).

It would be desirable to identify a significant collection α =
(k1, . . . , kr) where 1 ≤ k1 < . . . < kr ≤ n (r < n) such that Y
depends on Xα := (Xk1 , . . . , Xkr) essentially and then employ the
estimate of Y involving Xα. For X and Y being finite sets such that
Y ⊂ R the problems mentioned above as well as the limit behavior
of the proposed regularized estimates were considered in [2]. There
we assumed that

P(Y = y|X = x) = P(Y = y|Xα = xα) (1)

for all y ∈ Y and x ∈ X whenever P(X = x) 6= 0. Here xα =
(xk1 , . . . , xkr) for x ∈ X. Now we suppose that instead of (1) one
admits some specified small dependence of Y for Xk with k /∈ α.
Thus we come to stability problem of inference.

Also we tackle the generalization of MDR method applying the
pseudo observations and the Bayesian approach. Special attention
is paid to simulation, see, e.g. [3].

1This work is supported by the RFBR-grant 13-01-00612.
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Stochastic models of biological problems 1

Yana I. Belopolskaya
Saint Petersburg State University for Architecture and Civil

Engineering, Russia
yana.belopolskaya@gmail.com

A number of biological problems such as cell growth under in-
hibition, dynamic of population and many others are modeled by
systems of quasilinear parabolic equations [1]. To describe the cor-
responding phenomena one needs to solve the Cauchy problem or
a boundary value problem for these systems.

We are interested in stochastic processes associated with these
PDE problems and probabilistic representations of their solutions.

Modeling spatial segregation phenomena of competing species in
population dynamics, Shigesada, Kawasaki and Teramoto [2] pro-
posed in 1979 to study some nonlinear parabolic systems which
include the following problem





u1t = ∆[(α1 + α11u
1 + α12u

2)u2] + u1(a1 − b1u
1 − c1u

2),

u2t = ∆[(α2 + α21u
1 + α2

22)u
2] + u2(a2 − b2u

1 − c2u
2),

u1(0, x) = u10(x), u2(0, x) = u20(x).

(1)

aq, bq, cq – positive constants, αql – nonnegative constants, q, l =
1, 2. This system is a generalization of the famous Lotka-Volterra
problem

To obtain the required stochastic processes we consider the sys-
tem of stochastic equations of the form

dξq(θ) =M q
u(ξ

q(θ))dw(θ), ξq(0) = y, q = 1, 2., (2)

dηq(θ) = m̃q
u(ξ

q
s,κ(θ))η

q(θ)dθ + Cq
u(ξ

q
s,κ(θ))η

q(θ)dw(θ), ηq(0) = 1,
(3)

1This work is supported by the RFBR-grant # 15-01-01453.
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where M q
u =

√
αq + αq1u1 + αq2u2, mq

u = aq − bqu
1 − cqu

2,

m̃q
u = mq

u − ‖∇M q
u‖2, Cq

u = −∇M q
u. (4)

Theorem 1. Assume that there exists a unique regular posi-
tive weak solution of the Cauchy problem (1). Then it admits a
probabilistic representation of the form

uq(t) = E[ζq(t) ◦ ψq
0,t], (5)

where

ζq(t) = exp

{∫ t

0

[mq
u −

1

2
‖∇M q‖2]dθ −

∫ t

0

∇M q
u · dw(θ)

}
uq0,

and ψq
0,t is a stochastic flow generated by the process ξ̂(t) time re-

versal to the stochastic processes ξq(t) satisfying (2).
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On the deficiency concept in statistical problems based

on the samples with random sizes

Bening V.E.,∗

1 Introduction and summary

An interesting quantitative comparison can be obtained by taking a viewpoint similar to
that of the asymptotic relative efficiency (ARE) of estimators, and asking for the number
m(n) of observations needed by estimator δm(n)(X1, . . . , Xm(n)) to match the performance of
δ∗n(X1, . . . , Xn) (based on n observations). Although the differenc m(n) − n seems to be a very
natural quantity to examine, historically the ratio n/m(n) was preffered by almost all authors
in view of its simpler behaviour. The first general investigation of m(n) − n was carried out
by Hodges and Lehmann ([1]). They name m(n) − n the deficiency of δn with respect to δ∗n
and denote it as

dn = m(n) − n. (1.1)

If limn→∞ dn exists, it is called the asymptotic deficiency of δn with respect to δ∗n and denote
as d. At points where no confusion is likely, we shall simply call d the deficiency of δn with
respect to δ∗n.

The deficiency of δn relative to δ∗n will then indicate how many observations one loses by
insisting on δn, and thereby provides a basis for deciding whether or not the price is too high.
If the risk functions of these two estimators are

Rn(θ) = Eθ

(
δn − g(θ)

)2
, R∗

n(θ) = Eθ

(
δ∗n − g(θ)

)2
,

then by definition, dn(θ) ≡ dn = m(n) − n, for each n, may be found from

R∗
n(θ) = Rm(n)(θ). (1.2)

In order to solve (1.1), m(n) has to be treated as a continuous variable. This can be done in a
satisfactory manner by defining Rm(n)(θ) for non - integral m(n) as

Rm(n)(θ) =
(
1 − m(n) + [m(n)]

)
R[m(n)](θ) +

(
m(n) − [m(n)]

)
R[m(n)]+1(θ)

(cf. [1]).

Generally R∗
n(θ) and Rn(θ) are not known exactly and we have to use approximations.

Here these are obtained by observing that R∗
n(θ) snd Rn(θ) will tipically satisfy asymptotic

expansions (a.e.) of the form

R∗
n =

a(θ)

nr
+

b(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.3)

∗Faculty of Computational Mathematics and Cybernetics, Moscow State University; Institute of Informatics

Problems, Russian Academy of Sciences, Russia; bening@yandex.ru
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Rn =
a(θ)

nr
+

c(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.4)

for certain a(θ), b(θ) and c(θ) not depending on n and certain constants r > 0, s > 0. The
leading term in both expansions is the same in view of the fact that ARE is equal to one. From
(1.1) – (1.4) is now easily follows that (see [1])

dn(θ) ≡ c(θ) − b(θ)

r a(θ)
n(1−s) + o

(
n(1−s)

)
. (1.5)

Hence

d(θ) ≡ d =





±∞, 0 < s < 1,

c(θ) − b(θ)

r a(θ)
, s = 1,

0, s > 1.

(1.6)

A useful property of deficiencies is the following (transitivity): if a third estimator δ̄n is given,
for which the risk R̄n(θ) also has an expansion of the form (1.4), the deficiency d of δ̄n with
respect to δ∗n satisfies

d = d1 + d2,

where d1 is the deficiency of δ̄n with respect to δn and d2 is the deficiency of δn with respect to
δ∗n.

The situation where s = 1 seems to be the most interesting one. Hodges nad Lehmann
([1]) demonstrate the use of deficiency in a number of simple examples for which this is the
case.

In the communication, we discuss the number of applications of the deficiency concept in
the problems of point estimation and testing statistical hypotheses in the case when number of
observations is random.

2 Estimators based on the sample with random size

Consider random variables (r.v.’s) N1, N2, ... and X1, X2, ..., defined on the same probability
space (Ω, A, P). By X1, X2, ...Xn we will mean statistical observations whereas the r.v. Nn will
be regarded as the random sample size depending on the parameter n ∈ N. Assume that for
each n ≥ 1 the r.v. Nn takes only natural values (i.e., Nn ∈ N) and is independent of the
sequence X1, X2, ... Everywhere in what follows the r.v.’s X1, X2, ... are assumed independent
and identically distributed with distribution depending on θ ∈ Θ ∈ R.

For every n ≥ 1 by Tn = Tn(X1, ..., Xn) denote a statistic, i.e., a real-valued measurable
function of X1, ..., Xn. For each n ≥ 1 we define a r.v. TNn by setting TNn(ω) ≡
TNn(ω)(X1(ω), ..., XNn(ω)(ω)), ω ∈ Ω.

Theorem 2.1.

1. If δn = δn(X1, . . . , Xn) is any unbised estimator of g(θ) that is, it satisfies

Eθ δn = g(θ), θ ∈ Θ

and δNn ≡ δNn(X1, . . . , XNn), then

Eθ δNn = g(θ), θ ∈ Θ.

2
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2. Suppose that numbers a(θ), b(θ) and C(θ) > 0, α > 0, r > 0, s > 0 exist such that

∣∣∣R∗
n(θ) − a(θ)

nr
− b(θ)

nr+s

∣∣∣ 6 C(θ)

nr+s+α
,

where

R∗
n(θ) = Eθ

(
δn(X1, . . . , Xn) − g(θ)

)2
,

then ∣∣∣Rn(θ) − a(θ) E N−r
n − b(θ) E N−r−s

n

∣∣∣ 6 C(θ) E N−r−s−α
n ,

where

Rn(θ) = Eθ

(
δNn(X1, . . . , XNn) − g(θ)

)2
.

Corollary 2.1.

Suppose that numbers a(θ), b(θ) and r > 0, s > 0 exist such that

R∗
n(θ) =

a(θ)

nr
+

b(θ)

nr+s

where

R∗
n(θ) = Eθ

(
δn(X1, . . . , Xn) − g(θ)

)2
,

then

Rn(θ) = a(θ) E N−r
n + b(θ) E N−r−s

n ,

where

Rn(θ) = Eθ

(
δNn(X1, . . . , XNn) − g(θ)

)2
.

Let observations X1, . . . , Xn have expectaion

Eθ X1 = g(θ)

and variance
Dθ X1 = σ2(θ).

The customary estimator for g(θ) based on n observation is

δn =
1

n

n∑

i=1

Xi. (2.1)

This estimator is unbiased and consistent, and its variance is

R∗
n(θ) = Dθ δn =

σ2(θ)

n
. (2.2)

If this estimator based on the sample with random size we have (see Corollary 1.1)

Rn(θ) = Dθ δNn(X1, . . . , XNn) = σ2(θ) E N−1
n . (2.3)

If g(θ) is given, we consider the estimator for σ2(θ) in the form

δ̄n =
1

n

n∑

i=1

(Xi − g(θ))2. (2.4)

3
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This estimator is unbiased and consistent, and its variance is

R̄∗
n(θ) = Dθ δ̄n =

µ4(θ) − σ4(θ)

n
, µ4(θ) = Eθ (X1 − g(θ))4. (2.5)

For this estimator with random size one have

R̄n(θ) = Dθ δ̄Nn(X1, . . . , Xn) =
(
µ4(θ) − σ4(θ)

)
E N−1

n . (2.6)

In the preceeding example, suppose that g(θ) is unknown but that instead of (2.4) we are willing
to consider any estimator of the form (see (2.1))

δ̃(γ)n ≡ δ̃n =
1

n+ γ

n∑

i=1

(
Xi − δn

)2
, γ ∈ R. (2.7)

If γ 6= −1, this will not be unbiased but may have a smaller expected squared error that the
unbiased estimator with γ = −1.

One easily find (see [1], (3.6) and [2])

R̃∗
n(θ) = Eθ

(
δ̃n(X1, . . . , Xn) − σ2(θ)

)2
=

=
σ4(θ)

n(n + γ)2

(
(n − 1)

(
(µ4(θ)/σ

4(θ) − 1) (n − 1) + 2
)

+ n (γ + 1)2
)

(2.8)

and hence

R̃∗
n(θ) = σ4(θ)

(µ4(θ)/σ
4(θ) − 1

n
+

+
(γ + 1)2 − 2 (µ4(θ)/σ

4(θ) − 1) + 2 − 2γ(µ4(θ)/σ
4(θ) − 1)

n2

)
+ O

(
n−3

)
. (2.9)

Using Theorem 1.1, we have

R̃n(θ) = Eθ

(
δ̃Nn(X1, . . . , XNn) − σ2(θ)

)2
=

= σ4(θ)
(
(µ4(θ)/σ

4(θ) − 1) E N−1
n +

+
(
(γ + 1)2 − 2 (µ4(θ)/σ

4(θ) −1) + 2 −2γ(µ4(θ)/σ
4(θ) −1)

)
E N−2

n

)
+ O

(
E N−3

n

)
. (2.10)

3 Deficiencies of some estimators based on the samples

with random size

We now apply the results of section 2 to the three exapmles given in this section. Let Mn be
the Poisson r.v. with parameter n − 1, n > 2, i.e.

P
(
Mn = k

)
= e(1−n) (n − 1)k

k!
, k = 0, 1, . . .

Define the random size as
Nn = Mn + 1,

4
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then
E Nn = n

and

E N−1
n =

1

n
+

1

n2
+ o

(
n−2

)
. (3.1)

The deficiency of δNn relative to δn (see (2.1)) is given by (2.2), (2.3), (3.1) and (1.6) with
r = s = 1, a(θ) = σ2(θ), b(θ) = 0, c(θ) = σ4(θ), and hence is equal to

d = 1. (3.2)

Similarly, the deficiency of δ̄Nn relative to δ̄n (see (2.4)) is given by (2.5), (2.6), (3.1) and (1.6)
with r = s = 1, a(θ) = c(θ) = µ4(θ) − σ4(θ), b(θ) = 0, and hence is equal to

d̄ = 1. (3.3)

Consider now third example (see (2.7)). We have

E N−2
n ∼ 1

n2
, n → ∞. (3.4)

Now the deficiency of δ̃Nn relative to δ̃n (see (2.7)) is given by (2.9), (2.10), (3.4) and (1.6) with
r = s = 1 and hence is equal to

d̃ = 1 (3.5)

and the deficiency of δ̃
(γ1)
Nn

relative to δ̃
(γ2)
Nn

(see (2.7)) is given by (3.1), (3.4) and (1.6) with
r = s = 1 and hence is equal to

d̃γ1,γ2 = (γ1 − γ2)
( γ1 + γ2 + 2

µ4(θ)/σ4(θ) − 1
− 2

)
. (3.6)

These examples illustrate the following

Theorem 3.1.

Suppose that numbers a(θ), b(θ) and k1, k2 exist such that

R∗
n(θ) =

a(θ)

n
+

b(θ)

n2
= o

(
n−2

)

and

E N−1
n =

1

n
+

k1
n2

+ o
(
n−2

)
,

E N−2
n =

k2
n2

+ o
(
n−2

)
,

E N−3
n = o

(
n−2

)
,

then the asymptotic deficiency of δNn(X1, . . . , XNn) with respect to δn(X1, . . . , Xn) is equal to

d(θ) =
k1 a(θ) + b(θ) k2 − b(θ)

a(θ)
.

This research was supported by the RFBR, project 15-07-02652.
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Positive and Discrete Linnik Distributions revisited
Gerd Christoph

Otto–von–Guericke–University of Magdeburg, Germany
gerd.christoph@ovgu.de

Continuous positive Linnik random variables W λ
α is defined by

their Laplace-Stieltjes transforms

ψWλ
α
(u) =

{
(1 + λuα/β)−β for 0 < β <∞ ,

exp{−λuα} for β = ∞ ,
u ≥ 0 (1)

and non-negative integer valued discrete Linnik random variables
Lλ
α by their probability generating functions

gLλ
α
(z) =

{
(1 + λ (1− z)α/β)−β for 0 < β <∞ ,

exp{−λ (1− z)α} for β = ∞ ,
|z| ≤ 1 , (2)

with characteristic exponent α ∈ (0, 1], scale parameter λ > 0 and
form parameter β > 0, where for β = ∞ the nonnegative strictly
stable and the discrete stable random variables denoted further by
Sλ
α and Xλ

α occur in (1) and (2) as a natural generalizations of both
Linnik distributions. See Christoph and Schreiber (2001) and the
references therein.

In the mentioned paper we considered some properties of pos-
itive Linnik and the discrete Linnik distributions, Among others
rates of convergence and uniform bonds in asymptotic expan-
sions for P (n−1/α(W1 + ...+Wn) ≤ x) to stable limit distributions
P (Sλ

α ≤ x) = Gα(x;λ), where W1,W2, . . . are independent and
identical distributed copies of positive Linnik random variable W λ

γ .
The purpose of this paper is to give non-uniform bounds

for such asymptotic expansions, which may be used also for large
deviation problems. Define G

(k)
α (x;λ) = ∂k

∂λkGα(x;λ), their Laplace-
Stieltjes transforms are (−1)kukα exp{−λuα}. Since as x→ ∞

P (W λ
γ ≤ x) = Gα(x;λ)+

λ2G
(2)
α (x;λ)

2 β
+
λ3G

(3)
α (x;λ)

3 β2
+O(x−4α) (3)
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and 1 − Gα(x, λ) = λ c1x
−α + λ2 c2x

−2α + λ3 c3x
−3α + O(x−4α)

with ck =
1
πk!

