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Introduction

1-d space-periodic Water Waves

Euler equations for an irrotational, incompressible fluid

at¢+§lv¢l2+gn=,@8x( L ) aty=mn(x), xeT

1+n2
AP =0 in y <n(x)
Vé — 0 as y — —oo
O¢n = Oy ® — Ox1 - P at y =mn(x)

u = V& = velocity field, rotu = 0 (irrotational),
divu = AP = 0 (uncompressible)
g = gravity, k = surface tension coefficient

free surface y = n(x) and the velocity potential ®(x,y)




Introduction
Zakharov formulation

Infinite dimensional Hamiltonian system:

0 [Id
atUZJqu(U)7 U= (Z) ) J = <—/d 0) ’

canonical Darboux coordinates:

n(x) and ¥ (x) = P(x,n(x)) trace of velocity potential at y = n(x)

(n,%) uniquely determine @ in the whole {y < n(x)} solving the
elliptic problem:

AP =0 in{y<n(x)}, ®ly=p=¢, VO —-0asy— —oc0 ]




T
Zakharov-Craig-Sulem formulation

0= G(n)yp= VyH(n,v)

B (Gt mab)” | e
S T I e

*VnH(?% @ZJ)

| \

Dirichlet—Neumann operator

G(ﬁ Y/ 1 +7’xa <I>|y n(x)

G(n) is linear in v, self-adjoint and G(n) > 0, n — G(n) nonlinear

Hamiltonian:

H(n,v) = 1, G(n)¥)12(ny + Jr &% dx + #y/1+ 12 dx

kinetic energy + potential energy + area surface integral



Introduction

Reversibility

H(na —1}[)) = H(nv 1/’)

HoS=H, S:(nv)—m—-¢), S$*=I

= n(_tvx) = n(tvx)a w(_t7x) = _w(tvx)

Invariant subspace: “Standing Waves"

n(=x) =n(x), »(=x)=1(x)

Prime integral [ n(x)dx (Mass), 0; [p ¥ (x)dx = — [;n(x)dx

Jrn(x)dx = 0= [39(x) dx




Introduction

Quasi-periodic solution with n frequencies of u; = JVH(u)

Definition
u(t, x) = U(wt, x) where U(p,x) : T" x T — R,

w € R"(= frequency vector) is irrational w - k # 0, Vk € Z" \ {0}
= the linear flow {wt}+cgr is DENSE on T”

The torus-manifold
T" 5 ¢ — U(y, x) € phase space
is invariant under the flow ®}, of the PDE

f_,oU:Uo\Ufu
VET">p— p+wteT”




Introduction

Small amplitude solutions

Linearized system at (n, ) = (0,0)

Ot + 1 = Kixx

Solutions: linear standing waves

n(t,x) = ZJ_ZI\/gjcos(wjt) cos(jx)
W(t,x) = —221\/51—1% sin(w;t) cos(jx)

Linear frequencies of oscillations

wj = wj(r) ==/j(1+ k%), j>1

Can be continued to solutions of the nonlinear Water Waves?

| A\

A




Introduction

Fix finitely many indices S = {71,...,7n} (tangential sites)

Finite dimensional invariant tori for the linearized water-waves eq.
n(p, x) = Z. \/ngOS (pj)cos(ix), & >0,
Y(p,x) = ZJGS\/EJJ wj(k)sin(pj) cos(jix)

ANGLES: ¢ = (p1,...,pp) € T"
FREQUENCIES: w(k) = (u)j(/i))jGS

For all k € [k1, k2] except a set of small measure O(y?),
a > 0, the vector w(k) is diophantine:
W) ) > {07, eezn\ {0}

Do they persist in the nonlinear Water Waves?

