ON FUNDAMENTAL PROPERTIES OF SKEIN ALGEBRAS OF SURFACES

ADAM SIKORA

For an oriented surface F, let $\mathcal{S}(F)$ be the Kauffman bracket skein algebra of F over a ring R with a distinguished invertible element A, cf. eg. [1, 2]. That is $\mathcal{S}(F)$ is a quotient of the free R-module spanned by the set of isotopy classes of framed unoriented links in $F \times [0, 1]$, including \emptyset , modulo the Kauffman bracket skein relations:

The product of two links, $L_1 \cdot L_2$, given by a union of these two links when L_1 is positioned above L_2 .

In a continuation of our joint work with J.H. Przytycki, we are going to prove the following two fundamental properties of skein algebras, announced (without proof) in [2]:

Theorem 1. If R has no zero divisors then $\mathcal{S}(F)$ has no left nor right non-zero zero divisors.

Theorem 2. If $A^n - 1$ is not a zero divisor in R for any n > 0 then the center of S(F) is generated by knots parallel to components of ∂F .

We are going to see that our proofs of these results generalize to analogous statements for relative skein algebras built of framed tangles in $F \times [0, 1]$ with endpoints on $\partial F \times [0, 1]$.

The proofs relay on pants decompositions of surfaces and the associated Dehn-Thurston classification of multi-curves in surfaces. We will see that any pants decomposition induces a filtration on $\mathcal{S}(F)$. And although an explicit algebraic description of the multiplication in $\mathcal{S}(F)$ appears very difficult, it is possible to describe the multiplication explicitly in the graded algebra $\mathcal{GS}(F)$ associated with the above filtered one. We are going to see that these graded algebras have very similar properties to skein algebras.

References

- [1] J.H. Przytycki, Fundamentals of Kauffman bracket skein modules, arXiv:math/9809113
- J. H. Przytycki, A. S. Sikora, On Skein Algebras And Sl₂(C)-Character Varieties, Topology, Vol. 39, No. 1, 115–148, (2000), arXiv:q-alg/9705011

244 MATH BLDG, SUNY BUFFALO, BUFFALO, NY 14260, USA *E-mail address:* asikora@buffalo.edu