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Degenerate billiard

Consider a Hamiltonian system with convex in p Hamiltonian
H(q, p) on T ∗M.

Let N be a submanifold in M (scatterer). Orbits γ colliding
with N at x are reflected elastically:

∆p = p+ − p− ⊥ TxN, ∆H = H+ − H− = 0.

Changing direction condition: ∆p 6= 0.

No tangency: velocities v± /∈ TxN.

If codimN > 1, then p− does not determine p+. Past of a
collision orbit doesn’t determine the future. Degenerate
billiard (M,N,H) is not a dynamical system on the set of
orbits with collisions.
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Collision chains

Billiard trajectories γ : [a, b]→ M having multiple collisions
with N (collision chains) are extremals of the action functional

A(γ) =

∫
γ

p dq − H dt

with constraints γ(ti ) = xi ∈ N.

A collision chain is a concatenation of collision orbits γ|[tj ,tj+1]

joining xi , xi+1 ∈ N such that ∆p(tj) ⊥ Txj N, ∆H(tj) = 0.

Changing direction condition: ∆p(tj) 6= 0.

No tangency to N at collisions.

No early collisions: γ(t) /∈ N for tj < t < tj+1.
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Generating function of the collision orbit

Fix energy H = E . Maupertuis action:

JE (γ) =

∫
‖γ̇‖E dt, ‖q̇‖E = max

H(q,p)=E
p · q̇.

A collision orbit γ : [t−, t+]→ M joining x−, x+ ∈ N is
nondegenerate if the end points are non-conjugate.

Define the (local) action function on U ⊂ N × N by

L(x−, x+) =

∫
γ

p dq = JE (γ).

No tangency γ̇(t±) /∈ Tx±N implies that L has nondegenerate

twist B(x−, x+) = ∂2L
∂x−∂x+

.

L generates a (local) symplectic map f : V− → V +,

f (x−, y−) = (x+, y+) ⇔ y+ =
∂L

∂x+
, y− = − ∂L

∂x−
.

y± – projections to T ∗x N of the initial and final momenta p±.

Sergey Bolotin ”Billiards” in Celestial Mechanics



Collision map

In general there are several (maybe none) nondegenerate
collision orbits with energy E joining a pair of points, then the
generating function has several branches LE = {Lk} defined
on open sets Uk ⊂ N × N.

Collision map FE = {fk} has branches fk : V−k → V +
k ,

V±k ⊂ T ∗N.

Collision chains correspond to orbits

k = (kj), z = (zj), zj = (xj , yj) ∈ V +
kj−1
∩ V−kj

of the skew product of the maps FE = {fk}.
x = (xi ) is an extremal of the discrete action functional

Ak(x) =
∑

Lki (xi , xi+1)

x is a trajectory of the discrete Lagrangian system (LE ).
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Newtonian singularities

Consider a Hamiltonian system (Hµ) on T ∗(M \ N) with

Hµ(q, p) = H(q, p) + µV (q) + µhµ(q, p), µ� 1,

H(q, p) =
1

2
‖p − a(q)‖2 + W (q).

H and hµ are smooth on T ∗M.

Newtonian singularity: in a tubular neighborhood U of N,

V (q) = − ϕ(q)

d(q,N)
,

where ϕ > 0 is a smooth function on M. The distance is
defined by the Riemannian metric ‖ ‖.
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Shadowing

Nearly collision trajectories γµ : [a, b]→ M \ N of system (Hµ)
which approach N as µ→ 0 shadow collision chains of the
degenerate billiard (M,N,H) with Hamiltonian H and scatterer N.

Theorem

For any finite orbit of the collision map FE such that the
corresponding collision chain γ changes direction at collisions
(∆p 6= 0) and any small µ > 0 there exists an almost collision
trajectory on Hµ = E shadowing γ with error O(µ| lnµ|).
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Hyperbolic shadowing

Theorem

Let Λ be a compact hyperbolic invariant set of FE . There exists
µ0 > 0 such that for any µ ∈ (0, µ0] and any orbit in Λ such that
the corresponding collision chain γ changes direction at collisions
(‖∆p‖ ≥ δ > 0) there exists an almost collision trajectory of
system (Hµ) shadowing γ.
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Regularization

To prove shadowing theorems, we need to regularize the singularity
at N. In applications to Celestial Mechanics, d = codimN ≤ 3.
For d = 2 we use the Levi-Civita regularization, and for d = 3 the
KS-regularization given by the Hopf map R4 → R3. For d > 3 a
different method is needed.
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Let U be a tubular neighborhood of N.

Theorem

There exist a manifold Ũ, S1 group action Φt on Ũ, a surjective
map π : Ũ → U commuting with Φt , and a Φt-invariant
Hamiltonian H̃ on T ∗Ũ such that:

Φt is trivial on Ñ = π−1(N) and free on Ũ \ Ñ.
π : Ñ → N is a diffeomorphism.