Linear system=integrable system, nonlinearity=perturbation



Introduction

KAM theory is well established for 1-d semi-linear PDEs

ur = L(u) + N(u) J
o L = linear differential operator (ex. Oxxx, 14, ...)
@ N = nonlinearity which depends on u, uy,...,0Ju

@ Semilinear PDE: orderof L > orderof N = m
@ Fully-linear PDE: order of L = order of N
© Quasi-linear PDE: Fully-nonlinear and N linear in 0] u

Kuksin, Wayne, Craig, Poeschel, Bourgain, Eliasson, Chierchia,
You, Kappeler, Grebert, Geng, Yuan, Biasco, Bolle, Procesi... also
ind>?2



Introduction

For quasi-linear or fully non-linear PDEs as Water-Waves eq?

@ First KAM results:

@ quasi-linear/fully nonlinear perturbations of KdV
@ Water Waves

@ GENERAL STRATEGY TO DEVELOP KAM THEORY FOR
1-D QUASI-LINEAR/ FULLY NONLINEAR PDES

developed with Pietro Baldi, Riccardo Montalto

Quasi-linear perturbations of NLS, Feola-Procesi



Water Waves: small amplitude periodic solutions
@ Plotnikov-Toland: '01 Gravity Water Waves with Finite
depth Standing waves, Lyapunov-Schmidt + Nash-Moser

o looss-Plotnikov-Toland '04, looss-Plotnikov '05
Gravity Water Waves with Infinite depth
Completely resonant, infinite dimensional bifurcation equation

@ 3 D-Travelling waves
Craig-Nicholls 2000: with surface tension (no small divisors),
looss-Plotnikov '09, '11 : no surface tension (small divisors),

o Alazard-Baldi '14, Capillary-gravity water waves with infinite
depth Standing waves

No information about their linear stability

] QUESTIONZ WHAT ABOUT QUASI-PERIODIC SOLUTIONS?



Literature

KAM theory for unbounded perturbations: literature

Kuksin '98, Kappeler-Poschel '03
Ut + Usex + Uty +€0xf(x,u) =0, x €T

Liu-Yuan "10 for Hamiltonian DNLS (and Benjamin-Ono)
iuy — Uy + Myu+ief(u,0)ux =0

Zhang-Gao-Yuan '11 Reversible DNLS

iur + U = |ux|?u

Bourgain '96, Derivative NLW, periodic solutions

Vit — Yox +my +y2 =0, m#0

Berti-Biasco-Procesi '12, '13, KAM, reversible DNLW

ytt—yxermy:g(X’y,yx,yt)v xeT




Literature

KAM for quasi-linear KdV, Baldi-Berti-Montalto '13-'14

Gtu+uxxx—3(9xu2+8XVL2P:O, xeT J

up = 0V2H(u), H= [ %3 + 13 + f(x, u, uy)dx

Quasi-linear Hamiltonian perturbation

P(u) = Jp FOx, u, ux) dx, £(x, u,ux) = O(|ul® + |ux]?)

OxV 2P := =0, {(0uf)(x, u, ux) } + Oxx{ (0w, F) (X, U, ux) }

= ao(x, u, U, Uxx) + a1(X, U, Uy, Uxx ) Usx

There exist small amplitude quasi-periodic solutions:

u=y jes\/ &2 cos(wi™(€) ¢+ jx) + o(v/€),wi*(€) = 4> + 0(€)

for a Cantor set of £ € R” with density 1 at £ =0



Main result
KAM for Water Waves

Look for small amplitude quasi-periodic solutions

(ﬁ(tvx)a%b(tax) = (U(Qtax)ﬂ/)(@t»x)) of

Water Waves equations

¢>2< (G(n)@b + 77X¢X)2 KTxx
2 2(1+n2) (14 n2)3/2

with frequencies @; (to be found) close to

Linear frequencies

wi(k) = \J(1 + Kj?)

Surface tension

K € [k1,k2], K1 >0




Main result

Theorem (KAM for capillary-gravity water waves, B.-Montalto '15)

For every choice of the tangential sites S C N\ {0}, there exists
> B o € (0,1) such that: for all € € (0,¢), j €S,

3 a Cantor like set G := G¢ C [k, ko] with asymptotically full

measure as £ — 0, i.e. limg_o|G¢| = (k2 — K1), such that, for any

surface tension coefficient k € G¢, the CAPILLARY-GRAVITY

WATER WAVES EQUATION has a quasi-periodic standing wave

solution (n,1) € H®, even in x, of the form

n(t,x) = Z,Esf-cos(@jt) cos(jx) + o(+/€)
P(t, x) Zjes\/éjj @j sin(@jt) cos(jx) + o(\/€)

with frequency vector & € RS satisfying & — w(x) — 0 as £ — 0.
The solutions are linearly stable.




