KAM for PDEs

Massimiliano Berti

St. Petersburg, 3 June 2015, Joint work with Riccardo Montalto, University Zurich

1-d space-periodic Water Waves

Euler equations for an irrotational, incompressible fluid

$$\begin{cases} \partial_t \Phi + \frac{1}{2} |\nabla \Phi|^2 + g \eta = \kappa \partial_x \left(\frac{\eta_x}{\sqrt{1 + \eta_x^2}} \right) & \text{at } y = \eta(x), \ x \in \mathbb{T} \\ \Delta \Phi = 0 & \text{in } y < \eta(x) \\ \nabla \Phi \to 0 & \text{as } y \to -\infty \\ \partial_t \eta = \partial_y \Phi - \partial_x \eta \cdot \partial_x \Phi & \text{at } y = \eta(x) \end{cases}$$

$$u = \nabla \Phi = \text{velocity field}, \quad \text{rot} u = 0 \text{ (irrotational)},$$

 $\text{div} u = \Delta \Phi = 0 \text{ (uncompressible)}$
 $g = \text{gravity}, \quad \kappa = \text{surface tension coefficient}$

Unknowns:

free surface $y = \eta(x)$ and the velocity potential $\Phi(x, y)$

Zakharov formulation

Infinite dimensional Hamiltonian system:

$$\partial_t u = J \nabla_u H(u) \,, \quad u := \begin{pmatrix} \eta \\ \psi \end{pmatrix} \,, \quad J := \begin{pmatrix} 0 & Id \\ -Id & 0 \end{pmatrix} \,,$$

canonical Darboux coordinates:

$$\eta(x)$$
 and $\psi(x) = \Phi(x, \eta(x))$ trace of velocity potential at $y = \eta(x)$

 (η, ψ) uniquely determine Φ in the whole $\{y < \eta(x)\}$ solving the elliptic problem:

$$\Delta \Phi = 0$$
 in $\{y < \eta(x)\}, \quad \Phi|_{y=n} = \psi, \quad \nabla \Phi \to 0 \text{ as } y \to -\infty$

Zakharov-Craig-Sulem formulation

$$\begin{cases} \partial_t \eta = G(\eta)\psi = \nabla_{\psi}H(\eta,\psi) \\ \partial_t \psi = -g\eta - \frac{\psi_x^2}{2} + \frac{(G(\eta)\psi + \eta_x\psi_x)^2}{2(1+\eta_x^2)} + \frac{\kappa\eta_{xx}}{(1+\eta_x^2)^{3/2}} = -\nabla_{\eta}H(\eta,\psi) \end{cases}$$

Dirichlet-Neumann operator

$$G(\eta)\psi(x) := \sqrt{1 + \eta_x^2} \,\partial_n \Phi|_{y=\eta(x)}$$

 $G(\eta)$ is linear in ψ , self-adjoint and $G(\eta) \geq 0$, $\eta \mapsto G(\eta)$ nonlinear

Hamiltonian:

$$H(\eta,\psi):=rac{1}{2}(\psi,G(\eta)\psi)_{L^2(\mathbb{T}_x)}+\int_{\mathbb{T}}grac{\eta^2}{2}\,dx+\kappa\sqrt{1+\eta_x^2}\,dx$$

kinetic energy + potential energy + area surface integral

Reversibility

$$H(\eta, -\psi) = H(\eta, \psi)$$

Involution

$$H \circ S = H$$
, $S: (\eta, \psi) \rightarrow (\eta, -\psi)$, $S^2 = \mathrm{Id}$

$$\implies \eta(-t,x) = \eta(t,x), \ \psi(-t,x) = -\psi(t,x)$$

Invariant subspace: "Standing Waves"

$$\eta(-x) = \eta(x), \quad \psi(-x) = \psi(x)$$

Prime integral $\int_{\mathbb{T}} \eta(x) dx$ (Mass), $\partial_t \int_{\mathbb{T}} \psi(x) dx = - \int_{\mathbb{T}} \eta(x) dx$

$$\int_{\mathbb{T}} \eta(x) dx = 0 = \int_{\mathbb{T}} \psi(x) dx$$

Quasi-periodic solution with *n* frequencies of $u_t = J\nabla H(u)$

Definition

$$u(t,x) = U(\omega t,x)$$
 where $U(\varphi,x): \mathbb{T}^n \times \mathbb{T} \to \mathbb{R}$, $\omega \in \mathbb{R}^n (= \text{frequency vector})$ is irrational $\omega \cdot k \neq 0$, $\forall k \in \mathbb{Z}^n \setminus \{0\}$ \Longrightarrow the linear flow $\{\omega t\}_{t \in \mathbb{R}}$ is DENSE on \mathbb{T}^n

The torus-manifold

$$\mathbb{T}^n \ni \varphi \mapsto U(\varphi, x) \in \text{phase space}$$

is invariant under the flow Φ_H^t of the PDE

$$\Phi_H^t \circ U = U \circ \Psi_\omega^t$$

$$\Psi_\omega^t : \mathbb{T}^n \ni \varphi \to \varphi + \omega t \in \mathbb{T}^n$$

Small amplitude solutions

Linearized system at $(\eta, \psi) = (0, 0)$

$$\left\{egin{aligned} \partial_t \eta = |D_{\mathsf{x}}| \psi, \ \partial_t \psi + \eta = \kappa \eta_{\mathsf{x}\mathsf{x}} \end{aligned}
ight. \quad \mathcal{G}(\mathsf{0}) = |D_{\mathsf{x}}|
ight.$$

Solutions: linear standing waves

$$\eta(t,x) = \sum_{j\geq 1} \sqrt{\xi_j} \cos(\omega_j t) \cos(jx)$$
$$\psi(t,x) = -\sum_{j\geq 1} \sqrt{\xi_j} j^{-1} \omega_j \sin(\omega_j t) \cos(jx)$$

Linear frequencies of oscillations

$$\omega_j := \omega_j(\kappa) := \sqrt{j(1+\kappa j^2)}, \ j \ge 1$$

Can be continued to solutions of the nonlinear Water Waves?