(−1)k+1Γ(kα) sin(kαπ) we can make use of the method
presented in Christoph and Malevich (2011):

Theorem 1. For positive Linnik random variable W λ
α with

Laplace-Stieltjes transform (1), 0 < α < 1 and β <∞ we obtain :

supx(1+|x|4α)
∣∣P (n−1/α(W1+...+Wn) ≤ x)−Gn(x)

∣∣ = O(n− 3), (4)

n→ ∞ with Gn(x) = Gα(x;λ)+
λ2G

(2)
α (x;λ)
2β n

+ λ3G
(3)
α (x;λ)

3β2 n2 + λ4G
(4)
α (x;λ)

8β2 n2 .

As an application of such non-uniform bounds we investigate ran-
dom sums occurring e.g. in the Cramér-Lundberg model as the
classical risk model or basic insurance risk model:

We consider now a compound sum Sν = W1 +W2 + . . . +Wν ,
where ν ∈ {1, 2, 3, . . .} is a counting random variable, independent
of W1,W2, . . . with Eetν < ∞ for |t| < ε, ε > 0. Since W λ

γ is

subexponential, we have ∆(x) := P (W1+W2+...+Wν>x)
P (W1>x)

− Eν → 0 as

x→ ∞. Using (4) we find
Theorem 2. ∆(x) = λc2

c1xα (Eν
2 − Eν) + λ2

c21x
2αC(β) + O(x−3α)

with C(β) = c3c1
(
Eν3 + 3

β2Eν
2 − (1 + 3

β
)Eν

)
− c22

(
Eν2 − Eν

β

)
.

Note that in Theorems 1 and 2 we can get more terms in the
asymptotic expansions using more terms in the expansion (3). Sim-
ilar results may be obtained for discrete Linnik sequences.

1. G. Christoph and K. Schreiber, Positive Linnik and discrete
Linnik distributions in: ”Asymptotic Methods in Probability
and Statistics with Applications”, Balakrishnan et al.(eds.),
Birkhäuser, Boston, 2001, pp. 3 - 18.

2. G. Christoph and N. Malevich, Second Order Behavior of the
Tails of Compound Sums of Regulary Varying Random Vari-
ables. Mathematics in Engineering, Science and Aerospace
(MESA), Vol. 2, Nr. 3(2011), 235 - 242.
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Stochastic calculus for Brownian flows
Andrey A. Dorogovtsev

Institute of Mathematics NAS, Ukraine
adoro@imath.kiev.ua

The talk is devoted to the flows of Brownian particles. When
the flow consists of the solutions to the SDE with the smooth
coefficients there exists the Gaussian noise which determines the
properties of the flow. In this case such statements as large devia-
tions principle, Girsanov theorem, Krylov-Veretennikov expansion
etc can be obtained as a consequence of the corresponding state-
ments for Gaussian measures [1]. When the coalescence can occur
there are no, in general, Gaussian noise, which generates the flow
[2]. In this case some new technique must be used in oder to get
the above mentioned statements [3]. In the talk we propose the
unified approach to the investigation of Brownian flows based on
the notion of quadratic entropy [4]. In terms of the such entropy
one can discuss both smooth and coalescing cases. In particular,
the structure of the flow mappings can be described.
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Discrete-time stochastic flow
Ekateina V. Glinyanaya

Institute of mathematics, National Academy of Sciences of
Ukaine, Kiev, Ukraine glinkate@gmail.com

We study geometry of m−point motion of a stochastic flow with
singular interactions. We give an explicit form for the semigroup of
m−point motion of the Arratia flow [1] in terms of binary forests
that correspond to order of trajectories coalescence [2].

The discrete-time approximation of the Arratia flow are con-
sidered. This approximations {xn

k(u), k = 0, . . . , n} are given by a
difference equation with random perturbation generated by a se-
quence of independent stationary Gaussian processes {ξnk (u), u ∈
R, k = 0, . . . , n} with covariance function Γn:

xn
k+1(u) = xn

k(u) +
1√
n
ξnk+1(x

n
k(u)), x

n
0 (u) = u, u ∈ R.

Define the random process x̃n(u, ·) on [0, 1] as the polygonal line
with edges

(
k
n
, xn

k(u)
)
, k = 0, . . . , n. It was proved in [3] that if

the covariance Γn approximates in some sense the function I{0}
then m−point motion of x̃n weakly converges to the m−point mo-
tion of the Arratia flow. We obtain an explicit form of the Ito-
Wiener expansion for f(xn(u1), . . . , xn(um)) with respect to noise
that produced by the processes {ξnk (u), u ∈ R, k = 0, . . . , n}n≥1.
This expansion can be regarded as a discrete-time analogue of the
Krylov-Veretennikov representation formula [4].

In contrasts to the flow of Brownian particles on the line, in
the discrete-time approximations the order between particles can
change in time. We define a measure of disordering for 2-point
motion as follows

Φn =

∫ 1

0

I{x̃n(u2,s)−x̃n(u1,s)<0}ds,

1
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where u1 < u2. If the discrete-time flow approximates the Arratia
flow then the following asymptotics holds [5]:

lim
n→∞

2Cn

n
lnP{Φn > 0} ≤ −1

lim
n→∞

2Cn

n
lnP{Φn > ε} ≥ −K2,

where Cn = supR
2−2Γn(x)

x2 and K > 0 .
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Quantum Gaussian transition operators:
characterization and an optimal property 1

Alexander S. Holevo
Steklov Mathematical Institute, Moscow, Russia

holevo@mi.ras.ru

1. In the noncommutative probability theory, there is a genuine
analog of Gaussian probability measures – the Gaussian states on
the algebra of Canonical Commutation Relations. In [1] the sym-
metry group of the set of Gaussian states was described by showing
that any such symmetry is induced by a quasi-free automorphism
of the algebra and vice versa. This result was extended in [2] where
a characterization was obtained for completely positive maps of
the algebra leaving the set of Gaussian states globally invariant.
Namely, it was shown that the action of any such map in terms of
characteristic functions of the states is described as

χ(λ) → χ (Kλ) exp

(
iλtl − 1

2
λtMλ

)
, λ ∈ Rn, (1)

where K is a real n × n−matrix, l ∈ Rn, M is a real symmetric
n× n−matrix, satisfying the restriction

M ≥ ± i

2
(∆−Kt∆K) , (2)

where ∆ is the real skew-symmetric commutation matrix (the case
of [1] corresponds to M = 0, Kt∆K = ∆). A classical counterpart
of this result is a characterization of Feller’s transition operators
leaving invariant the set of Gaussian probability measures as the
maps of the type (1) satisfying M ≥ 0 instead of (2) .

2. In quantum information theory completely positive “tran-
sition operators” describe quantum communication channels. We

1This work is supported by the Russian Science Foundation grant # 14-21-
00162.
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explore the semigroup structure of the quantum Gaussian channels
to show that pure Gaussian states, and under certain conditions
only they, minimize a broad class of the concave functionals of the
output of a gauge-covariant or contravariant channel [3], [4]. A re-
markable corollary of this fact is that the key additivity property
of the minimal output entropy of the channel, while not valid in
general, does hold in this class of quantum Gaussian channels.