Main result

Remarks

@ The restriction of C. is not technical! Outside could be:
"Chaos", "homoclinic/heteroclinic solutions", "Arnold
Diffusion", ....

Craig-Workfolk '94, Zakharov '95: the 5 — th order (formal)
Birkhoff normal form system is not integrable (with no surface
tension)

@ There are no results about global in time existence of the
water waves equations with periodic boundary conditions:
the previous theorem selects initial conditions which give
rise to smooth solutions defined for all times



Main result
Linear stability -reducibility

(L): linearized equation 0:h = JO,V H(u(wt, x))h

[ b+ < 95V + G(n)B ~G(n) )

(1+ BVy) + BG(n)B — k0xcdx VO, — BG(n)

u(wt,x) = (n,¥)(wt,x), (V,B)=Vy,®, c:=(1+n2)3?
There exists a quasi-periodic (Floquet) change of variable

H: > h=o(wt)(¥,n,v), veT  neR", ve HiNL:,

which transforms (L) into the constant coefficients system

W = b
n=20
Vi = DOOV') vV = ZJ¢S Vjeijx') DOO = Op(luj)7 /'LJ € R

n(t) = no, vi(t) = v;(0)e™* = [[v(t)llnz = [Iv(0)[l s : stability



Main result

© Sharp asymptotic expansion of the eigenvalues
.1 oy 1 1
= A3j2 (14 Kj%)2 + A2 + (@)

where A3 := A3(w), A1 := A1(w) are constants (depending on
u(wt, x)) satisfying

Az — 1| + |A1] + sup |rj| < Ce,
jese

@ The map ®(yp) satisfies tame estimates in Sobolev spaces:

[ohlls, [0 hlls < [1Alls + lullstollAllsy » Vs > S0



Ideas of Proof

Small-divisors problem. Look for u(y, x) := (n(, x), ¥ (e, x)) zero of

Flw,v) := F(w,n,¥) =

w - Oyn — G(n)
sz)>2< (G(TIW + nxwx)z RT)xx
SR A R TC W) S (e

Small amplitude solutions:

w~8 - DX
f(w,O) =0 Dﬂvwf(w’o) - < 1—/651)( w" 8‘;0’ >

In Fourier basis

‘ w-£ —|j
Dn,wf(w’ O) = dlag@GZ”,jGZ < 1+ /QjQ 1w‘ ’f )



Ideas of Proof

@ QUESTION: is D,F(w,0) invertible?

w-l =l 2 2N (N2 2
det<1+ﬁj2 iw-€>— (w0 +(1+rj7)j| = —(w-£)"+w;i (k)

Non-resonance condition:




Ideas of Proof
Nash-Moser Implicit Function Theorem

Newton tangent method for zeros of F(u) =0 + "smoothing":
Ung1 := Up — Sp(DuF) " (un) F(uy)
where S, are regularizing operators (= "mollifiers")

@ Advantage: QUADRATIC scheme

luns1 = unlls < C(n)llun — un—1]l2

— convergent also if C(n) — +o0

e Difficulty: invert L(u) := (D,F)(u) in a whole neighborhood
of the expected solution with tame estimates of the inverse

1£(u) " hlls < 1hllsto + Nullsio lhllsy . Vs = so



Ideas of Proof

Difficulty: prove invertibility and tame estimates for the inverse of

Linearized operator at u(p, x) = (n,%)(¢, x)
(DuF)(u) =

05V + G(n)B ~G(n) )

aer <(1 + BY;) + BG(n)B — r0.cdx VO, — BG(n)