Fix finitely many indices $\mathbb{S} = \{\bar{\jmath}_1, \dots, \bar{\jmath}_n\}$ (tangential sites)

Finite dimensional invariant tori for the linearized water-waves eq.

$$\eta(\varphi, x) = \sum_{j \in \mathbb{S}} \sqrt{\xi_j} \cos(\varphi_j) \cos(jx) , \quad \xi_j > 0 ,$$

$$\psi(\varphi, x) = -\sum_{j \in \mathbb{S}} \sqrt{\xi_j} j^{-1} \omega_j(\kappa) \sin(\varphi_j) \cos(jx)$$

- ANGLES: $\varphi = (\varphi_1, \dots, \varphi_n) \in \mathbb{T}^n$
- FREQUENCIES: $\omega(\kappa) = (\omega_j(\kappa))_{j \in \mathbb{S}}$
- For all $\kappa \in [\kappa_1, \kappa_2]$ except a set of small measure $O(\gamma^a)$, a > 0, the vector $\omega(\kappa)$ is diophantine: $|\omega(\kappa) \cdot \ell| > \gamma(\ell)^{-\tau}$, $\forall \ell \in \mathbb{Z}^n \setminus \{0\}$
- Do they persist in the nonlinear Water Waves?
- Linear system=integrable system, nonlinearity=perturbation

KAM theory is well established for 1-d semi-linear PDEs

$$u_t = L(u) + N(u)$$

- $L = \text{linear differential operator (ex. } \partial_{xxx}, i\Delta, ...)$
- N = nonlinearity which depends on $u, u_x, \dots, \partial_x^m u$
- **1** Semilinear PDE: order of L >order of N = m
- **2** Fully-linear PDE: order of L =order of N
- **3** Quasi-linear PDE: Fully-nonlinear and N linear in $\partial_x^m u$

Kuksin, Wayne, Craig, Poeschel, Bourgain, Eliasson, Chierchia, You, Kappeler, Grebert, Geng, Yuan, Biasco, Bolle, Procesi... also in $d \geq 2$

For quasi-linear or fully non-linear PDEs as Water-Waves eq?

- First KAM results:
 - quasi-linear/fully nonlinear perturbations of KdV
 - Water Waves
- General strategy to develop KAM theory for 1-d quasi-linear/fully nonlinear PDEs

developed with Pietro Baldi, Riccardo Montalto

Quasi-linear perturbations of NLS, Feola-Procesi

Water Waves: small amplitude periodic solutions

- Plotnikov-Toland: '01 Gravity Water Waves with Finite depth Standing waves, Lyapunov-Schmidt + Nash-Moser
- Iooss-Plotnikov-Toland '04, Iooss-Plotnikov '05
 Gravity Water Waves with Infinite depth
 Completely resonant, infinite dimensional bifurcation equation
- 3 D-Travelling waves
 Craig-Nicholls 2000: with surface tension (no small divisors),
 looss-Plotnikov '09, '11: no surface tension (small divisors),
- Alazard-Baldi '14, Capillary-gravity water waves with infinite depth Standing waves

No information about their linear stability

• QUESTION: WHAT ABOUT QUASI-PERIODIC SOLUTIONS?

KAM theory for unbounded perturbations: literature

Kuksin '98, Kappeler-Pöschel '03

$$u_t + u_{xxx} + uu_x + \varepsilon \partial_x f(x, u) = 0, x \in \mathbb{T}$$

Liu-Yuan '10 for Hamiltonian DNLS (and Benjamin-Ono)

$$\mathrm{i}u_t - u_{xx} + M_\sigma u + \mathrm{i}\varepsilon f(u, \bar{u})u_x = 0$$

Zhang-Gao-Yuan '11 Reversible DNLS

$$\mathrm{i}u_t + u_{xx} = |u_x|^2 u$$

Bourgain '96, Derivative NLW, periodic solutions

$$y_{tt} - y_{xx} + my + y_t^2 = 0$$
, $m \neq 0$

Berti-Biasco-Procesi '12, '13, KAM, reversible DNLW

$$y_{tt} - y_{xx} + my = g(x, y, y_x, y_t), \quad x \in \mathbb{T}$$

KAM for quasi-linear KdV, Baldi-Berti-Montalto '13-'14

$$\partial_t u + u_{xxx} - 3\partial_x u^2 + \partial_x \nabla_{L^2} P = 0, \quad x \in \mathbb{T}$$

$$u_t = \partial_x \nabla_{L^2} H(u), \quad H = \int_{\mathbb{T}} \frac{u_x^2}{2} + u^3 + f(x, u, u_x) dx$$

Quasi-linear Hamiltonian perturbation

$$P(u) = \int_{\mathbb{T}} f(x, u, u_x) dx$$
, $f(x, u, u_x) = O(|u|^5 + |u_x|^5)$

$$\partial_{x}\nabla_{L^{2}}P := -\partial_{x}\{(\partial_{u}f)(x, u, u_{x})\} + \partial_{xx}\{(\partial_{u_{x}}f)(x, u, u_{x})\}$$
$$= a_{0}(x, u, u_{x}, u_{xx}) + a_{1}(x, u, u_{x}, u_{xx})u_{xxx}$$