This allows us also to show that the classical information ca-
pacity of these channels (under the input energy constraint) is ad-
ditive and is achieved by Gaussian encodings, thus establishing the
long-awaited quantum counterpart of the famous Shannon capacity
formula.
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Self-intersection local times for Gaussian processes and
Hilbert-valued functions

Olga L. Izyumtseva
(co-authored with Andrey A. Dorogovtsev)

Institute of Mathematics, National Academy of Sciences of
Ukraine, Kiev, Ukraine

olaizyumtseva@yahoo.com

The construction of renormalization for k-multiple self-intersection
local time of Gaussian process x(t) = ((g(t), ξ1), (g(t), ξ2)), t ∈
[0; 1], where g ∈ C([0; 1], L2([0; 1])), ξ1, ξ2 are two independent
Gaussian white noises in L2([0; 1]) is equivalent to regularization of
divergent integral

∫

∆k

d~t

G(∆g(t1), . . . ,∆g(tk−1))
(1)

(see [1-5]). Here

∆k = {0 ≤ t1 ≤ . . . ≤ tk ≤ 1}, G(∆g(t1), . . . ,∆g(tk−1))

is the Gram determinant constructed from increments of function
g. In [1-4] for case g(t) = (I + S)1[0;t], where S is a compact op-
erator in L2([0; 1]) with ‖S‖ < 1 we constructed regularization for
(1). Since Ker(I+S) = {Ø}, the regularization consist of compen-
sation of impact of diagonals, where integral (1) blow up. In the
general case g(t) = A1[0;t], where A is a continuous linear operator
in L2([0; 1]) with KerA 6= {Ø}, the denominator of (1) contains ad-
ditional singularities. The question is does the ”old” regularization
for (1) hold? We prove that the answer is ”yes” for planar Gaussian
processes generated by the operator A which satisfies the following
conditions

1) dimKerA < +∞
2) The restriction of operator A on orthogonal complement to

KerA is continuously invertible operator.

1
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The key moment in the proof is the following low estimate for
Gram determinant.

Theorem 1. Let A satisfies conditions 1)-2). Then there exist
partition 0 < s1 < . . . < sN < 1 and c(k) > 0 such that the
following relation holds

G(A1[t1;t2], . . . , A1[tk−1;tk]) ≥

≥ c(k)G(1[t1;t2], . . . , 1[tk−1;tk], 1[s1;s2], . . . , 1[sN−1;sN ])
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What are casual stable distributions and why do we need
them?

Lev B. Klebanov, Abram A. Zinger

We present an overview of new definitions and notions, closely
connected to that of stable distributions.

Introduced classes of distributions are of both theoretical and
practical value.
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Random braids formed by trajectories of stochastic flows
Vasily A. Kuznetsov

Institute of Mathematics, NAS of Ukraine
vasylkuz@mail.ru

In this report we consider braids formed by the trajectories of
two-dimensional stochastic flows (the role of the third coordinate of
the braid is plaid by time). There exists a full system of invariants
for braids that distinguishes them up to homotopy, — the Vassiliev
invariants system. We obtained a representation of Vassiliev invari-
ants for braids formed by continuous semimartingales with respect
to the common filtraton in a form of the iterated Stratonovich in-
tegrals [1].

The mutual winding angles of the braid’s strands are Vassiliev
invariants of the first order. Asymptotical behaviour of the mutual
winding angles of independent planar Brownian motions was stud-
ied by M. Yor [2]. Some results about winding angles in Brownian
stochastic flows were obtained in [3]. We obtained the following
result about asymptotical behaviour (when t → ∞) of the winding
angles of particles in Brownian stochastic flows.

Theorem 1. Let Ft(x), t ≥ 0, x ∈ R2, be a Brownian stochastic
flow defined by equation

dFt(x) = U(Ft(x), dt),

where EU(x, t)kU(y, s)l = bkl(x− y)t ∧ s, and bkl has the form

bkl(z) = δklbL(‖z‖).

Let us consider trajectories Ft(x1), . . . , Ft(xk) of this flow starting
from distinct points x1, . . . , xk. Let Φkl(t) be the angle wound by
Fs(xk) around Fs(xl) up to time t. Then

(
2

ln t
Φkl(t), k, l = 1, . . . , n

)
d−−−→

t→∞
(C12, . . . , Cn−1,n),
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where Ckl, 1 ≤ k < l ≤ n, are independent random variables with
the standard Cauchy distribution.

In the course of study of asymptotical behaviour of Vassiliev
invariants of the 2nd order of the braids formed by independent
planar Brownian motions, there arises a need in obtaining the re-
sults of the type of Strassen’s law of the iterated logarithm for the
mutual winding angles of Brownian particles. One of the proofs of
the law of the iterated logarithm is based on the large-deviation
principle for the Wiener process. We obtain estimates of the large-
deviation principle for the family (Φε) of the winding angles of the
process wε(t) = w(εt), 0 ≤ t ≤ 1, around the point (0, 0). Here w
is a two-dimensional Wiener process, w(0) 6= 0.
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Random maps and widths of compact sets in Hilbert
space

Iaroslava A. Korenovska
Institute of Mathematics of the National Academy of Sciences of

Ukraine, Ukraine
yaroslavaka@mail.ru

We consider the images of compact sets in Hilbert space under
strong random operators [1] and study the asymptotic behavior of
the Kolmogorov widths [2] of such images.
For random operators Ts,t (s ≤ t) related to stochastic flow [3] ϕs,t

as follows

(Ts,tf) (u) = f (ϕs,t(u)) , f ∈ L2 (R) , u ∈ R

are obtained such results:

Lemma 1. Ts,t (s ≤ t) is a bounded random operator if and
only if

sup
u∈R

(
∂ϕs,t(u)

∂u

)−1

< +∞ a.s.

Lemma 2. Let ϕs,t be a family of solutions of the stochastic
differential equation

dx(t) = a(x(t))dt+ b(x(t))dw(t),

where a, b ∈ C1 (R) , |a′|+ |b′| ≤ L, infy∈R b (y) > 0.
Then Ts,t is a strong random operator.

If strong random operator A has a continuous modification on
compact set K then image A (K) is compact set.

Lemma 3. Let A be a Gaussian s.r.o.[4] on a real separable
Hilbert space H, K ⊂ H be a compact set, and NK be the metric
entropy function for K with respect ‖ · ‖H . If

∫

NK(u)>1

(
lnNK(u)

) 1
2 du < +∞,
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then image A (K) is a compact set.
In the next theorem the asymptotic behavior of Kolmogorov

n-width of the image of the compact set in Hilbert space under
Gaussian s.r.o. is established. Similar statements for semigroups of
finite-dimensional random projections were obtained in [5].

Definition[2]. Kolmogorov n-width of K is

dn (K) = inf
dimL≤n

sup
x∈K

inf
y∈L

‖x− y‖H ,

where L ⊂ H is a subspace.

Theorem. Let H be a real separable Hilbert space with an
orthonormal basis {en}∞n=1, ξ1, ξ2, . . . be an independent N(0; 1).
For compact set K =

{
x ∈ H : (x, en)

2 ≤ 1
n2 , for all n ≥ 1

}
and

Gaussian strong random operator Ax =
∑+∞

n=1 ξn (x; en) en, x ∈ H,
the following assertions hold

dn (K) =

√√√√
+∞∑

k=n+1

1

k2
, dn (A (K)) ≍ 1√

n
, n → ∞ a.s.
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Asymptotic properties of one-step M-estimators 1

Yuliana Yu. Linke
Sobolev Institute of Mathematics, Novosibirsk, Russia

linke@math.nsc.ru

Let X1, . . . , Xn be independent but not necessarily identically
distributed observations taking values in an arbitrary measurable
space, with the distributions depending on some unknown param-
eter θ ∈ Θ. Let θ∗n be a preliminary consistent estimator of θ.

We study the so-called one-step M -estimators θ∗∗n of the form

θ∗∗n = θ∗n −
n∑

i=1

Mi(θ
∗
n, Xi)

/ n∑

i=1

M ′
i(θ

∗
n, Xi), (1)

where the functions Mi(t, x), i = 1, . . . , n, satisfy the condition
EMi(θ,Xi) = 0 for all i. The one-step M -estimator θ∗∗n defines the
first step of the Newton procedure starting with the initial point
t0 = θ∗n to approximate a consistent M -estimator θ̂n, i. e., a consis-
tent solution to the equation (with respect to t)

n∑

i=1

Mi(t,Xi) = 0.

We study asymptotic behavior of the one-step M -estimators (1)
and some their modifications (one-step scoring estimators and one-
step weighted M -estimators; see [1], [2]). Sufficient conditions are
presented for asymptotic normality of the one-step M -estimators
under consideration. As a consequence, for various nonlinear regres-
sion models, we consider one-step estimators which are equivalent to
the corresponding least-squares, maximum likelihood (MLE), and
quasi-likelihood ones. We consider some well-known nonlinear re-
gression models (in particular, the Michaelis-Menton model) where

1This work is supported by the RFBR-grants # 13-01-00511, # 14-01-00220.
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the procedure mentioned allows us to construct explicit asymptoti-
cally optimal estimators.

For the first time, the idea of one-step estimation was suggested
by R. Fisher in the problem of approximate calculation of MLE
in the case of identically distributed observations. These Fisher’s
estimators are asymptotically equivalent to MLE only for nβ-consis-
tent preliminary estimators with β ≥ 1/4. We discuss some new
one-step estimators which transform nβ-consistent preliminary esti-
mators for β < 1/4 into an estimator asymptotically equivalent to
MLE (see [3]).
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On the excess over boundary 1

Vladimir I. Lotov
Novosibirsk State University,

Sobolev Institute of Mathematics, Russia
lotov@math.nsc.ru

We find an asymptotic expansion in the powers of e−b for the dis-
tribution of excess over boundary b → ∞ for random walk under
one-sided Cramér condition on the distribution of summands. As
a corollary, we obtain an asymptotic expansion for renewal func-
tion. We also present asymptotic expansion for the distribution of
excess over two-sided boundary and give new approximations for
the expectation of the first exit time.

1This work is supported by the RFBR-grant # 14-01-00220.
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Large deviations for processes with independent
increments 1

Anatolii A. Mogulskii
Novosibirsk State University,

Sobolev Institute of Mathematics, Russia
mogul@math.nsc.ru

The talk is devoted to the large deviation principles for processes
with independent increments. The results include the so-called lo-
cal and extended large deviation principles that hold in those cases
where the “usual” (classical) large deviation principle is inapplica-
ble.

1This work is supported by the RFBR-grant # 14-01-00220.
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The geometry of random eigenfunctions 1

Domenico Marinucci
(co-authored with Valentina Cammarota, Giovanni Peccati,

Maurizia Rossi and Igor Wigman)
Department of Mathematics, University of Rome Tor Vergata

marinucc@mat.uniroma2.it

In this talk we discuss some results on the asymptotic behaviour
of random eigenfunctions, in the high-frequency limit. In particu-
lar, we focus on the Lipschitz-Killing curvatures of their excursion
sets, which include the excursion area, the measure of level curves,
and the Euler-Poincaré characteristic; starting from the excursion
area, we show how its asymptotic behaviour is dominated by a sin-
gle term, corresponding to the second-order chaos projection, and
how this allows to establish quantitative central limit theorems by
means of Stein-Malliavin techniques. We then discuss the extension
of this approach to other functionals, reviewing both known results
and open problems. Finally, if time permits we will discuss general-
izations to further settings, in particular the asymptotic behaviour
of band-limited random fields.
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Optimal stopping problem with incomplete information 1

Vladimir V. Mazalov
(co-authored with E. Konovalchikova)

Institute of Applied Mathematical Research, Russia
vlmazalov@yandex.ru

The optimal stopping problem has a long history and goes un-
der many names included secretary problem, marriage problem,
etc. As the secretary problem [Dynkin], it has many formulations
and variations. The number of items may be finite or infinite, the
decision-maker may know the actual value of each item as it is
presented or may only know its relative rank among the presented
items. In some models the items are random variables with known
pdf. Some authors assume that the pdf is known but its param-
eters are unknown [Ano]. Game-theoretic version of this problem
was developed in [Gilbert, Mosteller]. Different generalisations of
the best-choice games were made in the papers [Enns, Fushimi,
Kurano, Sakaguchi, Mazalov]. There are few models devoted to
mutual best-choice games [Alpern, McNamara, Mazalov, Falko].

We consider here m-person best-choice game with incomplete
information. Assume that m experts observe a sequence of iid ran-
dom variables (xi, yi), i = 1 . . . , n, which represent the quality of
incoming objects. The first component is announced to the players
and the other component is hidden. We can think that the first
component is related with a professional ability of the candidate
and the second one is related with his compute skills. Each expert
can select at most k candidates and has to maximise the resultant
quality xi + yi of the selected candidates. In the game-theoretic
approach the goal of the player is to select the candidate with the
resultant quality which is higher than the resultant qualities of the
selected candidates by other players. We illustrate the model con-
sidering a popular TV show ”The Voice”.

1This work is supported by the RFBR-grant # 13-01-00033-a.
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Probabilities related to the cyclic structure of random
permutations

Eugenijus Manstavičius
(co-authored with R. Petuchovas)

Vilnius University, Lithuania
eugenijus.manstavicius@mif.vu.lt

We study a uniform random permutation from the symmetric
group Sn and missing long or short cycles. The goal is to reach the
level achieved in the asymptotic theory of natural numbers missing
large or small prime factors (see the concise book [1] and more
recent papers).

Let ν(n, r) be the probability that a permutation σ ∈ Sn has no
cycle of length greater than r, where 1 ≤ r ≤ n and n → ∞. Using
the saddle point method and ideas originated in number theory,
we obtained asymptotic formulas valid in all specified regions for
the ratio n/r. Afterwards, let B be some complex quantity not
the same at different places but always bounded by an absolute
constant.

Theorem 1. If 1 ≤ r ≤ n, then

ν(n, r) =
q(x)√
2πλ(x)

(
1 +

Br

n

)
.

Here

q(x) :=
1

xn
exp

{
r∑

j=1

xj

j

}
, λ(x) :=

r∑

j=1

jxj,

and x := x(n, r) is unique positive solution to the saddle point
equation xr+1 − x = n(x− 1).

For r ≤ log n, the result (unfortunately, with frequent misprints)
has been circulating in a few papers by other authors. For large
r, when Hyman’s approach is of no help, the traditional contour
integrals have to be combined with relevant Laplace transforms.
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Recall that Dickman’s function ρ(v) is defined as the continuous
solution to the difference-differential equation vρ′(v)+ ρ(v− 1) = 0
with the initial condition ρ(v) = 1 for 0 ≤ v ≤ 1.

Theorem 2. If
√
n log n ≤ r ≤ n, u := n/r and n ≥ 2, then

ν(n, r) = ρ(u)
(
1 +

Bu log(u+ 1)

r

)
.

An historical survey and the detailed proofs of Theorems 1 and 2
are exposed in preprint [2]. Analogous results are obtained for the
probability ν(n, [r]) of permutations missing cycles of lengths up
to r. To formulate one of the results, one needs Buchstab’s func-
tion ω(u) defined as a solution to difference-differential equation
(vω(v))′ = w(u− 1) for v > 2 with the initial condition ω(v) = 1/v
if 1 ≤ v ≤ 2.

Theorem 3. Let u := n/r. There exists an absolute constant
a > 0 such that

ν(n, [r]) = exp

{∑

j≤r

−1

j

}(
eγω(u) + B

e−au/ log2(1+u)

r

)

for
√
n log n ≤ r ≤ n.

As an application, we establish an asymptotic formula with the
remainder term estimate of the total variation distance between
the count process of multiplicities of cycle lengths in a random
permutation and a relevant independent process.
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The small ball asymptotics in L2-norm for the
Kac-Kiefer-Wolfowitz processes1

Alexander I. Nazarova,b, Yulia P. Petrovab

a St. Petersburg Dept of Steklov Institute, Russia
b St. Petersburg State University, Russia

al.il.nazarov@gmail.com

We consider the problem of small ball behavior in L2-norm for
some Gaussian processes of statistical interest. The problem is
reduced to the spectral asymptotics for some integral-differential
operators. To find these asymptotics we construct the asymptotic
expansion of several integrals containing slowly varying functions.
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On the ergodicity of mutual service processes in
Euclidean space
Ilkka Norros

(with F. Baccelli, UT Austin, and F. Mathieu. Bell Labs)
VTT Technical Research Centre of Finland

ilkka.norros@vtt.fi

Consider a set of objects, abstracted to points of a spatially
stationary point process in ℜd, that deliver mutually each other a
service at a rate f(‖x − y‖) depending on their distance. Assume
that the points arrive as a Poisson process and leave when their
service requirements have been fulfilled. In the case of exponential
service requirements the system is an infinite spatial birth and death
process. We show how such a process can be constructed in this
case and establish its ergodicity and a repulsivity property.

Our approach is fully probabilistic. We first construct the pro-
cess on the positive time axis using an infinitely running algorithm.
Next, we build a coupling of two such processes, one with empty
initial state and one with a non-empty one, by an algorithm involv-
ing three types of points and their interaction rules. The difference
of the two initial states is encoded into two types of ‘special points’,
whereas all newborn points are first ‘regular points’. Then we derive
differential equations governing the time dynamics of Palm expec-
tations of death rates experienced by each point type. With the
help of these equations, we show that the special points die out at
exponential speed. Finally, this allows a construction of the process
on the whole time axis.
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Random flights related to the Euler-Poisson-Darboux
equation

Enzo Orsingher
Sapienza University of Rome, Italy

Enzo.Orsingher@uniroma1.it

This paper is devoted to the analysis of random motions on the
line and in the space Rd (d > 1) performed at finite velocity and gov-
erned by a non-homogeneous Poisson process with rate λ(t). The
explicit distributions p(x, t) of the position of the randomly moving
particles are obtained solving initial-value problems for the Euler-
Poisson-Darboux equation when λ(t) = α

t
, α > 0. We consider also

the case where λ(t) = λ cothλt and λ(t) = λ tanhλt where some
Riccati differential equations emerge and the explicit distributions
are obtained for d = 1. We also examine planar random motions
with random velocities by projecting random flights in Rd onto the
plane. Finally the case of planar motions with four orthogonal di-
rections is considered and the corresponding higher-order equations
with time-varying coefficients obtained.
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On the law of the iterated logarithm for sequences of
m-orthogonal random variables

Valentin V. Petrov

Saint Petersburg State University, Russia
petrov2v@mail.ru

In [1] a theorem on the upper limit of a sequence of depen-
dent random variables was proved. By means of this theorem some
sufficient conditions were found for the applicability of the law of
the iterated logarithm to sequences of m-dependent random vari-
ables with finite variances. These results were used in [2] where the
condition of m-dependence has been replaced by the condition of
m-orthogonality introduced in the same paper.

Let m be a nonnegative integer. By definition, a sequence of
random variables {Xn ; n = 1, 2, . . . } on a probability space is a se-
quence of m-orthogonal random variables if EX2

n < ∞ for every n
and E(XkXj) = 0 if |k − j| > m. In particular, a sequence of
0-orthogonal random variables is a sequence of orthogonal random
variables.

Many papers were devoted to limit theorems for sequences of
m-dependent random variables. Every sequence of m-dependent
random variables with zero means and finite variances is a sequence
of m-orthogonal random variables. This statement remains true if
we replace the condition of m-dependence by the weaker condition
of pairwise m-dependence.

Limit theorems for sequences of m-orthogonal random variables
may represent some interest. The following theorem is a general-
ization of a result in [2].

Theorem. Let {Xn} be a sequence of m-orthogonal random
variables with zero means. Put

Sn =
n∑

k=1

Xk, Bn = ES2
n, an = (2Bn log logBn)

1/2.
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Suppose that Bn → ∞, Bn/Bn+1 → 1 (n → ∞) and

∞∑

n=1

P
(

max
[cn]≤k<[cn+1]

Sk ≥ (1 + ε)a[cn]
)
< ∞

for every ε > 0 and every c > 1. Then

lim supSn/an ≤ 1 a.s.
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Compound Poisson Processes with alternating intensities
and hypo-exponential jumps

Nikita Ratanov
Universidad del Rosario, Colombia

nratanov@urosario.edu.co

We study the compound Poisson processes based on a two-state
self-exciting Markov process with alternating parameters.

The explicit formulae for hypo-exponential distribution with al-
ternating parameters are deduced. Then, bearing in mind financial
applications we study in detail the compound Poisson processes
with alternating distributions of jumps.

The model with exogenously exited processes is also presented.
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Itô-Wiener expansion for functionals from the Arratia’s
flow n−point motion
Georgii V. Riabov

Institute of Mathematics, NAS of Ukraine
ryabov.george@gmail.com

The Arratia flow on the real line is a family of random variables
{x(u, t)}u∈R,t≥0, such that

1) for every u ∈ R x(u, ·) is a continuous square integrable
martingale with respect to the joint filtration Fx

t = σ({x(v, s) : v ∈
R, s ≤ t});

2) x(u, 0) = u;
3) < x(u, ·), x(v, ·) > (t) = (t − τu,v)+, where τu,v = inf{t ≥ 0 :

x(u, t) = x(v, t)}.
The Arratia flow was constructed in [1]. Informally, it represents

the motion of Brownian particles that start from every point of R
and move independently until some of the particles meet each other.
Thereafter these particles coalesce and continue their motion as one
particle.

Despite the fact that each trajectory x(u, ·) in the flow is a
Wiener process, the whole flow is a highly non-Gaussian object -
it generates black noise in the sense of B. S. Tsirelson [2]. Still,
its n−point motion {(x(u1, t), . . . , x(un, t))}t≥0 can be constructed
from n independent Wiener processes via certain (non-unique) coa-
lescing procedure [3]. It allows to apply Gaussian analysis to study
finite-point motions of the Arratia flow. Such approach has two
main limitations. Firstly, it gives results that depend on the coa-
lescing procedure. Secondly, it is inapplicable to describe the whole
flow, i.e. when n → ∞.

The aim of the present work is to obtain the intrinsic Itô-Wiener
expansion for square-integrable functionals of the Arratia’s flow
n−point motion {(x(u1, t), . . . , x(un, t))}t≥0, in the sense it will be
expressed in terms of stochastic integrals with respect to the trajec-
tories x(ui, ·). Also, it will be calculated explicitly for functionals of
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the kind f(x(u1, t), . . . , x(un, t)), giving the analogue of the Krylov-
Veretennikov formula. The main ingridient of our construction is
the intrinsic Itô-Wiener expansion for the stopped Wiener process,
obtained in the joint work with A. A. Dorogovtsev.

Let {w(t)}t≥0 be the standard Wiener process in Rn, starting
from 0. Given open connected set G ⊂ Rn, denote τ(u) the moment
when u+ w leaves G, and α(t, u) = P(τ(u) > t). Let ∆d(T ) be the
d−dimensional simplex {0 < t1 < . . . < td < T}.

Theorem. 1) For every function a ∈ L2(∆d(∞), α(td, 0)dt),
following stochastic integral is well-defined:

∫

∆d(τ(0))

a(t)dwtd(t1) . . . dw
td(td−1)dw(td),

where wt(s) = w(s)−
∫ s∧t
0

∇ logα(t−r, w(r))dr. Stochastic integrals
of different multiplicity are orthogonal in L2(w(τ(0) ∧ ·)).

2) Every random variable α ∈ L2(w(τ(0) ∧ ·)) has a unique
expansion

α =
∞∑

d=0

∫

∆d(τ(0))

ad(t)dw
td(t1) . . . dw

td(td−1)dw(td).
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On a limiting behaviour of a conditional random walk
with bounded local times 1

Alexander I. Sakhanenko
Novosibirsk State University

and Sobolev Institute of Mathematics, Novosibirsk, Russia
aisakh@mail.ru

We consider a random walk on the integers with i.i.d. jumps
taking value 1 and negative values, and with a limited number of
visits, say L, to each state. The latter means that the walk stops
(“freezes”) at any state if it visits the state the (L+1)st time. Such
a walk freezes at some state with probability one and a probability
to hit a large level, say N , tends to zero when N grows to infinity.

We analyse asymptotic properties of the trajectory up to the
hitting time of level N given that the hitting time is finite.

Itai Benjamini and Nathanaël Berestycki (2010) considered the
symmetric simple random walk and showed, in particular, that the
limiting process has a regenerative structure. We generalise their
results using different techniques.

We will discuss further a number of extensions of the model.
The talk is based on a joint work with Sergey G. Foss (Heriot-

Watt University, Edinburgh and Sobolev Institute of Mathematics,
Novosibirsk).
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On the accuracy of the binomial approximation
to sums of independent random variables1

Irina Shevtsova
(co-authored with Lutz Mattner)

Moscow State University and Institute of Informatics Problems
of FRC CSC RAS, Moscow, Russia

ishevtsova@cs.msu.ru

We construct an optimal upper bound for the closeness of
expectations of smooth functions between standardized sums S̃n =
(Sn − ESn)/

√
DSn, Sn = X1 + . . . + Xn of i.i.d. r.v.’s X1, . . . , Xn and

the normalized symmetric binomial r.v. Bn of the form

ζ3(S̃n, Bn) ≤
ρA(ρ)

6
√
n
, (∗)

where ζ3 is Zolotarev’s ideal metric, ρ is the normalized value of the
third-order absolute moment of X1,

A(ρ) =
√

1
2

√
1 + 8ρ−2 + 1

2
− 2ρ−2 < 1, ρ ≥ 1,

A(ρ) ≤
√

(ρ− 1)(ρ+ 5/3), ρ ≥ 1, A(ρ) ∼
√

8
3
(ρ− 1), ρ→ 1+,

with equality attained in (∗) for every value of ρ whenever X1 takes only
two values and f(x) = x3/6.