(V7 B) :VX,Y(D? c = (1+77)2<)_3/2

are smooth functions
G(n) = |Dx|n + Roo(n), Roc € OPS™

is Dirichlet-Neumann operator



Ideas of Proof

|deas of Proof:

@ Nash-Moser implicit function theorem for a torus embedding
¢ — i(p) formulated like a "Théoréeme de conjugaison
hypothétique" a la Herman

@ Degenerate KAM theory: measure estimates
© Analysis of linearized PDE on approximate solutions
e Symplectic reduction of linearized operator to “normal"
directions developed with P. Bolle for NLW on T¢:
“Existence of invariant torus <= Normal form near the torus”
(Action-angle variables, more refined than Lyapunov-Schmidt)
e Reduction of linearized PDE in normal directions:

@ Step 1. Pseudo-differential theory in original physical
coordinates (not in Fourier space).
Advantage: pseudo-differential structure is more evident
First steps similar to Alazard-Baldi + Egorov type analysis +
more steps of decoupling

@ Step 2. KAM reducibility scheme. Imply stability



Ideas of Proof

A “Théoreme de conjugaison hypothétique" and

Degenerate KAM theory

o A big issue in KAM theory: fullfill non-resonance conditions
@ Choose parameters
@ Non-degeneracy conditions:

@ Kolmogorov
@ Arnold-Piartly
o

@ Riissmann (Herman-Fejoz for Celestial Mechanics)

weakean as much as possible the non-degeneracy conditions

Use x (= surface tension) as a parameter



Ideas of Proof

Small amplitude solutions: rescale u+— eu

Symmetrization + action-angle variables (6, y) on tangential sites:

= /\Jl/2\/}7j COS(QJ'), ij = /\1—1/2\/)7] sin(HJ-), _] (S S,

A=\ (14+ k2L, jES,




Ideas of Proof

Linear problem: € =

Family of invariant tori filled by quasi-periodic solutions
TV x R” x {0}, O=w(k)t, I(t)=€6€R”,z(t)=0

For e #£ 07

The frequency of the expected quasi-periodic solution
& = w(k) + O(e) changes with ¢,§ —

consider the family of Hamiltonians

1
Hy =a- 1+ E(QZ:Z)B +eP.(0,1,z), a€eR”,

where o« € RY is an unknown



Ideas of Proof

Look for quasi-periodic solutions of Xy, with Diophantine
frequencies w € R”

Embedded torus equation
9ui(p) — Xu, (i(¢)) =0

Hy=a-1+= (sz)L2+€P(9lz) aeRY,

Functional setting

0,0(p) — a — €01 P:(i(¢))
Fle,X) = 0 l() + €09 Pe(i()) =0
0uz(p) — JQz — eIV P:(i(¢))




Ideas of Proof

Theorem (Nash-Moser-Théoréem de conjugation hypothetique)

Let € € (0,£0) small. Then there exists a smooth function
o RV = RY, a.(w)=w+r(w), with r.=0(Ey"),

and torus embedding ¢ — ix(yp) defined for all w € RY, satisfying
lliso() — (¢,0,0)|ls, = O(€), and a Cantor like set Co, such that,
for all w € Cwo, the embedded torus ¢ — ix(p) solves

w - Byi(p) = Xp,_(i(¢))

i.e. it is invariant for the Hamiltonian system H,_( and it is filled
by quasi-periodic solutions with frequency w

— for § € a.(Cx) the Hamiltonian system
Hz =B 14 3(Qz,2)12 +eP(0,1,2)
has a quasi-periodic solution with frequency w = aZ1(3). Picture



Degenerate KAM theory

The Cantor set C,, expressed in terms of “final torus"

3 smooth functions ;7° : R” — R,

B(@) = AP @)L+ A)2 + AP (@)2 + 7(w), ¢ 5°,
satisfying [AS® — 1], [A?°], supjese |r7°] < Ce such that
Coo = {w € RY : diophantine and

W £+ W) >30T, Ve, je S

- 4 () £ P ()| 22 £ 20T, Ve 2V, . € S}

Prove that for ‘most" k € [k1, k2] the vector of unperturbed linear
frequencies w(x) := j/2(1 + Kj2)Y? € a.(Cs0)




