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Arnold diffusion

a priori unstable system: Bernard (08), C.-Yan (04), Delshames-de
la Llave-Seara (06), Treschev (04)...

a priori stable system (nearly integrable systems)
H(x,y) = h(y) + eP(x, y), (x,y) € T" x R".

Question: Under typical perturbation €P, 3 orbit (x(t), y(t)) s.t.
y(t) connects any two (finitely many) small balls in the same
energy level set H=1(E) for E > min h.

If his positive definite 3 announcements and works
e n=3 (2.5): Mather, C., Kaloshin-Zhang, Marco,
e n=3.5: Kaloshin-Zhang
e arbitrary n: C.-Xue (2015)
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Ingredients of the proof (for nearly integrable systems)

© away from multiple-strong resonance = 2-dimensional

normally hyperbolic invariant cylinder (NHIC) (for
time-1-map)

@ higher energy = KAM

@ intermediate energy = variational

© lower energy (very close the m-strong resonance) = hyperbolic

dynamics

with 2-d NHIC one obtains a priori unstable system (C-Yan
04,09)

@ cross multiple-strong resonance (lack of 2-d NHIC), for n = 3,
double resonance problem
| shall focus on this issue in this talk, for details refer to
C.-Xue: arXiv1503.04153 (109 pages)
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Definitions and notations

e Tonelli Lagrangian L: TT” — R if it is positive definite in x
with super-liner growth and its Lagrangian flow is complete;

e A Tonelli Lagrangian is uniquely related to a Hamiltonian

H(X7y) = m)?x<>'<,y> - L(X’).();

e Given c € HY(T",R) = R", a holonomic probability measure
e on TT" x T is called c-minimal if

/(L — (¢, x))dpuc = inf /(L — (¢, x))dv := —a(c)

1235]

e the a-function a: H(T",R) — R is convex with super-linear
growth. If the system is integrable H = h(y) = y = ¢ and

a(c) = h(c).
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Definitions and notations (continued)

Given g € Hi(T",R), let 5(g) = maxc(g, c) — a(c), called
[B-function;

Legendre-Fenchel duality g — £ (g) € H}(T",R),

ce Z(g) < alc)+B(g) = (g, c)-

Both a- B-functions are usually not smooth. Usually, if g is in
k-resonance, .Z(g) is k-dim.

@ A cylinder of periodic orbits with type A\g = £(\g) 1-codim,
C(g) = Ur>0-Z(Ag) makes up a channel;
@ hyperbolic fixed point Z(0) full dimensional.
Mather set M(c) = