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The shifted fourth moment of automorphic L-functions of
prime power level
Olga Balkanova

University of Bordeaux, France
olgabalkanova@gmail.com

An important subject in analytic number theory is the behavior
of L-functions near the critical line. Questions of particular interest
are subconvexity bounds and proportion of non-vanishing L-values.
A possible way to analyse these problems is the method of moments.

In this talk, we prove an asymptotic formula for the shifted
fourth moment of L-functions associated to primitive newforms of
fixed weight k and level pν , where p is a fixed prime and ν → ∞.
This is a continuation of the work of Rouymi, who computed the
first three moments at prime power level, and a generalisation of
results obtained for prime level by Duke, Friedlander & Iwaniec and
Kowalski, Michel & Vanderkam. Furthermore, this proves a par-
ticular case of random matrix theory conjectures (including lower
order terms) by Conrey, Farmer, Keating, Rubinstein and Snaith.
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The second moment of L-functions of holomorphic cusp
forms of level N 1

Victor A. Bykovskii
(co-authored with D.A. Frolenkov)

Institute of Applied Mathematics, Khabarovsk Division, Russia
vab@iam.khv.ru

Let S2k(N) be the space of holomorphic cusp forms of level N
and weight 2k and let O2k(N) be an orthonormal basis of S2k(N).
We prove new asymptotic formulae for

∑

f∈O2k(N)

|Lf (1/2 + it)|2 ,
∫ T

0

∑

f∈O2k(N)

|Lf (1/2 + it)|2 dt

with uniform in k,N, t error terms. In the case of weight 2 to
overcome the lack of convergence of the series of Kloosterman sums
in the Petersson formula we apply ”Hecke’s trick” and asymptotic
formulae for convolutions of divisor functions.

1This work is supported by the RNF-grant # 14-11-00335.
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The mean-value theorem for arithmetical sums
Vladimir Chubarikov

Lomonosov Moscow State University
chubarik2009@live.ru, chubarik1@mech.math.msu.su
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On periodic continued fractions with palindromic period
Oleg German

Lomonosov Moscow State University
german.oleg@gmail.com
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Joint equidistribution of primitive integer points on
spheres and the shape of their orthogonal complement

Manfred Einsiedler
ETH Zürich, Departement Mathematik

manfred.einsiedler@math.ethz.ch
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A strengthening of Porter’s result 1

Dmitrii A. Frolenkov
(co-authored with V.A. Bykovskii)

Steklov Mathematical Institute of Russian Academy of Sciences,
Russia

frolenkov adv@mail.ru

Let s
(
a
b

)
be the length of the standard continued fraction ex-

pansion of

a

b
∈ Q, 0 < a ≤ b,

a

b
= [0; d1, d2, . . . , ds].

J.W. Porter (1975) proved that

1

ϕ(b)

∑

1≤a≤b
(a,b)=1

s
(a
b

)
=

2 log 2

ζ(2)
log b+ CP − 1 +Oε

(
b−1/6+ε

)
, (1)

where CP is the so-called Porter’s constant. The first result of such
kind, with error term O(log4 log b), is due to H.Heilbronn. Using
the ideas of Heilbronn and Porter we prove the asymptotic formula
(1) with error term

Oε

(
b−1/6−1/27+ε

)
.

The proof is based on the new bounds, uniform in t aspect, for the
error term in the additive divisor problem

∑

0<n<N

σit(n)σ−it(N − n).

1This work is supported by the RNF-grant # 14-11-00335.
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On periodic continued fractions with palindromic period
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Lomonosov Moscow State University
german.oleg@gmail.com

8



Randomness in Diophantine approximation
Alexander Gorodnik

(co-authored with A. Ghosh)
University of Bristol, United Kingdom

a.gorodnik@bristol.ac.uk

We investigate statistical properties of counting functions for the
number of solutions of Diophantine inequalities. Given an (n×m)-
matrix X with real coefficients, we consider the system of inequal-
ities

‖Xq − p‖ ≤ c ‖q‖−m/n and ‖q‖ ≤ R,

where p ∈ Zn and q ∈ Zm\{0}, and denote by ψR(X) the number of
solution of these inequalities. Asymptotic behaviour of this function
depends very sensitively on Diophantine properties of the matrix
X. Nonetheless, W. Schmidt showed that for almost all X it has
universal asymptotics: ψR(X) ∼ v(R) as R → ∞ for an explicit
function v(R) → ∞. We investigate finer statistical properties of
the function ψR and, in particular, establish the following analogue
of the central limit theorem.