Degenerate KAM theory

Use k (= surface tension) as a parameter

Degenerate KAM theory for PDEs, Bambusi-Berti-Magistrelli

Q Analyticity k — w(k) = (wj(k)) € RS, wj(k) := \/j(1 + Kj?)
@ Non-degeneracy: r +— w(x) € RS is not contained in any

hyperplane (torsion); also (w(k),w;j(x)), (w(k),wj(k),wj(k))
Q@ Asymptotic: wi(r) := /rj3/? +

= There exist kg € N, p > 0 such that: V/,j, k € [k1, k2],
@ maxie s, |0{w(x) - £}] > p(6)
@ maxie s, |0 {w(r) - £+ wi(k)}| > p(0)
© maxicso |4 {w(r) - € + wik) £ wy(k)}] > pl0)
p = amount of non-degeneracy, ky = index of non-degeneracy



Degenerate KAM theory

By perturbation the same bounds are true for
we(k) := aZH(w(k)) = w(k) + O(e)

= Using Russmann’s lemma

Lemma: measure estimates

For 7 large, the Melnikov non-resonance conditions
Q |we(k) £ > y()~7, VL e 75\ {0}
Q |w-(k) - £+ (we)j(k)| =)™, VL Z5 j¢S

© [we(r) - £+ (w))e(w) £ (we)j (k) > A2 £ (7)*2](0),
Y(l,j,j") € Z8 x S¢ x S°,

hold for all & € [k1, ko] except a set of small measure O(~/%0)




Degenerate KAM theory

Proof of non-degeneracy

Geometric Lemma:

VN, Vj1,...,jn, the curve
[k1, k2] D K — (wjl(n), e ,ij(/-i)> e RV

is not contained in any hyperplane of RV

Computation: the vectors

Wi (H) wJ'N(K“)
Opwj, () Opwiy (k)
N 1wy (k) N wjy, (k)

are linearly independent
by analyticity it is sufficient to prove it only at one k # 0



Degenerate KAM theory

|deas of Proof:

@ Nash-Moser implicit function theorem for a torus embedding
¢ — i(p) formulated as a "Théoréme de conjugaison
hypothétique" a la Herman

@ Degenerate KAM theory: measure estimates
© Analysis of linearized PDE on approximate solutions
e Symplectic reduction of linearized operator to “normal"
directions developed with P. Bolle for NLW on T¢:
“Existence of invariant torus <= Normal form near the torus”
(Action-angle variables, more refined than Lyapunov-Schmidt)
e Reduction of linearized PDE in normal directions:

@ Step 1. Pseudo-differential theory in original physical
coordinates (not in Fourier space).
Advantage: pseudo-differential structure is more evident
First steps similar to Alazard-Baldi + Egorov type analysis +
more steps of decoupling

@ Step 2. KAM reducibility scheme. Imply stability



Egorov analysis

Reduction of linearized operator in normal directions

After approximate-inverse transformation we have to analyze

(L): linearized equation 0:h = JO,VH(u(wt, x))h

BT 0.V + G(n)B ~G()

1
((1 + BVy) + BG(n)B — kOxcdy VOx — BG(77)> s

Conjugate L, to a diagonal operator (Fourier multiplier):
P 1oL, ,od = diag{ipj(€)}jestcz
where

pi(e) = >\3j%(1 + sz)% + A2 + ri(w), sup;r; = O(e)

usual KAM scheme to diagonalize £, is clearly unbounded



Egorov analysis

© "REDUCTION IN DECREASING SYMBOLS"

L1:=0"1L, 0 =w 0, +X3T(D)+ \|Du|Y2 + Ry |

T(D) :=+/|D|(1 + kd?2)

o Ry(ip,x) € OPSO on diagonal (and OPS—M off-diagonal)
e A\, A3 € R, constants

Use Egorov type theorem

© "REDUCTION OF THE SIZE of Ry"