There exist small amplitude quasi-periodic solutions:

$$u = \sum_{j \in \mathbb{S}} \sqrt{\xi_j} 2\cos(\omega_j^{\infty}(\xi) t + jx) + o(\sqrt{\xi}), \omega_j^{\infty}(\xi) = j^3 + O(|\xi|)$$

for a Cantor set of $\xi \in \mathbb{R}^n$ with density 1 at $\xi = 0$

KAM for Water Waves

Look for small amplitude quasi-periodic solutions $(\eta(t,x),\psi(t,x)=(\eta(\tilde{\omega}t,x),\psi(\tilde{\omega}t,x))$ of

Water Waves equations

$$\begin{cases} \partial_t \eta = G(\eta)\psi \\ \partial_t \psi = -\eta - \frac{\psi_x^2}{2} + \frac{\left(G(\eta)\psi + \eta_x \psi_x\right)^2}{2(1 + \eta_x^2)} + \frac{\kappa \eta_{xx}}{(1 + \eta_x^2)^{3/2}} \end{cases}$$

with frequencies $\tilde{\omega}_i$ (to be found) close to

Linear frequencies

$$\omega_j(\kappa) = \sqrt{j(1+\kappa j^2)}$$

Surface tension

$$\kappa \in [\kappa_1, \kappa_2], \quad \kappa_1 > 0$$

Theorem (KAM for capillary-gravity water waves, B.-Montalto '15)

For every choice of the tangential sites $\mathbb{S} \subset \mathbb{N} \setminus \{0\}$, there exists $\bar{s} > \frac{|\mathbb{S}|+1}{2}$, $\varepsilon_0 \in (0,1)$ such that: for all $\xi_j \in (0,\varepsilon_0)$, $j \in \mathbb{S}$, \exists a Cantor like set $\mathcal{G} := \mathcal{G}_{\xi} \subset [\kappa_1,\kappa_2]$ with asymptotically full measure as $\xi \to 0$, i.e. $\lim_{\xi \to 0} |\mathcal{G}_{\xi}| = (\kappa_2 - \kappa_1)$, such that, for any surface tension coefficient $\kappa \in \mathcal{G}_{\xi}$, the CAPILLARY-GRAVITY WATER WAVES EQUATION has a quasi-periodic standing wave solution $(\eta,\psi) \in H^{\bar{s}}$, even in x, of the form

$$\eta(t,x) = \sum_{j \in \mathbb{S}} \sqrt{\xi_j} \cos(\tilde{\omega}_j t) \cos(jx) + o(\sqrt{\xi})$$
$$\psi(t,x) = -\sum_{j \in \mathbb{S}} \sqrt{\xi_j} j^{-1} \tilde{\omega}_j \sin(\tilde{\omega}_j t) \cos(jx) + o(\sqrt{\xi})$$

with frequency vector $\tilde{\omega} \in \mathbb{R}^{\mathbb{S}}$ satisfying $\tilde{\omega} - \omega(\kappa) \to 0$ as $\xi \to 0$. The solutions are linearly **stable**.

Remarks

- The restriction of C_{ε} is not technical! Outside could be: "Chaos", "homoclinic/heteroclinic solutions", "Arnold Diffusion",

 Craig-Workfolk '94, Zakharov '95: the 5 th order (formal)
 - Birkhoff normal form system is not integrable (with no surface tension)
- There are no results about global in time existence of the water waves equations with periodic boundary conditions: the previous theorem selects initial conditions which give rise to smooth solutions defined for all times

Linear stability -reducibility

(L): linearized equation $\partial_t h = J \partial_u \nabla H(u(\omega t, x)) h$

$$\mathcal{L} = \partial_t + \begin{pmatrix} \partial_x V + G(\eta)B & -G(\eta) \\ (1 + BV_x) + BG(\eta)B - \kappa \partial_x c \partial_x & V \partial_x - BG(\eta) \end{pmatrix}$$

$$u(\omega t, x) = (\eta, \psi)(\omega t, x), \quad (V, B) = \nabla_{x,y}\Phi, \quad c := (1 + \eta_x^2)^{-3/2}$$

There exists a quasi-periodic (Floquet) change of variable

$$H_x^s \ni h = \Phi(\omega t)(\psi, \eta, v), \quad \psi \in \mathbb{T}^v, \eta \in \mathbb{R}^v, v \in H_x^s \cap L_{S^{\perp}}^2$$

which transforms (L) into the constant coefficients system

$$\begin{cases} \dot{\psi} = b\eta \\ \dot{\eta} = 0 \\ v_t = D_{\infty}v \,, \quad v = \sum_{j \notin \mathbb{S}} v_j e^{ijx} \,, \ D_{\infty} := \operatorname{Op}(i\mu_j) \,, \ \mu_j \in \mathbb{R} \end{cases}$$

$$\eta(t)=\eta_0, v_j(t)=v_j(0)e^{\mathrm{i}\mu_j t}\Longrightarrow \|v(t)\|_{H^s_X}=\|v(0)\|_{H^s_X}$$
 : stability

Sharp asymptotic expansion of the eigenvalues

$$\mu_j = \lambda_3 j^{\frac{1}{2}} (1 + \kappa j^2)^{\frac{1}{2}} + \lambda_1 j^{\frac{1}{2}} + r_j(\omega)$$

where $\lambda_3:=\lambda_3(\omega),\ \lambda_1:=\lambda_1(\omega)$ are constants (depending on $u(\omega t,x)$) satisfying

$$|\lambda_3 - 1| + |\lambda_1| + \sup_{j \in \mathbb{S}^c} |r_j| \le C\varepsilon$$
,