Theorem 1. There exists σ = σ(n,m) > 0 such that

Vol

({
X ∈ Mn,m([0, 1]) :

ψR(X)− v(R)

v(R)1/2
∈ (a, b)

})
→ 1√

2πσ

∫ b

a

e−u2/σdu.

as R → ∞.
The method that we develop can be also used to prove the law

of iterated logarithms and the invariance principle for the function
ψR.

Our results generalise previous works of Leveque [1] and Philipp
[2] that considered counting solutions for Diophantine approxima-
tion on the real line. Their approach uses fine properties of the
continued fractions expansion which are not available in higher di-
mensions. To prove our results we develop a different new method
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that utilises techniques from the theory of dynamical systems on
homogeneous spaces.
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On algebraic integers in short intervals and near the
smooth curves
H.Husakova

(co-authored with V.Bernik)
Institute of Mathematics NAS of Belarus, Belarus

gusakova.anna.0@gmail.com

Let P (x) = anx
n + . . .+ a1x+ a0 be the irreducible polynomial

with integer coefficients. The roots of this polynomial are the alge-
braic numbers α of the degree n and of the height H(α) = H(P ).
When an = 1 we speak about algebraic integer α of the degree n
and of the height H(α) = H(P ).

Consider the interval I ⊂
[
−1

2
; 1
2

]
of the length c1(n)Q

−1. We
have a question, under what conditions the interval I contains the
algebraic numbers of the degree ≤ n and of the height ≤ Q? The
answer to this question was given in the paper of V.Bernik and
F.Goetze [1] in 2014. In this paper it was shown, that for any in-
teger Q ≥ 1 there exists an interval I of the length µI = 1

2
Q−1,

which doesn’t contain the algebraic numbers of any degree and of
the height ≤ Q. From the other hand, if constant c1(n) is suffi-
ciently large then any interval I, µI ≥ c1(n)Q

−1 contains at least
c2(n)Q

n+1µI of real algebraic numbers of the degree ≤ n and of the
height ≤ Q.

We obtain the analogous results in case of algebraic integers. It
is easy to see, that there exists an interval I, µI = 1

2
Q−1, which

doesn’t contain the algebraic integers of any degree and of the
height ≤ Q, as the set of algebraic integers is the subset of algebraic
numbers.

Theorem 1. For sufficiently large constant c3(n) and Q >
Q0(n) any interval I of the length µI ≥ c3(n)Q

−1 contains at least
c4(n)Q

n|I| of real algebraic integers α of the degree degα ≤ n,
n ≥ 2 and of the height H(α) ≤ Q.

Analogous questions about the distribution of algebraic points
on the plane were considered by V.Bernik, F.Goetze and O.Kukso
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in the paper [2]. The point (α, β) is an algebraic point if α and β
are the roots of some polynomial P ∈ Z[x]. We obtain the following
results for algebraic integers.

Theorem 2. For sufficiently large Q > Q0(n) any rectangle E
of the square µE > Q−γ, 0 ≤ γ < 1 contains at least c7(n)Q

nµE
of integer algebraic points (α, β) of the degree degα = deg β ≤ n,
n ≥ 4 and of the height H(α) = H(β) ≤ Q.

For proving of theorems 1 and 2 we use the method of Y.
Bugeaud [3].

Interesting question is to study the distribution of algebraic
points near the smooth curves. Recently the new results in esti-
mating of the quantity of rational points near the smooth curves
were obtained. In the paper [2] the lower estimate for the quan-
tity of algebraic points of arbitrary degree near the smooth curves
was obtained. We obtain the same results for the integer algebraic
points.