Lni=®71L10, =w: 0y + A3T(D) + M| Dx|2 4+ r(W + R, J

o KAM quadratic scheme: R, = O(¢?"), r(") = diagjez(rj(")),



Egorov analysis

As Alazard-Baldi, after introducing a linearized good unknown of
Alinhac and symmetrizing

Linearized system h =n + iy, h=n — i

L(h, h) = w-d,h+iag(p, x) T(D)h+a1(p, x)Oxh+ b1 (o, x)Oxh+. ..
where T(D) := /|D|(1 + k02)

Eliminate the x, ¢ dependence at highest order

Under x — x + (¢, x) like Alazard-Baldi and ¢ — ¢ + a(p)w
Li(h,h) = w - 0,h+im3T(D)h + a1(p, x)9xh + bi(p, x)0xh + ...

Block-diagonalize up to smoothing operators
Lo(h,h) = w - ,h+ims T(D)h + a1(p, x)0xh + O(O;M)h + ...




Egorov analysis
Egorov approach

Eliminate a3 (¢, x)0x

Evolve with the flow ® of u; = ia(x)|D|*?u
L=w-0,I+ Py(ep,x, D)
where we denote the diagonal part
Po(p, x, D) :=i(A3 T(D) + a11(p, x)D)

where T(D) = |D|Y/?(1 + kD?)'/?

The flow ®(p, 7) : H® — H® of
deu = ia(y, x)| Dz u
is well defined in Sobolev spaces and is tame



Egorov analysis

The conjugated operator P(y,7) := ®(p, 7)Po®(p, 7) ! solves

Heisenberg equation

{afp(gp,f) = i[a(¢, x)|D|, P(p, 7)]

P(,0) = po(¢, x, D)

We look for an approximate solution Q(p, 7) := q(7, ¢, x, D) with
a symbol of the form (expanded in decreasing symbols)

3
Q(77<P>X75):<3I0+Q1+--., qo€52,q1€51...
go = po then 8- Q1 = i[a(yp, x)|D|2, go(D)] € OPSY, ...

QO+Q1+...:i>\3T(£)+i(311—%)\3\/Eax)€+... J

Choose a((p, x) such that a;; — %/\3\/53)( = 0. ayy is odd in x
(reversibility) as in Alazard-Baldi



Egorov analysis

Conjugating w - 9, gives

O(p,7) 0wy 0 W, 7)™ = w0y + P, T)w- Op{P(2, 7)1}

Analysis of (o, T) := CD(cp,T)w-a@{‘b_l(% )

It solves

OV (i, ) = —id(p, 7) (- Bpa() | D[ 2) 07 (o, 7)

Hence S, (¢, 7) := ®(p, ) (w-8¢a(<p)|DX|1/2) ®~1(p, 7) solves the
Heisenberg equation
. 1
87'54«0(907 T) = 1[3(907 X)|D| 2, 50.;(907 T))]
Su(,0) = w-dya()| Dx|'/?

= analyze it as in the previous Egorov analysis



Egorov analysis

The evolution of the off-diagonal terms is completely different:
they evolve according to

{aTP =AP+ PA, A= ia(c,o,x)|D|1/2
P(0) = Op(po(D)) -

— if pp € ST then p(7) € sTM.
23
We get a conjugated operator

L(h,h) =w-dyh+imsT(D)h + &~ 1O(9 M)dh + ...

and ®~10(0;M)d e 57 M is smoothing for M large

22



KAM transformations are of the same type:
L=w-0,+D+¢eP, D:=diag(y;), P bounded.
Transform £ under the flow ®(p, 7) of a linear equation
Oru=cW(p)u

Expand the solution of Heisenberg equation in size of e:

L(1) = (0, 7)LD(p, 7)F = WO+ D+te(w-0,W+H[D, W]+P)+0(?)

Homological equation

Linear map W — w - 9, W + [D, W] has eigenvalues
wl+pj—pi, we A+ p
To kill the O(e) term we need Melnikov non-resonance conditions

g 13/2 _
w - £+ £ ] > 32 £ PPy

KAM reducibility for operators which satisfy tame estimates
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