2 The map $\Phi(\varphi)$ satisfies *tame estimates* in Sobolev spaces:

$$\|\Phi h\|_{s}, \|\Phi^{-1}h\|_{s} \leq \|h\|_{s} + \|u\|_{s+\sigma} \|h\|_{s_{0}}, \ \forall s \geq s_{0}.$$

Small-divisors problem. Look for $u(\varphi, x) := (\eta(\varphi, x), \psi(\varphi, x))$ zero of

$$\mathcal{F}(\omega, u) := \mathcal{F}(\omega, \eta, \psi) := \begin{pmatrix} \omega \cdot \partial_{\varphi} \eta - G(\eta) \psi \\ \omega \cdot \partial_{\varphi} \psi + \eta - \frac{\psi_{x}^{2}}{2} - \frac{(G(\eta)\psi + \eta_{x}\psi_{x})^{2}}{2(1 + \eta_{x}^{2})} - \frac{\kappa \eta_{xx}}{(1 + \eta_{x}^{2})^{3/2}} \end{pmatrix}$$

Small amplitude solutions:

$$\mathcal{F}(\omega,0) = 0 \quad D_{\eta,\psi} \mathcal{F}(\omega,0) = \left(egin{array}{ccc} \omega \cdot \partial_{arphi} & -|D_{\scriptscriptstyle X}| \ 1 - \kappa \partial_{\scriptscriptstyle {
m XX}} & \omega \cdot \partial_{arphi} \end{array}
ight)$$

In Fourier basis

$$D_{\eta,\psi}\mathcal{F}(\omega,0) = \mathrm{diag}_{\ell \in \mathbb{Z}^{
u}, j \in \mathbb{Z}} \left(egin{array}{cc} \mathrm{i}\omega \cdot \ell & -|j| \ 1 + \kappa j^2 & \mathrm{i}\omega \cdot \ell \end{array}
ight)$$

• QUESTION: is $D_u \mathcal{F}(\omega, 0)$ invertible?

$$\det\left(\begin{array}{cc}\mathrm{i}\omega\cdot\ell & -|j|\\1+\kappa j^2 & \mathrm{i}\omega\cdot\ell\end{array}\right) = -(\omega\cdot\ell)^2 + (1+\kappa j^2)|j| = -(\omega\cdot\ell)^2 + \omega_j^2(\kappa)$$

Non-resonance condition:

$$\left|-(\omega\cdot\ell)^2+(1+\kappa j^2)|j|\right|\geq rac{\gamma}{\langle\ell
angle^{ au}}, orall (\ell,j)\in\mathbb{Z}^n imes\mathbb{Z}, (\ell,j)
eq 0, \ au>0$$

 $\Longrightarrow D_u \mathcal{F}(\omega,0)$ is invertible, but the inverse is **unbounded**:

$$D_u \mathcal{F}(\omega,0)^{-1}: H^s \to H^{s-\tau}, \ \tau := "LOSS \ OF \ DERIVATIVES"$$

Nash-Moser Implicit Function Theorem

Newton tangent method for zeros of $\mathcal{F}(u) = 0 +$ "smoothing":

$$u_{n+1} := u_n - S_n(D_u \mathcal{F})^{-1}(u_n) \mathcal{F}(u_n)$$

where S_n are regularizing operators (= "mollifiers")

Advantage: QUADRATIC scheme

$$||u_{n+1} - u_n||_s \le C(n)||u_n - u_{n-1}||_s^2$$

- \implies convergent also if $C(n) \rightarrow +\infty$
- Difficulty: invert $\mathcal{L}(u) := (D_u \mathcal{F})(u)$ in a whole neighborhood of the expected solution with *tame* estimates of the inverse

$$\|\mathcal{L}(u)^{-1}h\|_{s} \leq \|h\|_{s+\sigma} + \|u\|_{s+\sigma_1} \|h\|_{s_0}, \quad \forall s \geq s_0$$

Difficulty: prove invertibility and tame estimates for the inverse of

Linearized operator at $u(\varphi, x) = (\eta, \psi)(\varphi, x)$

$$(D_{u}\mathcal{F})(u) = \omega \cdot \partial_{\varphi} + \begin{pmatrix} \partial_{x}V + G(\eta)B & -G(\eta) \\ (1 + BV_{x}) + BG(\eta)B - \kappa \partial_{x}c\partial_{x} & V\partial_{x} - BG(\eta) \end{pmatrix}$$

$$(V,B) = \nabla_{x,y}\Phi, \quad c := (1+\eta_x^2)^{-3/2}$$

are smooth functions

$$G(\eta) = |D_{\mathsf{x}}| \eta + R_{\infty}(\eta), \quad R_{\infty} \in OPS^{-\infty}$$

is Dirichlet-Neumann operator

Ideas of Proof:

- ① Nash-Moser implicit function theorem for a torus embedding $\varphi\mapsto i(\varphi)$ formulated like a "Théorème de conjugaison hypothétique" à la Herman
- ② Degenerate KAM theory: measure estimates
- Analysis of linearized PDE on approximate solutions
 - Symplectic reduction of linearized operator to "normal" directions developed with P. Bolle for NLW on T^d:
 "Existence of invariant torus ← Normal form near the torus" (Action-angle variables, more refined than Lyapunov-Schmidt)
 - Reduction of linearized PDE in normal directions:
 - Step 1. Pseudo-differential theory in original physical coordinates (not in Fourier space).
 Advantage: pseudo-differential structure is more evident
 First steps similar to Alazard-Baldi + Egorov type analysis + more steps of decoupling
 - Step 2. KAM reducibility scheme. Imply stability