Let G be the momentum integral of the symmetry group Φt .
π takes trajectories of system (H̃) in Ũ \ Ñ with H̃ = µ,
G = 0 to trajectories of system (Hµ) with Hµ = E (with
different time parametrization).

The Hamiltonian H̃ has a normally hyperbolic critical
manifold M⊂ {H̃ = 0} with real eigenvalues, and trajectories
asymptotic to M are projected by π to orbits of system (H)
colliding with N.
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Proof of shadowing

Collision orbits of the billiard (M,N,H) with H = E
correspond to orbits of system (H̃) heteroclinic to M.

Collision chains of the billiard correspond to heteroclinic
chains.

Orbits of system (Hµ) with energy E passing O(µ)-close to a
collision with N correspond to orbits on H̃ = µ passing
O(
√
µ)-close to Ñ.

Almost collision orbits correspond to orbits shadowing
heteroclinic chains.

We use a version of Shilnikov’s lemma for normally hyperbolic
critical manifolds (B-Negrini 2013) to construct shadowing
orbits.
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Example: Plane 3-body problem

Suppose m3 is much larger than m1,m2:

m1/m3 = µα1, m2/m3 = µα2, α1 + α2 = 1, µ� 1.

Let q = (q1, q2) be positions of m1,m2 with respect to m3.
The Hamiltonian of the 3 body problem:

Hµ(q, p) = H1 + H2 −
µα1α2

|q1 − q2|
+
µ|p1 + p2|2

2
,

Hi =
|pi |2

2αi
− αi

|qi |
.

The Hamiltonian H = H1 + H2 describes 2 uncoupled Kepler
problems.

The configuration space of the billiard is M = (R2 \ {0})2,
and the scatterer is N = {q ∈ M : q1 = q2}. Collisions with
m3 are excluded.
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Second species solutions

3-body problem (Hµ) has integrals of energy and angular
momentum

Hµ = E , G = G1 + G2.

Unperturbed system (H) has integrals H1,H2 and G1,G2. The
flow is quasiperiodic in

P = {(q, p) : E1,E2 < 0, G1,G2 6= 0},

Hµ is a regular perturbations of H in

R = {(q, p) ∈ P : Kepler ellipses do not cross}

In the singular part S = P \ R, every solution of system (H)
with incommensurable frequencies approaches the singular set
N – perturbation becomes large.

m1,m2 move nearly along ellipses and after many revolutions
they almost collide. Then m1,m2 move near a new pair of
ellipses until they nearly collide again, . . . .
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Nearly collision periodic orbits of the 3 body problem were
named by Poincaré second species solutions.

Many works of Astronomers.

Rigorous existence proof of periodic second species was given
by Marco-Niderman (1995) for the circular restricted problem.

Chaotic second species solutions for the circular problem
B-MacKay (2000), Font, Nunes, Simo (2002).

Chaotic and periodic second species solutions for the elliptic
restricted problem with small eccentricity. Fast ”diffusion” of
the Jacobi constant. B (2006).
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Collision chains of the 3 body problem

A collision chain γ = (γ1, γ2) of the degenerate billiard of the 3
body problem is a sequence of pairs of Kepler arcs joining a
sequence xj ∈ R2 \ {0}:

γ(tj) = (xj , xj).

γ|[tj ,tj+1] is a pair of Kepler arcs joining xj , xj+1.

Total momentum y = α1γ̇1 +α2γ̇2 is continuous: ∆y(tj) = 0.

Direction change: ∆v(tj) 6= 0, v = γ̇1 − γ̇2.

No early collisions: γ1(t) 6= γ2(t) for tj < t < tj+1.

Total energy E1 + E2 = E and angular momentum
G = G1 + G2 are constant along γ.

In the discrete Lagrangian LE = {Lk}, the index k = (k1, k2) ∈ Z2

gives the numbers of revolutions of m1,m2 between collisions.
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Shadowing collision chains

Theorem

Any finite orbit of the collision map FE of the billiard (M,N,H)
such that the corresponding collision chain γ satisfies direction
change condition ∆v(tj) 6= 0 is shadowed for small µ > 0 by an
orbit of the 3 body problem with Hµ = E with error O(µ| lnµ|).
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Periodic collision chains with energy E correspond to critical points
x = (xi ) of the discrete functional

Ak(x) =
n∑

i=1

Lki (xi , xi+1), xn+1 = x1.

Due to rotational symmetry, Ak(x) = Ak(e iθx).

Theorem

Let x be a nondegenerate modulo rotation critical point of Ak. If
the corresponding collision chain satisfies changing direction
condition, then for small µ > 0 it is O(µ| lnµ|) shadowed by a
periodic orbit of the 3 body problem with energy E .
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Routh reduction

To construct chaotic shadowing orbits we reduce rotational
symmetry. Let G be the integral of angular momentum for the
collision map F . Define the Routh Lagrangian

Rk(r−, r+) = min
θ

(Lk(r−, r+e iθ)− Gθ).