As a corollary, we derive a sharp upper bound for the accuracy of the
normal approximation to S̃n of the form

ζ3(S̃n, Z) ≤
ρA(ρ)

6
√
n

+
0.3

n
, n ≥ 1, (∗∗)

where Z is a standard normal r.v. Inequality (∗∗) improves Tyurin’s
optimal for ρ → ∞ estimate ζ3(S̃n, Z) ≤ ρ/(6

√
n) for every value of ρ

and all sufficiently large n, since A(ρ) < 1.

References
1. I. S. Tyurin. On the accuracy of the Gaussian approximation. —

Doklady Mathematics, 2009, vol. 80, No. 3, p. 840–843.
2. I. Shevtsova. On the accuracy of the approximation of the complex

exponent by the first terms of its Taylor expansion with applications.
— Journal of Mathematical Analysis and Applications, 2014, vol. 418,
issue 1, p. 185-210.

1This work is supported by RFBR grants # 14-01-31543, # 15-07-02984, and by
the grant MD–5642.2015.1

1

49



Fredholm representation of Gaussian processes with
applications

Tommi Sottinen
(co-authored with L. Viitasaari)
University of Vaasa, Finland

tommi.sottinen@iki.fi

We show that every separable Gaussian process with integrable
variance function admits a Fredholm representation with respect to
a Brownian motion. We extend the Fredholm representation to a
transfer principle and develop stochastic analysis by using it. In
particular, we prove an Itô formula that is, as far as we know, the
most general Malliavin-type Itô formula for Gaussian processes so
far. Finally, we give applications to equivalence in law and series
expansions of Gaussian processes.

Our main theorem is the following:

Theorem 1. Let X = (Xt)t∈[0,T ] be a separable centered Gaus-
sian process. Then there exists a kernel KT ∈ L2([0, T ]2) and a
Brownian motion W = (Wt)t≥0, independent of T , such that

Xt =

∫ T

0

KT (t, s) dWs

if and only if the covariance R of X satisfies the trace condition

∫ T

0

R(t, t) dt < ∞.
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On asymptotic analysis of symmetric functions 1

Vladimir V. Ulyanov
(co-authored with F. Götze and A.A. Naumov)
Lomonosov Moscow State University, Russia

vulyanov@cs.msu.ru

Most limit theorems, including the central limit theorem in finite
dimensional and abstract spaces and the functional limit theorems,
admit refinements in terms of asymptotic expansions in powers of
n−1/2, where n denotes the number of observations, see e.g. [1] and
[2]. These expansions are obtained by very different techniques such
as expanding the characteristic function of the particular statistic
or method of compositions. Alternatively one might use an expan-
sion for an underlying empirical process and evaluate it on a domain
defined by a functional of this process. The aim of the talk is to
show that for most of these expansions one could safely ignore the
underlying probability model and its ingredients (like e.g. proof of
existence of limiting processes and its properties). In fact one can
obtain expansions in a very similar way based on a simple general
scheme reflecting the common nature of these models that is a uni-
versal collective behavior caused by many independent asymptot-
ically negligible variables in the distribution of a functional. The
following scheme of sequences of symmetric functions is studied.
Let hn(ε, ..., εn), n ≥ 1, denote a sequence of real functions defined
on Rn and suppose that the following conditions hold:

hn+1(ε1, ..., εj, 0, εj+1, ..., εn) = hn(ε1, ..., εj, εj+1, ..., εn);

∂

∂εj
hn(ε1, ..., εj, ..., εn)

∣∣∣∣
εj=0

= 0 for all j = 1, ..., n;

hn(επ(1), ..., επ(n)) = hn(ε1, ..., εn) for all π ∈ Sn,

where Sn is a symmetric group.

1This work is supported by the RSCF # 14-11-00196.

1

51



This symmetry property follows e.g. from the independence
and identical distribution of an underlying vector of random ele-
ments Xj (in an arbitrary space) with common distribution P , if
hn = EF (ε1(δX1 − P ) + . . .+ εn(δXn − P )) is the expected value of
a functional F of a weighted process (based on the Dirac-measures
in X1, . . . , Xn). Here hn may be regarded as function of ”influ-
ences” of the various random components Xj. In [3] it was con-
sidered limits and expansions for functions hn of equal weights
εj = n−1/2, 1 ≤ j ≤ n. In the talk we present an extension of this
scheme to the case of non identical weights εj, which occurs e.g. for
expectations of functionals of weighted i.i.d. random Xj elements
in probability theory and mathematical statistics. See details in
[4]. The applications of the results to the corresponding examples,
e.g. for high order U -statistics, Kolmogorov-Smirnov statistic and
Free Central Limit theorem, will be discussed as well.
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Let (B, ‖·‖B) be a Banach-space and let Y be some (Ω,B)-valued
random variable. The small deviation problem refers to analysing
the probability P (‖Y ‖B < ǫ) as ǫ tends to zero.

General small deviation problems have received a lot of atten-
tion recently due to their connections to various mathematical top-
ics as well as importance for various applications. Similarly, large
deviation theory and concentration of measure phenomena play im-
portant role in various topics in mathematics as well as in applica-
tions. In general the theory of large deviation and it link to the con-
centration of measure is better understood than the theory of small
deviations. Indeed, the small deviation problems are usually stud-
ied only in some particular cases. For example, Gaussian processes
with stationary increments and related processes have received a lot
of attention. However, while the problem is well-studied in some
special cases, it seems there does not exist a unified approach to
attack the problem in full generality covering all kind of processes.

In this talk we introduce a general approach to find upper
bounds for small deviation probabilities which reveals the connec-
tion of small deviation theory to the concentration of measure phe-
nomena; an extensively studied and important topic which is also
closely related to large deviation theory. More precisely, we con-
sider small deviation problem for a process Y = X1+X2, where X1

and X2 are some (B, ‖ ·‖B)-valued random variables, and show how
small deviation for Y is linked to the concentration of measure for
X1 and large deviation probability for X2. The advantages of the
presented general approach is that it does not rely on any assump-
tions of the underlying processes X1 and X2 a priori, and it can be
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used to study different norms. After presenting the general result
for Banach-valued random variables, we show how the approach can
be used to study small deviation probabilities in different norms for
processes on [0, T ]. Finally, we show how the approach can be used
to recover and generalise some existing results in the case of Gaus-
sian processes where the concentration of measure phenomena is
well-known.
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The family tree for an island model of branching
processes 1
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A critical Galton-Watson branching process Z(n) = (Z1(n), ...,
ZN(n)) with N types of particles labelled 1, 2, ..., N is considered in
which a type i parent may produce individuals of types j ≥ i only.

Let Zi(m,n) be the number of type i particles existing in the
process at moment m < n and having nonempty number of descen-
dants at moment n. The process Z(m,n) = (Z1(m,n), ..., ZN(m,n)),
0 ≤ m < n, can be thought of as the family tree relating the indi-
viduals alive at time n. We show that if Z(·) is a critical process
and the variance of the total number of direct descendants of parti-
cles of all its types is finite then the finite-dimensional distributions
of the conditional process

{
Z
(
nt log n, n

)
, 0 ≤ t < 1|Z(n) 6= 0

}

converge, as n → ∞ to finite-dimensional distributions of an N−
dimensional inhomogeneous branching process {ρ(t), 0 ≤ t < 1}
with step-wise trajectories and which, at any fixed moment consists
of particles of a single type only. The phase transition from type i to
type i+1 happens at moment t = 2−(N−i). This gives a macroscopic
view on the structure of the family tree of the process.