A "Théorème de conjugaison hypothétique" and Degenerate KAM theory

- A big issue in KAM theory: fullfill non-resonance conditions
- Choose parameters
- Non-degeneracy conditions:
 - Molmogorov
 - Arnold-Piartly
 - **3** . .
 - Rüssmann (Herman-Fejoz for Celestial Mechanics)

weakean as much as possible the non-degeneracy conditions

Use κ (= surface tension) as a parameter

Small amplitude solutions: rescale $u \mapsto \varepsilon u$

$$\partial_t u = J\Omega u + \varepsilon J \nabla P_{\varepsilon}(u) \,, \quad \Omega := \Omega(\kappa) := egin{pmatrix} 1 - \kappa \partial_{\mathsf{XX}} & 0 \ 0 & G(0) \end{pmatrix}$$

Tangential and normal dynamics

Decompose the phase space u(x) = v(x) + z(x) as

$$H = H_{\mathbb{S}} \oplus H_{\mathbb{S}}^{\perp}, \quad H_{\mathbb{S}} := \left\{ v := \sum_{j \in \mathbb{S}} \begin{pmatrix} \eta_j \\ \psi_j \end{pmatrix} \cos(jx) \right\}$$

Symmetrization + action-angle variables (θ, y) on tangential sites:

$$\begin{split} \eta_j := \Lambda_j^{1/2} \sqrt{y_j} \, \cos(\theta_j), \quad \psi_j := \Lambda_j^{-1/2} \sqrt{y_j} \, \sin(\theta_j) \,, \ j \in \mathbb{S} \,, \\ \Lambda_j := \sqrt{(1 + \kappa j^2) j^{-1}} \,, \ j \in \mathbb{S} \,, \end{split}$$

Linear problem: $\varepsilon = 0$

$$\dot{\theta} = \omega(\kappa), \ \dot{y} = 0, \quad z_t = J\Omega z$$

Family of invariant tori filled by quasi-periodic solutions

$$\mathbb{T}^{
u} imes\mathbb{R}^{
u} imes\{0\}, \quad heta=\omega(\kappa)t\,, \ I(t)=\xi\in\mathbb{R}^{
u}\,, z(t)=0$$

For $\varepsilon \neq 0$?

The frequency of the expected quasi-periodic solution $\tilde{\omega} = \omega(\kappa) + O(\varepsilon)$ changes with $\varepsilon, \xi \Longrightarrow$ consider the family of Hamiltonians

$$H_{\alpha} = \alpha \cdot I + \frac{1}{2}(\Omega z, z)_{L^{2}} + \varepsilon P_{\varepsilon}(\theta, I, z), \quad \alpha \in \mathbb{R}^{\nu},$$

where $\alpha \in \mathbb{R}^{\nu}$ is an unknown

Look for quasi-periodic solutions of $X_{H_{\alpha}}$ with Diophantine frequencies $\omega \in \mathbb{R}^{\nu}$

Embedded torus equation:

$$\partial_{\omega}i(\varphi)-X_{H_{\alpha}}(i(\varphi))=0$$

$$H_{\alpha} = \alpha \cdot I + \frac{1}{2} (\Omega z, z)_{L^{2}} + \varepsilon P_{\varepsilon} (\theta, I, z), \quad \alpha \in \mathbb{R}^{\nu},$$

Functional setting

$$\mathcal{F}(\varepsilon, X) := \begin{pmatrix} \partial_{\omega}\theta(\varphi) - \alpha - \varepsilon \partial_{I}P_{\varepsilon}(i(\varphi)) \\ \partial_{\omega}I(\varphi) + \varepsilon \partial_{\theta}P_{\varepsilon}(i(\varphi)) \\ \partial_{\omega}z(\varphi) - J\Omega z - \varepsilon J\nabla_{z}P_{\varepsilon}(i(\varphi)) \end{pmatrix} = 0$$

unknowns: $X := (i, \alpha), \quad i(\varphi) := (\theta(\varphi), I(\varphi), z(\varphi))$

Theorem (Nash-Moser-Théorèm de conjugation hypothetique)

Let $\varepsilon \in (0, \varepsilon_0)$ small. Then there exists a smooth function

$$\alpha_{\varepsilon}: \mathbb{R}^{\nu} \mapsto \mathbb{R}^{\nu}, \quad \alpha_{\varepsilon}(\omega) = \omega + r_{\varepsilon}(\omega), \quad \text{with} \quad r_{\varepsilon} = O(\varepsilon \gamma^{-1}),$$

and torus embedding $\varphi\mapsto i_\infty(\varphi)$ defined for all $\omega\in\mathbb{R}^\nu$, satisfying $\|i_\infty(\varphi)-(\varphi,0,0)\|_{s_0}=O(\varepsilon)$, and a Cantor like set \mathcal{C}_∞ such that, for all $\omega\in\mathcal{C}_\infty$, the embedded torus $\varphi\mapsto i_\infty(\varphi)$ solves

$$\omega \cdot \partial_{\varphi} i(\varphi) = X_{H_{\alpha_{\varepsilon}}}(i(\varphi))$$

i.e. it is invariant for the Hamiltonian system $H_{\alpha_{\varepsilon}(\omega)}$ and it is filled by quasi-periodic solutions with frequency ω