Theorem 3. Let f(x) be a continuous function on the interval
J = [a, b] and let L(Q, λ) = {(x, y) : x ∈ J, |y − f(x)| < Q−λ}, 0 <
λ < 1

2
. Then for Q > Q0(n, J, f) there are at least c8(n, J, f)Q

n−λ

of integer algebraic points (α, β) of the degree degα = deg β ≤ n,
n ≥ 4 and of the height H(α) = H(β) ≤ Q such that (α, β) ∈
L(Q, λ).
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Klein polyhedral
Andrei Illarionov

Institute of Applied Mathematics, Khabarovsk Division, Russia
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The distribution of algebraic numbers on the complex
plane 1

Denis V. Koleda
(co-authored with F. Götze, and D. N. Zaporozhets)
Institute of Mathematics of NAS of Belarus, Belarus

koledad@rambler.ru

Let p(x) = anx
n+ . . .+a1x+a0 be an integral polynomial of de-

gree n, and let H(p) be its height defined as H(p) = max0≤i≤n |ai|.
For an algebraic number α ∈ C, its degree deg(α) and its height
H(α) are defined as the degree and the height of its minimal polyno-
mial, i.e. the polynomial p of minimal degree with integral coprime
coefficients such that p(α) = 0.

In the talk, we will discuss how are algebraic numbers of an
arbitrary fixed degree n ≥ 2 distributed in the complex plane as
the upper bound of their height tends to the infinity.

In 1999, V. Bernik and D. Vasil’ev showed [1] that complex
algebraic numbers α form a regular system with a function N(α) =
H(α)−(n+1)/2, in other words, there exists a constant cn depending
on n only such that in any circle C contained in the unit circle
C0 ⊂ C for all sufficiently large Q ≥ Q0(C) there exist at least
cnQ

n+1|C| algebraic numbers α1, . . . , αk of degree at most n and
height at most Q such that distances between them are at least
Q−(n+1)/2. However, this result describes in some sense only a re-
gular “skeleton” of the set of complex algebraic numbers.

Now we formulate our result. For a region Ω ⊂ C, denote by
ΨQ(Ω) the number of algebraic numbers in Ω of degree n and height
at most Q. We assume that Ω does not intersect the real axis and
that its boundary consists of a finite number of algebraic curves.

Theorem 1. ([2]) The following asymptotic formula holds

ΨQ(Ω) =
Qn+1

2ζ(n+ 1)

∫

Ω

ψn(z)ν(dz) +O (Qn) , Q→ ∞, (1)

1This work is supported by the grant SFB 701.
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where ν is the Lebesgue measure on the complex plane, ζ(·) is the
Riemann zeta function. The limit density ψn is given by the formula

ψn(z) =
1

|ℑz|

∫

Dn(z)

∣∣∣∣∣
n−1∑

k=1

tk

(
(k + 1)zk − ℑzk+1

ℑz

)∣∣∣∣∣

2

dt1 . . . dtn−1,

where ℑz denotes the imaginary part of z ∈ C. The integration is
performed over the region

Dn(z) =

{
(t1, . . . , tn−1) ∈ Rn−1 : max

1≤k≤n−1
|tk| ≤ 1,

∣∣∣∣∣z
n−1∑

k=1

tk

(
zk − ℑzk+1

ℑz

)∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
1

ℑz
n−1∑

k=1

tkℑzk+1

∣∣∣∣∣ ≤ 1

}
.

The implicit constant in the big-O-notation in (1) depends only
on the degree n, and on the maximal degree and the number of
algebraic curves that form the boundary ∂Ω.

The function ψn is positive on C and satisfies the following func-
tional equations:

ψn(−z) = ψn(z̄) = ψn(z), ψn

(
1

z

)
= |z|4ψn(z).

Let x0 be a fixed real number. Then for real y → 0

ψn(x0 + iy) = A|y| · (1 +O(y)),

where the constant A does not depend on y and can be written
explicitly.
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On the smallest simultaneous powers nonresidue
modulo a prime
Sergei Konyagin

Steklov Inst. of Mathematics, Moscow
konyagin23@gmail.com
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A theorem of the Elliott type for twists of L-functions of
elliptic curves

Antanas Laurinčikas
Vilnius University, Lithuania
antanas.laurincikas@mif.vu.lt

In [1] and [2] P.D.T.A. Elliott proved limit theorems for the
modulus and argument of Dirichlet L-functions, respectively, with
increasing modulus of a character. E. Stankus obtained [3] a limit
theorem of the above type on a complex plane.