On the other hand, for i ≤ N − 1 the conditional process

{
Z

((
y +

1

log n

)
n1/2(N−i)

, n

)
, 0 ≤ y < ∞|Z(n) 6= 0

}

converges in Skorokhod topology, as n → ∞ to a homogeneous
branching process {µi(y), 0 ≤ y < ∞} which is initiated at moment

1This work is supported by the RSF under the grant # 14-50-00005.
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y = 0 by a random number of type i particles with probability
generating function

fi(s) = 1− (1− s)1/2
i−1

.

Each type i particle has an exponential life-length distribution and
dying produces either two particles of type i or one particle of type
i + 1 (each option with probability 1/2). Particles of type i + 1 in
this process are immortal and produce no offspring. This gives a
microscopic view on the structure of the family tree of the process.

Finally, the conditional process
{
Z

((
x+

1

log n

)
n, n

)
, 0 ≤ x < 1|Z(n) 6= 0

}

converges in Skorokhod topology, as n → ∞ to an inhomogeneous
branching process {µN(x), 0 ≤ x < 1} which is initiated at moment
x = 0 by a random number of type N particles with probability
generating function

fN(s) = 1− (1− s)1/2
N−1

.

The life-length of each initial type N particle is uniformly dis-
tributed on [0, 1]. Dying such a particle produces exactly two chil-
dren of type N and nothing else. If the death moment of a parent
particle is x ∈ (0, 1) then the life length of each of its offspring
has the uniform distribution on the interval [x, 1] (independently of
the behavior of other particles and the prehistory of the process).
Dying each particle of the process produces exactly two individuals
of type N and so on... .
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The main object of studies is one class of stochastic flows of
Brownian particles on the real line.

Definition 1.A family of random variables {X(t, u) | t ≥ 0, u ∈
R} is called a Harris flow with infinitesimal covariance ϕ if, for any
u, X(·, u)−u is a standard Wiener process w.r.t. the common filtra-
tion of the flow; for any u, v, 〈X(·, u), X(·, v)〉(t) =

∫ t

0
ϕ(X(y, u)−

X(y, v))dy and, for u ≤ v, X(t, u) ≤ X(t, v), t ≥ 0, a.s..
In case ϕ is Lipshitz outside any neighbourhood of 0, positive

definite and its spectral representation is not of pure jump type the
existence of a Harris flow is proved in [1]. In case ϕ(t) = ϕ0(t) =
1{t=0} a Harris flow is a system of Wiener processes independent be-
fore a collision and coalescing after and is called the Arratia flow [2].

Definition 2.[3] A Brownian web is a family of random vari-
ables {B(s, t, u) | 0 ≤ s ≤ t, u ∈ R} such that, for any u, t, the
process {B(t, y, u) − u | y ≥ t} is a standard Wiener process w.r.t
the common filtration; for any u, v, s, r, 〈B(s, ·, u), B(r, ·, v)〉(t) =∫ t

max{s,r} ϕ0(B(s, y, u)−B(r, y, v))dy, and trajectories inside the web

do not cross each other.
Definition 3.[2] Let a ∈ Lip(R). A family {Xa(t, u) | t ≥ 0, u ∈

R} is called the Arratia flow with drift a if, for any u, Xa(·, u) =
u+

∫ ·
0
a(Xa(s, u))ds+wu(·), where wu is a standard Wiener process

w.r.t. the common filtration of the flow; given arbitrary u and v the
joint quadratic covariance of the martingale parts of Xa(·, u) and
Xa(·, v) equals

∫ ·
0
ϕ0(X

a(y, u)−Xa(y, v))dy; for u ≤ v, Xa(t, u) ≤
Xa(t, v), t ≥ 0, a.s..

The next result is an analogue to the Trotter formula for inter-
changing actions of a stochastic flow and a semigroup associated
with an ordinary diffefential equation.
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Theorem 1.[4] Suppose a ∈ Lip(R). Define A(t, u) = u +∫ t

0
a(A(s, u))ds, and, for any u and t ∈ [ k

2n
, k+1

2n
), put

Xn(t, u) = B(
k

2n
, t,

(
◦j=k
j=1 A

( 1

2n
, B(

j

2n
,
j + 1

2n
, ·)

))
(u)),

where ◦ stands for an operation of composition. Then, for any
u1, . . . , uN , the sequence

(
X(·, u1), . . . , X(·, un)

)
weakly converges

as n → ∞ to
(
Xa(·, u1), . . . , X

a(·, uN)
)
in the Skorokhod space.

The following theorem provides an existence of a Harris web.
Theorem 2. Suppose ϕ(t) = e−α|t|β , α > 0, β ∈ (0; 2). Then

there exists a family {Xϕ(s, t, u) | 0 ≤ s ≤ t, u ∈ R} such that,
for any u, s, the process {Xϕ(s, y, u) − u | y ≥ s} is a standard
Wiener process w.r.t. the common filtration, Xϕ(t, r, u) = u, r ≤ t;
for arbitrary u, v, s, r

〈Xϕ(s, ·, u), Xϕ(r, ·, v)〉(t) =
∫ t

max{s,r}
ϕ(Xϕ(s, y, u)−Xϕ(r, y, v))dy,

and trajectories Xϕ(s, ·, u) and Xϕ(t, ·, v) never cross each other
(coalescence is allowed).
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The concept of stability is central in Probability theory: it in-
evitably arises in various limit theorems involving scaled sums of
random elements. Recall that a random vector ξ (more generally,
a random element in a Banach space) is called strictly α-stable or
StαS, if

t1/αξ′ + (1− t)1/αξ′′
D
= ξ for all t ∈ [0, 1], (1)

where ξ′ and ξ′′ are independent copies of ξ and
D
= denotes equality

in distribution.
Since the notion of stability relies on multiplication of a random

element by a number between 0 and 1, integer valued random vari-
ables cannot be StαS. Therefore Steutel and van Harn [1] defined
a stochastic operation of discrete multiplication on positive integer
random variables and characterised the corresponding discrete α-
stable random variables. In a more general context, the discrete
multiplication corresponds to the thinning operation on point pro-
cesses. This observation leads to the notion of discrete stable or
thinning stable point processes (notation: DαS) as the processes Φ
which satisfy

t1/α ◦ Φ′ + (1− t)1/α ◦ Φ′′ D
= Φ for all t ∈ [0, 1], (2)

when multiplication by a t ∈ [0, 1] is replaced by the operation t◦
of independent thinning of their points with the retention probabil-
ity t. The DαS point processes are special Cox processes and they
are exactly the processes appearing as a limit in the superposition-
thinning schemes, their full characterisation was given in [2].
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In a broader context, given an abstract associative and distribu-
tive stochastic operation • on point processes, a process Φ is stable
with respect to • if and only if

∀n ∈ N ∃cn ∈ [0, 1] : Φ
D
= cn • (Φ(1) + ...+ Φ(n)),

where Φ(1), ...,Φ(n) are independent copies of Φ. Such stable point
processes arise inevitably in various limiting schemes similar to the
central limit theorem involving superposition of point processes.
It appears that a stochastic operation on point processes satisfies
associativity and distributivity if and only if it presents a branch-
ing structure: “multiplying” by t a point process is equivalent to
let the process evolve for time − log t according to some general
Markov branching process which may include diffusion or general
disposition of the points. The thinning is a particular case of this
branching operation. We present results of [3], where we charac-
terise branching-stable (i.e. stable with respect to •) point pro-
cesses for some specific choices of •, pointing out possible ways
to obtain characterisation for general branching operations. To
this end, we introduce a stochastic operation in continuous frame-
works based on continuous-branching Markov processes and con-
jecture that branching stability of point processes and continuous-
branching stability of randommeasures should be related in general:
the first are Cox processes driven by the second.
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Many interesting problems in probabilistic combinatorics can be
reduced to investigation of some discrete random variableXn taking
values from a finite set {0, 1, 2, . . . , n}. The probability generating
function of such a random variable is a polynomial

Pn(z) = EzXn = P(Xn = 0) + P(Xn = 1)z + · · ·+ P(Xn = n)zn.

We prove that if all the roots ρ of the polynomial Pn(z) are lying
on the unit circle |ρ| = 1 then the random variable Xn converges
to normal distribution

(
Xn − EXn

)
/
√
VXn → N(0, 1) as n → ∞

if and only if the centralized and normalized fourth moment of Xn

converges to 3. Moreover, we also investigate the class of distri-
butions that can be limits of random variables whose generating
functions are polynomials with only unit roots.
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