 $\implies \text{for } \beta \in \alpha_{\varepsilon}(\mathcal{C}_{\infty}) \text{ the Hamiltonian system}$ $H_{\beta} = \beta \cdot I + \frac{1}{2}(\Omega z, z)_{L2} + \varepsilon P(\theta, I, z)$

has a quasi-periodic solution with frequency $\omega=\alpha_{\varepsilon}^{-1}(\beta)$. Picture

The Cantor set \mathcal{C}_{∞} expressed in terms of "final torus"

 \exists smooth functions $\mu_j^\infty:\mathbb{R}^
u\to\mathbb{R}$,

$$\mu_j^{\infty}(\omega) = \lambda_3^{\infty}(\omega)j^{\frac{1}{2}}(1+\kappa j^2)^{\frac{1}{2}} + \lambda_1^{\infty}(\omega)j^{\frac{1}{2}} + r_j^{\infty}(\omega), \ j \notin \mathbb{S}^c,$$

satisfying $|\lambda_3^\infty-1|$, $|\lambda_1^\infty|$, $\sup_{j\in\mathbb{S}^c}|r_i^\infty|\leq C\varepsilon$ such that

$$\mathcal{C}_{\infty}:=\left\{\omega\in\mathbb{R}^{
u}:\ extit{diophantine and}
ight.$$

$$|\omega \cdot \ell + \mu_j^{\infty}(\omega)| \ge \gamma j^{\frac{3}{2}} \langle \ell \rangle^{-\tau}, \ \forall \ell \in \mathbb{Z}^{\nu}, j \in S^c$$

$$|\omega \cdot \ell + \mu_j^{\infty}(\omega) \pm \mu_{j'}^{\infty}(\omega)| \ge \gamma |j^{\frac{3}{2}} \pm j'^{\frac{3}{2}}| \langle \ell \rangle^{-\tau}, \ \forall \ell \in \mathbb{Z}^{\nu}, \ j, j' \in S^c \Big\}$$

Goal

Prove that for 'most" $\kappa \in [\kappa_1, \kappa_2]$ the vector of unperturbed linear frequencies $\omega(\kappa) := j^{1/2} (1 + \kappa j^2)^{1/2} \in \alpha_{\varepsilon}(\mathcal{C}_{\infty})$

Use κ (= surface tension) as a parameter

Degenerate KAM theory for PDEs, Bambusi-Berti-Magistrelli

- Analyticity $\kappa \mapsto \omega(\kappa) := (\omega_j(\kappa)) \in \mathbb{R}^{\mathbb{S}}, \ \omega_j(\kappa) := \sqrt{j(1+\kappa j^2)}$
- **2** Non-degeneracy: $\kappa \mapsto \omega(\kappa) \in \mathbb{R}^{\mathbb{S}}$ is **not** contained in any hyperplane (**torsion**); also $(\omega(\kappa), \omega_j(\kappa)), (\omega(\kappa), \omega_j(\kappa), \omega_{j'}(\kappa))$
- **3** Asymptotic: $\omega_j(\kappa) := \sqrt{\kappa} j^{3/2} + \dots$
- \implies There exist $k_0 \in \mathbb{N}$, $\rho > 0$ such that: $\forall \ell, j, \kappa \in [\kappa_1, \kappa_2]$,

 - $\rho =$ amount of non-degeneracy, $k_0 =$ index of non-degeneracy

By perturbation the same bounds are true for

$$\omega_{\varepsilon}(\kappa) := \alpha_{\varepsilon}^{-1}(\omega(\kappa)) = \omega(\kappa) + O(\varepsilon)$$

 \Longrightarrow Using Russmann's lemma

Lemma: measure estimates

For au large, the Melnikov non-resonance conditions

- $|\omega_{\varepsilon}(\kappa) \cdot \ell + (\omega_{\varepsilon})_{j}(\kappa)| \geq \gamma \langle \ell \rangle^{-\tau}, \ \forall \ell \in \mathbb{Z}^{\mathbb{S}}, \ j \notin \mathbb{S}$
- $|\omega_{\varepsilon}(\kappa) \cdot \ell + (\omega_{j})_{\varepsilon}(\kappa) \pm (\omega_{\varepsilon})_{j'}(\kappa)| \ge \gamma |j^{3/2} \pm (j')^{3/2}| \langle \ell \rangle^{-\tau},$ $\forall (\ell, j, j') \in \mathbb{Z}^{\mathbb{S}} \times \mathbb{S}^{c} \times \mathbb{S}^{c},$

hold for all $\kappa \in [\kappa_1, \kappa_2]$ except a set of small measure $O(\gamma^{1/k_0})$

Proof of non-degeneracy

Geometric Lemma:

 $\forall N$, $\forall j_1, \dots, j_N$, the curve

$$[\kappa_1, \kappa_2] \ni \kappa \mapsto \left(\omega_{j_1}(\kappa), \dots, \omega_{j_N}(\kappa)\right) \in \mathbb{R}^N$$

is not contained in any hyperplane of \mathbb{R}^N

Computation: the vectors

$$\begin{pmatrix} \omega_{j_1}(\kappa) \\ \partial_{\kappa}\omega_{j_1}(\kappa) \\ \vdots \\ \partial_{\kappa}^{N-1}\omega_{j_1}(\kappa) \end{pmatrix}, \dots, \begin{pmatrix} \omega_{j_N}(\kappa) \\ \partial_{\kappa}\omega_{j_N}(\kappa) \\ \vdots \\ \partial_{\kappa}^{N-1}\omega_{j_N}(\kappa) \end{pmatrix},$$

are linearly independent by analyticity it is sufficient to prove it only at one $\kappa \neq 0$