In a series of works, the author jointly with V. Garbaliauskienė
considered limit theorems of the Elliott type for twists of L-func-
tions of elliptic curves. Let E be an elliptic curve over the field
of rational numbers with discriminant ∆ 6= 0. For each prime p,
denote by Ep the reduction of E modulo p, which is a curve over the
finite field F(p), and define the integer λ(p) by |E(Fp)| = p+1−λ(p),
where |E(Fp)| is the number of points of Ep. The L-function LE(s)
of the curve E, for σ > 3

2
, is given by

LE(s) =
∏

p|∆

(
1− λ(p)

ps

)−1 ∏

p∤∆

(
1− λ(p)

ps
+

1

p2s−1

)−1

.

Let χ be a Dirichlet character modulo q. Then the twist LE(s, χ)
of LE(s), for σ > 3

2
, is given by

LE(s, χ) =
∏

p|∆

(
1− λ(p)χ(p)

ps

)−1 ∏

p∤∆

(
1− λ(p)χ(p)

ps
+

χ2(p)

p2s−1

)−1

,

and can be continued analytically to an entire function. For Q ≥
2, let MQ =

∑
q≤Q

∑
χ=χ(mod q)

χ 6=χ0

1, and µQ(. . . ) = 1
MQ

∑
q≤Q

∑
χ=χ(mod q)

χ 6=χ0

...

1,

where in place of dots a condition satisfied by a pair (q, χ (mod q))

1
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is to be written. Suppose that σ > 3
2
. In the mentioned above

works the weak convergence for µQ (|LE(s, χ)| ∈ A), A ∈ B(R),
µQ (exp{i argLE(s, χ)} ∈ A), A ∈ B(γ), and µQ(LE(s, χ) ∈ A),
A ∈ B(C) was considered as Q → ∞. Here B(X) denotes the Borel
σ-field of the space X, and γ is the unit circle on the complex plane.

Let H(D) be the space of analytic functions on D = {s ∈ C :
σ > 1} equipped with the topology of uniform convergence on com-
pacta. Our report is devoted to a limit theorem for µQ (LE(s, χ) ∈
A), A ∈ B(H(D)), as Q → ∞.

Define Ω =
∏

p γp, where γp = γ for all primes p. With the
product topology and pointwise multiplication, the torus Ω is a
compact topological group. Therefore on (Ω,B(Ω)), the probabil-
ity Haar measure mH exists, and this gives the probability space
(Ω,B(Ω),mH). Denote by ω(p) the projection of ω ∈ Ω to γp, and
on (Ω,B(Ω),mH), define theH(D)-valued random element LE(s, ω)
by the formula

LE(s, ω) =
∏

p|∆

(
1− λ(p)ω(p)

ps

)−1 ∏

p∤∆

(
1− λ(p)ω(p)

ps
+

ω2(p)

p2s−1

)−1

.

Let PLE
(A) = mH {ω ∈ Ω : LE(s, ω) ∈ A}, A ∈ B(H(D)), be the

distribution of the random element LE(s, ω). Then we have the
following statement.

Theorem. Suppose that Q → ∞. Then µQ (LE(s, χ) ∈ A),
A ∈ B(H(D)), converges weakly to PLE

.
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Joint approximation by shifts of zeta and L-functions
Renata Macaitiene
Siauliai University
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Finite Dirichlet series with partially prescribed zeroes
Yuri V. Matiyasevich
St.Petersburg Department

of V.A. Steklov Institute of Mathematics, Russia
yumat@pdmi.ras.ru

For a given finite set of arbitrary complex numbers

{ρ1, . . . , ρn−1} (1)

we can easily construct a finite Dirichlet series

1 + a2 · 2−s + · · ·+ an · n−s (2)

that vanishes on (1) (just by solving corresponding linear system).
In 2011 the author began computer experiments selecting for the
role of (1) initial non-trivial zeroes of the Riemann zeta function.
Computations revealed several interesting phenomena.

I. When n → ∞ and k is fixed, ak → (−1)k+1 (while one might
expect ak → 1 according to the Dirichlet series for the zeta
function).

II. The values of (2) give very good approximations to the values
of (1−2·2−s)ζ(s) in a large area lying to the left of the critical
line ℜ(s) < 1.

III. The series (2) has zeroes very close to the initial trivial zeroes
of the zeta function and its initial non-trivial zeroes not used
in (1).

