ON THE NUMBER OF NON-HYPERBOLIC KNOTS

ANDREI MALYUTIN

Computations show that the overwhelming majority of the simplest prime knots are hyperbolic knots. The following table gives the number of hyperbolic, satellite, and torus prime knots of n crossing for n = 3, ..., 16 (see the sequences A002863, A052408, A051765, and A051764 in the Sloane encyclopedia of integer sequences).

type $\setminus n =$	3	4	5	6	7	8	9	10	11	12	13	14	15	16
all prime	1	1	2	3	7	21	49	165	552	2 1 7 6	9 9 8 8	46972	253293	1 388 705
hyperbolic	0	1	1	3	6	20	48	164	551	2 1 7 6	9 9 8 5	46969	253285	1 388 694
satellite	0	0	0	0	0	0	0	0	0	0	2	2	6	10
torus	1	0	1	0	1	1	1	1	1	0	1	1	2	1

TABLE 1. Number of knots

This gives rise to the following conjecture (see, e.g., [1, p. 119]).

Conjecture A. The percentage of hyperbolic knots amongst all of the prime knots of n or fewer crossings approaches 100 as n approaches infinity.

It turns out that Conjecture A contradicts the (120-year-old) conjecture on the additivity of the crossing number (see, e. g., [1, p. 69]).

Conjecture B. The crossing number of knots is additive under connected sum.

Moreover, it can be shown that Conjecture A contradicts the following (much weaker than Conjecture B but still open)

Conjecture B'. The crossing number of a composite knot is not less than the crossing numbers of its summands.

Furthermore, we show that Conjecture A contradicts the following (weaker than Conjecture B')

Conjecture B". The crossing number of a composite knot is not less than $\frac{2}{3}$ of (the maximum of) the crossing numbers of its summands.

Theorem. At least one of Conjectures A and B'' is false.

The proof of this theorem uses results of W. B. R. Lickorish [2] on prime tangles.

There are additional arguments showing that the following conjecture is plausible.

Conjecture C. The percentage of satellite knots amongst all of the prime knots of n or fewer crossings approaches 100 as n approaches infinity.

References

- C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, New York: W. H. Freeman, (1994).
- [2] W. B. R. Lickorish, "Prime knots and tangles", Trans. Amer. Math. Soc., Vol. 267, No. 1, 321-332 (1981).

St. Petersburg Department of V.A. Steklov Institute of Mathematics, Fontanka, 27, St. Petersburg, 191023, Russia

E-mail address: malyutin@pdmi.ras.ru

Supported by the RNF grant 14-11-00581.