Ideas of Proof:

- ① Nash-Moser implicit function theorem for a torus embedding $\varphi \mapsto i(\varphi)$ formulated as a "Théorème de conjugaison hypothétique" à la Herman
- ② Degenerate KAM theory: measure estimates
- Analysis of linearized PDE on approximate solutions
 - Symplectic reduction of linearized operator to "normal" directions developed with P. Bolle for NLW on T^d:
 "Existence of invariant torus ← Normal form near the torus" (Action-angle variables, more refined than Lyapunov-Schmidt)
 - Reduction of linearized PDE in normal directions:
 - Step 1. Pseudo-differential theory in original physical coordinates (not in Fourier space). Advantage: pseudo-differential structure is more evident First steps similar to Alazard-Baldi + Egorov type analysis + more steps of decoupling
 - Step 2. KAM reducibility scheme. Imply stability

Reduction of linearized operator in normal directions

After approximate-inverse transformation we have to analyze

(L): linearized equation $\partial_t h = J \partial_u \nabla H(u(\omega t, x)) h$

$$\mathcal{L}_{\omega} = \\ \omega \cdot \partial_{\varphi} + \Pi_{S}^{\perp} \begin{pmatrix} \partial_{x} V + G(\eta) B & -G(\eta) \\ (1 + BV_{x}) + BG(\eta) B - \kappa \partial_{x} c \partial_{x} & V \partial_{x} - BG(\eta) \end{pmatrix} \Pi_{S}^{\perp}$$

GOAL:

Conjugate \mathcal{L}_{ω} to a diagonal operator (Fourier multiplier):

$$\Phi^{-1} \circ \mathcal{L}_{\omega} \circ \Phi = \operatorname{diag}\{\mathrm{i}\mu_{j}(\varepsilon)\}_{j \in S^{\perp} \subset \mathbb{Z}}$$

where

$$\mu_i(\varepsilon) = \lambda_3 j^{\frac{1}{2}} (1 + \kappa j^2)^{\frac{1}{2}} + \lambda_1 j^{\frac{1}{2}} + r_i(\omega), \quad \sup_i r_i = O(\varepsilon)$$

usual KAM scheme to diagonalize \mathcal{L}_{ω} is clearly unbounded

"REDUCTION IN DECREASING SYMBOLS"

$$\mathcal{L}_1 := \Phi^{-1} \mathcal{L}_{\omega} \Phi = \omega \cdot \partial_{\varphi} + \lambda_3 T(D) + \lambda_1 |D_x|^{1/2} + R_0$$

$$T(D) := \sqrt{|D|(1 + \kappa \partial_x^2)}$$

- $R_0(\varphi, x) \in OPS^0$ on diagonal (and OPS^{-M} off-diagonal)
- $\lambda_1, \lambda_3 \in \mathbb{R}$, constants

Use Egorov type theorem

2 "REDUCTION OF THE <u>SIZE</u> of R_0 "

$$\mathcal{L}_n := \Phi_n^{-1} \mathcal{L}_1 \Phi_n = \omega \cdot \partial_{\varphi} + \lambda_3 T(D) + \lambda_1 |D_{\mathsf{x}}|^{1/2} + r^{(n)} + \mathcal{R}_n$$

• KAM quadratic scheme: $\mathcal{R}_n = O(\varepsilon^{2^n})$, $r^{(n)} = \operatorname{diag}_{i \in \mathbb{Z}}(r_i^{(n)})$,

As Alazard-Baldi, after introducing a linearized good unknown of Alinhac and symmetrizing

Linearized system $h=\eta+\mathrm{i}\psi$, $\bar{h}=\eta-\mathrm{i}\psi$

$$\mathcal{L}(h,\bar{h}) = \omega \cdot \partial_{\varphi} h + \mathrm{i} a_0(\varphi,x) T(D) h + a_1(\varphi,x) \partial_x h + b_1(\varphi,x) \partial_x \bar{h} + \dots$$
 where $T(D) := \sqrt{|D|(1+\kappa\partial_x^2)}$

Eliminate the x, φ dependence at highest order

Under
$$x\mapsto x+\beta(\varphi,x)$$
 like Alazard-Baldi and $\varphi\mapsto \varphi+\alpha(\varphi)\omega$

$$\mathcal{L}_{1}(h,\bar{h}) = \omega \cdot \partial_{\varphi} h + i m_{3} T(D) h + a_{1}(\varphi,x) \partial_{x} h + b_{1}(\varphi,x) \partial_{x} \bar{h} + \dots$$

Block-diagonalize up to smoothing operators

$$\mathcal{L}_{2}(h,\bar{h}) = \omega \cdot \partial_{\varphi} h + i m_{3} T(D) h + a_{1}(\varphi,x) \partial_{x} h + \frac{O(\partial_{x}^{-M})\bar{h}}{h} + \dots$$

Egorov approach

Eliminate $a_1(\varphi, x)\partial_x$

Evolve with the flow Φ of $u_t = ia(x)|D|^{1/2}u$

$$\mathcal{L} = \omega \cdot \partial_{\varphi} \mathbb{I}_2 + P_0(\varphi, x, D)$$

where we denote the diagonal part

$$P_0(\varphi, x, D) := \mathrm{i}(\lambda_3 T(D) + a_{11}(\varphi, x)D)$$

where
$$T(D) = |D|^{1/2} (1 + \kappa D^2)^{1/2}$$

The flow $\Phi(\varphi,\tau): H^s \mapsto H^s$ of

$$\partial_t u = \mathrm{i} a(\varphi, x) |D|^{\frac{1}{2}} u$$

is well defined in Sobolev spaces and is tame

The conjugated operator $P(\varphi,\tau) := \Phi(\varphi,\tau)P_0\Phi(\varphi,\tau)^{-1}$ solves