IV. The coefficients ak have certain number-theoretical meaning,
in particular, they encode the sieve of Eratosthenes.

1
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Item II can be interpreted as follows: the non-trivial zeroes of
the zeta function “know” about its pole (and cancel it by the factor
1− 2 · 2−s).

Item III can be be interpreted as follows: the initial non-trivial
zeroes of the zeta function “know” about consequent non-trivial ze-
roes and about initial trivial zeroes.

When the encoding of the sieve of Eratosthenes was discovered,
it was supposed to be just yet another incarnation of the Euler
product. Surprisingly, a variation of the sieve appears even if one
takes for (1) zeroes of studied by H. Davenport and H. Heilbronn
function defined by a Dirichlet series, having the functional equa-
tion but missing the Euler product (see [2]).

The ongoing study of such finite Dirichlet series can be followed
on [1].
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The Eichler–Shimura relations for theta functions 1

Mariia D. Monina
(co-authored with V.A. Bykovskii)

Institute of Applied Mathematics, Khabarovsk Division, Russia
monina@iam.khv.ru

Consider the space of meromorphic functions

f(z1, z2, z3, z4) = f

(
z1 z2
z3 z4

)

with a right group action of 2× 2 matrices
(
f

(
α β
γ δ

))(
z1 z2
z3 z4

)
= f

((
z1 z2
z3 z4

)(
α β
γ δ

))
.

Let

H(z, w; q) =
ϑ1(z + w)ϑ′

1

ϑ1(z)ϑ1(w)
= cot z+cotw+4

∞∑

m,n=1

sin(2mz+2nw)q2mn.

Then

G

(
z1 z2
z3 z4

)
= H(z1, z4; q)H(z2,−z3; q)

fulfils the Eichlera–Shimura relations

G+G ◦ S = 0, G+G ◦ V +G ◦ V 2 = 0,

where

S =

(
0 −1
1 0

)
, V =

(
1 −1
1 0

)
.

1. S. Lang, Introduction to Modular Forms, Springer-Verlag,
1976.

1This work is supported by the RNF-grant # 14-11-00335.
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Rational approximations to Catalans constant
Yuri Nesterenko

Lomonosov Moscow State University
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Some numerical observation on distribution of zeros of
L-functions

Nikolai V. Proskurin
St. Petersburg Department of Mathem. Institute RAS, Russia

np@pdmi.ras.ru

Consider functions L defined by Dirichlet series

L(s) =
∑

n

cn
ns

, cn ∈ C,

for s ∈ C with sufficiently large Re s, which are meromorphic func-
tions on C and satisfy Riemann’s type functional equation

Rs Ω(s)L(s) = Rp−s Ω(p− s)L(p− s),

where R and p are real positive numbers, and Ω(s) is the product
of terms like Γ(αs + β) with some real α > 0 and β ∈ C. If such
function L admits Euler expansion as a product of local factors (i.e.
can be written as a product over prime numbers similar to that for
the Riemann ζ function) then one expects the zeros ρ are placed on
the critical line Re s = p/2 (excepting the trivial zeros ρ, which are
placed on the real line R). This is the general Riemann hypothesis.
On the other hand, if L admits no Euler product then distribution
of real parts of its zeros is entirely different.

We have studied numerically some of L-functions aiming to un-
derstand possible distribution of real parts of their zeros. The L-
functions considered admits no Euler product. That are the L-
function attached to the cubic theta function, the zeta functions of
some quadratic forms and some others.

For numerical study of L-functions one needs expressions for
L(s) which are valued for all s ∈ C and not only for s with large
Re s. As that, we have used ‘functional equations with free param-
eters’ which are known also as ‘smoothed functional equations’.

1

24



We have found the following phenomena:

The off-line zeros of L-functions are concentrated mainly near the
semi-critical lines.

This observation is based just on numerical computation of zeros
and we have no rigorous proof. By ‘off-line zeros’ we mean non-
trivial zeros located out of the critical line. By ‘semi-critical lines’
we mean the lines Re s = ω and Re s = p − ω, where ω is defined
to be the infimum of the set of all σ such that

T∫

−T

|L(σ + it)|2dt = O(T ) as T → ∞.

There are some other interesting observations as well.