Reduced Routh system RE ,G = {Rk} has one degree of freedom.

Theorem

For small µ > 0 and any hyperbolic orbit of the discrete Routh
system, if the corresponding collision chain saties uniform changing
direction condition, it is shadowed modulo rotation and time
translation by an almost collision hyperbolic orbit of the 3 body
problem with angular momentum G and energy E .
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Lambert’s problem

To study dynamics of the billiard corresponding to the 3 body
problem we need to compute the collision generating functions
LE = {Lk}k∈Z2 , E < 0. This is reduced to the classical Lambert’s
problem in Celestial Mechanics.

Lambert’s Theorem gives an explicit formula for the
Maupertuis action f (x−, x+) of a Kepler elliptic arc with
major semiaxis 1 joining x−, x+.

The action of a Kepler orbit γ with energy h < 0 joining
z = (x−, x+) and making n = [γ] full revolutions is

Jn(z , h) = (−2h)−1/2(2π|n|+ (sgn n)f (−2hz)).

The action of a collision orbit γ = (γ1, γ2), [γi ] = ki , with
energy E joining x−, x+ is

Lk(z) = min
α1h1+α2h2=E

(α1Jk1(z , h1) + α2Jk2(z , h2)), k ∈ Z2.

No explicit formula: need to solve Kepler’s equation.
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Asymptotics for many revolutions

Computation of Lk simplifies in case of many revolutions:

‖k‖ = (α1k
2/3
1 + α2k

2/3
2 )3/2 � 1, ν = (ν1, ν2) =

k

‖k‖
.

Without loss of generality let E = −1/2. Then

Lk(z) = 2π‖k‖+ S(ν, z) + O(‖k‖−1),

S = α1ν
−1/3
1 f (ν

2/3
1 z) + α2ν

−1/3
2 f (ν

2/3
2 z).

Suppose the bodies move counterclockwise: ki > 0. Set

ci = ν
2/3
i and c(k) = (c1, c2). Then

S = Sc(z) = α1c
−1/2
1 f (c1z)+α2c

−1/2
2 f (c2z), α1c1+α2c2 = 1.

In the first approximation the discrete Lagrangian system Lk ,
k ∈ Z2, is replaced by a much simpler Lagrangian Sc , c ∈ I ,
where I is the segment α1c1 + α2c2 = 1, ci > 0.
The major semiaxis of the elliptic arcs forming the collision
orbit are c−11 and c−12 .
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Limit action functional

Let k = (k1, . . . , kn) ∈ Z2n with ‖k j‖ > ε−1. Discrete action
functional for a finite orbit is

Ak(x) = 2π
n∑

j=1

‖k j‖+
n∑

j=1

φc j (xj , xj+1) + O(ε).

If ε is small, we can replace Ak with

Φc(x) =
n∑

j=1

Sc j (xj , xj+1) = α1Ψc1(x)+α2Ψc2(x), ci = (c1
i , . . . , c

n
i )

Ψb(x) =
n∑

j=1

b
−1/2
j f (bj(xj , xj+1)), b = (b1, . . . , bn).

The functional φb is the sum of Maupertuis actions of a chain of
simple arcs of Kepler ellipses with major semiaxis aj = b−1j and
energies hj = −bj/2 joining xj and xj+1.
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Take a finite sequence c = (c1, . . . , cn) ∈ I n. To satisfy no
tangency condition, we need c j

1 6= c j
2. To satisfy the changing

direction condition, we need c j 6= c j+1.

Let x be a trajectory of the discrete Lagrangian system
{Sc}c∈I , i.e. a critical point of Φc. There exists ε > 0 such
that for any k = (k1, . . . , kn) ∈ Z2n with ‖k j‖−1 ≤ ε and
|c(k j)− c j | ≤ ε, the discrete Lagrangian system (L) has a
trajectory shadowing x.

For small µ > 0 he corresponding collision chain is shadowed
by an orbit of the 3 body problem (Hµ).
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Conclusion

In the limit of many revolutions, we don’t have to worry about
synchronizing collision times. Fix E ,G and take a sequence
xj ∈ R2 and a sequence of pairs Γj

1, Γ
j
2 of Kepler ellipses with

energy and angular momentum E ,G and intersecting at xj , xj+1.

We need Γj+1
1 6= Γj

1 and the total momentum p1 + p2 to be

continuous at collisions xj . Then there exist iterated arcs γj1,2 of
Γ1,2 such that the corresponding collision chain is shadowed by an
orbit of the 3 body problem. This partly explains the construction
of second species solutions in the third volume of New Methods of
Celestial Mechanics of Poincaré.
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