Heisenberg equation

$$\begin{cases} \partial_{\tau} P(\varphi, \tau) = i[a(\varphi, x)|D|^{\frac{1}{2}}, P(\varphi, \tau)] \\ P(\varphi, 0) = p_0(\varphi, x, D) \end{cases}$$

We look for an approximate solution $Q(\varphi, \tau) := q(\tau, \varphi, x, D)$ with a symbol of the form (expanded in decreasing symbols)

$$q(\tau, \varphi, x, \xi) = q_0 + q_1 + \dots, \quad q_0 \in S^{\frac{3}{2}}, q_1 \in S^1 \dots$$

$$q_0=p_0$$
 then $\partial_{ au}Q_1=\mathrm{i}[a(arphi,x)|D|^{rac{1}{2}},q_0(D)]\in \mathit{OPS}^1,\,\ldots$

$$q_0 + q_1 + \ldots = i\lambda_3 T(\xi) + i(a_{11} - \frac{3}{4}\lambda_3 \sqrt{\kappa} a_x)\xi + \ldots$$

Choose $a(\varphi, x)$ such that $a_{11} - \frac{3}{4}\lambda_3\sqrt{\kappa} a_x = 0$. a_{11} is odd in x (reversibility) as in Alazard-Baldi

Conjugating $\omega \cdot \partial_{\varphi}$ gives

$$\Phi(\varphi,\tau)\circ\omega\cdot\partial_{\varphi}\circ\Phi(\varphi,\tau)^{-1}=\omega\cdot\partial_{\varphi}+\Phi(\varphi,\tau)\omega\cdot\partial_{\varphi}\{\Phi(\varphi,\tau)^{-1}\}$$

Analysis of $\Psi(\varphi, \tau) := \Phi(\varphi, \tau) \omega \cdot \partial_{\varphi} \{\Phi^{-1}(\varphi, \tau)\}$

It solves

$$\partial_{\tau}\Psi(\varphi,\tau) = -\mathrm{i}\Phi(\varphi,\tau) \Big(\omega \cdot \partial_{\varphi} a(\varphi) |D_{x}|^{1/2} \Big) \Phi^{-1}(\varphi,\tau)$$

Hence $S_{\omega}(\varphi,\tau) := \Phi(\varphi,\tau) \Big(\omega \cdot \partial_{\varphi} a(\varphi) |D_x|^{1/2}\Big) \Phi^{-1}(\varphi,\tau)$ solves the Heisenberg equation

$$\begin{cases} \partial_{\tau} S_{\omega}(\varphi, \tau) = \mathrm{i}[a(\varphi, x)|D|^{\frac{1}{2}}, S_{\omega}(\varphi, \tau))] \\ S_{\omega}(\varphi, 0) = \omega \cdot \partial_{\varphi} a(\varphi)|D_{x}|^{1/2} \end{cases}$$

⇒ analyze it as in the previous Egorov analysis

The evolution of the off-diagonal terms is completely different: they evolve according to

$$\begin{cases} \partial_{\tau} P = AP + PA, & A := ia(\varphi, x)|D|^{1/2} \\ P(0) = \operatorname{Op}(p_0(D)). \end{cases}$$

$$\implies \text{if } p_0 \in S^{-M} \text{ then } p(\tau) \in S^{-M}_{\frac{1}{2},\frac{1}{2}}.$$

We get a conjugated operator

$$\mathcal{L}(h,\bar{h}) = \omega \cdot \partial_{\varphi} h + \mathrm{i} m_3 T(D) h + \Phi^{-1} O(\partial_{x}^{-M}) \Phi \bar{h} + \dots$$

and $\Phi^{-1}O(\partial_{\mathsf{x}}^{-M})\Phi\in S^{-M}_{\frac{1}{2},\frac{1}{2}}$ is smoothing for M large

KAM transformations are of the same type:

$$\mathcal{L} = \omega \cdot \partial_{\varphi} + D + \varepsilon P$$
, $D := \operatorname{diag}(\mu_j)$, P bounded.

Transform $\mathcal L$ under the flow $\Phi(\varphi,\tau)$ of a linear equation $\partial_{\tau} u = \varepsilon W(\varphi) u$

Expand the solution of Heisenberg equation in size of ε :

$$\mathcal{L}(\tau) = \Phi(\varphi, \tau) \mathcal{L}\Phi(\varphi, \tau)^{-1} = \omega \cdot \partial_{\varphi} + D + \varepsilon (\omega \cdot \partial_{\varphi} W + [D, W] + P) + O(\varepsilon^{2})$$

Homological equation

Linear map $W\mapsto \omega\cdot\partial_{\varphi}W+[D,W]$ has eigenvalues

$$\omega \cdot \ell + \mu_j - \mu_i$$
, $\omega \cdot \ell + \mu_j + \mu_i$

To kill the $O(\varepsilon)$ term we need Melnikov non-resonance conditions $|\omega \cdot \ell + \mu_i \pm \mu_i| > |j^{3/2} \pm j'^{3/2}|\gamma \langle \ell \rangle^{-\tau}$

KAM reducibility for operators which satisfy tame estimates