2
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Short exponential sums and their applications
Zarullo Rakhmonov
Dushanbe University
zarullo-r@rambler.ru
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On Selberg’s mollification method in the theory of

L-functions.

I.S. Rezvyakova

Steklov Mathematical Institute

Moscow

It is well known that for a given L-function Selberg’s positive proportion theorem about non-

trivial zeros lying on the critical line follows from certain mean-value estimates of the product of

L-function and a so-called “mollifier” (which we can choose in different ways). We shall discuss a

special choice of the “mollifier” and a certain mean-value estimate associated with the product of

L-function and its “mollifier”, which imply Selberg’s positive proportion theorem together with

Selberg’s density theorem for L-function. Also some problems connected with the two mentioned

Selberg’s theorem will appear in our talk.
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Multiplicative subgroups and sum-products
Ilya D. Shkredov

Steklov Mathematical Institute, Russia
ilya.shkredov@gmail.com

We will give a survey on sumsets of multiplicative subgroups
and the connection of the circle of problems with the sum-products
phenomenon in finite fields.
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ON THE STRUCTURE OF ARTIN’S

L-FUNCTIONS

Sergey A. Stepanov

Russian Academy of Sciences
Institute for Information Transmission Problems

Let p be a prime number, r, ν positive integers, Fp a prime finite field with p
elements, Fq a finite extension of Fp of degree r, and Fqν a finite extension of
Fq of degree ν, so that

Fp ⊂ Fq ⊂ Fqν .

The Galois group Gν of Fqν over Fq is a cyclic group of order ν. If σν is the
generating element of Gν then its action on an element α ∈ Fqν is defined by
σν(α) = αq. The map trν : Fqν → Fq, given by

trν(α) = α+ σν(α) + · · ·+ σν−1
ν (α) = α+ αq + · · ·+ · · ·+ αqν−1

,

is called the relative trace of α ∈ Fqν , and if tr : Fq → Fp is the trace map from
Fq to Fp then the map tr(trν) : Fqν → Fp, given by

tr(trν(α)) = α+ αp + · · ·αprν−1

,

is called the absolute trace of the element x. Let now

ψ(a) = exp(2πi tr(ca)/p), c ∈ F ∗
q ,

be a nontrivial additive character of the field Fq. Then

ψν(α) = ψ(trν(α))

is a nontrivial character of the field Fqν which is called the additive character
induced by ψ.

For a polynomial f(x1, . . . , xn) ∈ Fq[x1, . . . , xn] of degree d ≥ 1 and a
nontrivial additive character ψν of the field Fqν define the character sum Tν =
Tν(f) by

Tν =
∑

x1,...,xn∈Fqν

ψν(f(x1, . . . , xn))

and consider the corresponding Artin L - function

L(z) = L(z, f) = exp

( ∞∑

ν=1

Tν
ν
zν

)
,

in the complex variable z. For n = 1 the classical result of A. Weil [5] says that
L(z) is a polynomial in C[z] of degree d− 1 with algebraic coefficients. A quite
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elementary proof of this result was given later by the author [4, Section 1.3].
For arbitrary n ≥ 1, A. Grothendieck [3] proved by very deep methods of l-adic
cohomology that L(z) is always a rational function. E. Bombieri [1] conjectured
that L(z) has the special form

L(z) = P (z)(−1)n−1

with a polynomial P (z), provided that f(x1, . . . , xn) satisfies some kind of non-
singularity conditions. In his famous paper on the Weil conjectures, P. Deligne
[2] among other results proved that Bombieri’s conjecture is true if d = deg(f)
is prime to the characteristic p of Fq and if the leading homogeneous part
fd(x1, . . . , xn) of f(x1, . . . , xn) defines, if n ≥ 2, a smooth hypersurface in the
projective space Pn−1.

In this presentation we consider the case of polynomials f(x1, x2) ∈ Fq[x1, x2]
in two variables x1, x2 and give an elementary proof of the Deligne result in the
most interesting case when characteristic p of the field Fq is large enough.

