Invariant tori in a neighborhood of a degenerate resonance

Daniil Burlakov
Lomonosov Moscow State University
burlada@mail.ru
June 7, 2015

Main objects

- Cylinder

$$
Z=\left\{(I, \varphi) \mid I \in \mathbb{R}, \varphi \in \mathbb{T}^{1}\right\}
$$

- Symplectic self-maps $P_{\varepsilon}:(I, \varphi) \mapsto(\bar{I}, \bar{\varphi})$
- P_{ε} is defined by the generating function

$$
S(\bar{I}, \varphi, \varepsilon)=f(\bar{I})+\varepsilon W(\bar{I}, \varphi, \varepsilon)
$$

f and W are real-analytic, W is periodic in φ.

- The map takes the form

$$
\bar{\varphi}=\varphi+f^{\prime}(I)+\varepsilon \frac{\partial W}{\partial \bar{l}}(\bar{I}, \varphi, \varepsilon), \quad I=\bar{I}-\varepsilon \frac{\partial W}{\partial \varphi}(\bar{I}, \varphi, \varepsilon)
$$

- In the unperturbed $(\varepsilon=0)$ system Z is foliated by the circles

$$
T_{\varkappa}=\left\{(I, \varphi) \mid I=I_{0}, f^{\prime}\left(I_{0}\right)=\varkappa, \varphi \in \mathbb{T}^{1}\right\}
$$

Problem

- Consider a resonant circle T_{\varkappa}.
- After perturbation all resonant circles are as a rule destroyed.
- However diophantine ones survive for small ε. This means that in the perturbed system in an neighborhood of T_{\varkappa} we could find invariant curve and motion on it would be with the same frequency.

Problem

Find invariant circles with frequencies as close as possible to \varkappa which survive the perturbation.

Technical remark

We can assume that I on T_{\varkappa} vanishes and (little bit more trickly) $\varkappa=0$.

Non-degenerate results: Conditions

Twist condition

$$
f^{\prime \prime}(0) \neq 0
$$

Twist condition shows that near $I=0$ the frequency changes in linear approximation.

Non-degeneracy for perturbation

Minimum of function $f^{\prime \prime}(0) W(0, q, 0)$ is unique and non-degenerate.

Non-degenerate case: Theorem

Theorem (Treschev and Zubelevich, 1998)

If Twist condition holds and perturbation is non-degenerate then there exists two invariant circles with frequencies $\varkappa_{1}>0$ and $\varkappa_{2}<0$ which are close to zero: $\left|\varkappa_{1}\right|,\left|\varkappa_{2}\right| \leqslant C \varepsilon$.

Non-degenerate case: Phase portrait

We can find invariant circle in neighborhood of original one with frequency of order ε. This result is obtained via following computation

$$
\varepsilon \sim \frac{\ln \mu}{\ln |I|} \sim \frac{\sqrt{\varepsilon}}{\ln e^{-\frac{\alpha}{\sqrt{\varepsilon}}}} .
$$

$\mu \sim e^{\beta \sqrt{\varepsilon}}$ multiplier at the hyperbolic point.

Non-degenerate case: Ideas of the proof

- Use Neishtadt averaging method we come to the following form of P_{ε} :

$$
P_{\varepsilon}=\widetilde{P}+\psi
$$

where \widetilde{P} is integrable, and ψ is exponentially small: $\|\psi\| \leqslant e^{-\frac{\widetilde{\alpha}}{\sqrt{\varepsilon}}}$

- So there is an invariant curve in an exponentially small neighborhood of separatrices of the hyperbolic critical point.
- For the integrable map \widetilde{P} near the hyperbolic point the frequency has asymptotic:

$$
\varkappa(J) \sim \frac{\ln \mu}{\ln |J| s}
$$

where J is an action variable for the map \widetilde{P} and $J=0$ at hyperbolic point.

Degenerate case

No Twist

$$
f^{\prime \prime}\left(I_{0}\right)=\varkappa^{\prime}\left(I_{0}\right)=0, \quad f^{\prime \prime \prime}\left(I_{0}\right) \neq 0
$$

The frequency is a non-degenerate minimum or maximum.
Consider arbitrary critical point φ^{*} of function $W\left(I_{0}, \varphi, 0\right)$

Conditions for perturbation

- $\frac{\partial^{2} W}{\partial \varphi^{2}}\left(0, \varphi^{*}, 0\right) \neq 0$ for all k. (non-degenerate critical point)
- $\frac{\partial W}{\partial I}\left(0, \varphi^{*}, 0\right) \neq 0$ for all k. (special non-degenerate condition)

Degenerate case: Phase space pictures

Consider different perturbation types in a neighborhood of the resonance.

Phase portraits 2 and 3 are deformations of 1 .
(1) First order approximation
(2) Hyperbolic fixed point $\left(f^{\prime \prime \prime}(0) \frac{\partial W}{\partial T}\left(0, \varphi^{*}, 0\right)<0\right)$

- Separatrices disappear $\left(f^{\prime \prime \prime}(0) \frac{\partial W}{\partial l}\left(0, \varphi^{*}, 0\right)>0\right)$

Degenerate case: Previous results

Exists many publications on this theme: C. Simo, M. Herman, A. Morosov.

But mostly all of them studies bifurcations and dynamics "not very close,, to separatrices.

Degenerate case: Results

Theorem

If conditions above holds then

- if at the critical point φ^{*} that $f^{\prime \prime \prime}(0) \frac{\partial W}{\partial l}\left(0, \varphi^{*}, 0\right)<0$ then there exists an invariant curve near T_{0} with frequency $|\varkappa| \leqslant C \varepsilon^{\frac{3}{4}+\frac{2}{3}}$.
- if $f^{\prime \prime \prime}(0) \frac{\partial W}{\partial l}\left(0, \varphi^{*}, 0\right)>0$ then separatrix disappears. Invariant curves in an exponentially small neighborhood of it have frequencies larger than $c_{1} \varepsilon^{\frac{3}{4}}$, and there exists an invariant curve with frequency smaller than $c_{2} \varepsilon^{\frac{3}{4}}$

Thank you for your attention