Theorem. Let Fq be a finite field of characteristic p and

f(x1, x2) =
∑

0≤d1+d2≤d

ad1,d2x
d1
1 x

d2
2 ∈ Fq[x1, x2]

a polynomial of degree d ≥ 2. If p > d and the leading homogeneous part

fd(x1, x2) =
∑

d1+d2=d

ad1,d2x
d1
1 x

d2
2

of the polynomial f(x1, x2) is nonsingular in the standard sense (i.e. there is
no point over Fq at which f , ∂f

∂x1
, ∂f

∂x2
vanish simultaneously) then the Artin

L-function L(z) is a rational function of the form

L(z) = P (z)−1 ,

where P (z) ∈ C[z] is a polynomial of degree (d− 1)2.
In conclusion one should be noted that the proof of the above theorem can

be extended to the case of polynomials f(x1, . . . , xn) in an arbitrary number
n ≥ 2 of variables x1, . . . , xn.
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Bourbaki 1964/65, Exp. 279, Benjamin, New York, 1966.

4. Stepanov S.A., Arithmetic of Algebraic Curves, Plenum Publ. Corp., New York,
1994.

5. Weyl H., The Classical Groups, their Invariants and Representations, Inst. Adv.
Study, Princeton, 1946.

2

30
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There exist two geometric interpretations of classical contin-
ued fractions admitting a natural generalization to the multidimen-
sional case. In one of these interpretations, which is due to Klein, a
continued fraction is identified with the convex hull (the Klein poly-
gon) of the set of integer lattice points belonging to two adjacent
angles (1895–1896). The second interpretation, which was inde-
pendently proposed by Voronoi and Minkowski, is based on local
minima of lattices, minimal systems, and extremal parallelepipeds
(1896). The vertices of Klein polygons in plane lattices can be iden-
tified with local minima; however, beginning with the dimension 3,
the Klein and VoronoiMinkowski geometric constructions become
different.

The constructions of Voronoi and Minkowski is simpler from
the computational point of view. In particular, they make it possi-
ble to design efficient algorithms for determining fundamental units
in cubic fields. In both Voronois and Minkowskis approaches, the
three-dimensional theory of continued fractions is based on inter-
esting theorems of the geometry of numbers.

Analytical approach based on the method of trigonometric sums
and estimates of Kloosterman sums allows to solve different prob-
lems concerned with classical continued fractions. The key idea is
a uniform distribution of points (x, y) s.t. xy + P ≡ 0 (mod a),
or det

(
a x
y ∗

)
= P . The talk will be devoted to analogous 3D tool.

It is also based on the estimates of Kloosterman sums and uses
Linnik-Skubenko ideas from their work “Asymptotic distribution
of integral matrices of third order” (1964). This tool, in particu-

1This work was partially supported by RFBR grant 14-01-90002 Bel a.
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lar, allows to study statistical properties of Minkovski-Voronoi 3D
continued fractions. The key idea here is a uniform distribution of
points (x1, x2, y1, y2) s.t.

det


 A

x1

x2

y1 y2 ∗


 = P,

where A is a fixed 2× 2 matrix with nonzero determinant.
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Linnik’s constant can be taken smaller than 5
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Induced bounded remainder sets 1
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The Rauzy induced two dimensional tilings [1] are generalized
on tilings of tori TD = RD/ZD in any dimension D. For this pur-

pose, the embedding method T
em→֒ TDof developments T ⊂ RD of

the torus TD
L = RD/L for some lattices L. A feature of the devel-

opments T is that for a fixed shift S : TD −→ TD its restriction
S|T on the subset T ⊂ TD, i.e. the first-return map or the Poincare
map, is equivalent to a rearrangement of subsets Tk generating some
development splitting

T = T0 ⊔ T1 ⊔ . . . ⊔ TD.

In the considered case the induced map S|T is again isomorphic to
a shift of the torus TD

L .
It is proved that all Tk are bounded remainder sets. By defini-

tion, it means the deviation δTk
(i, x0) in the following formula

rTk
(i, x0) = aTk

i+ δTk
(i, x0),

where x0 is arbitrary initial point on the torus TD, rTk
(i, x0) is equal

to the number of points S0(x0), S
1(x0), S

i−1(x0) from the S-orbit
of x0 hit the set Tk, and the coefficient aTk

is equal to the volume
vol(Tk) of the set Tk, are limited. For these deviations δTk

(i, x0)
explicit estimates are proved.

The relationship between the induced map S|T and bounded
remainder sets has been seen earlier in [2], [3].
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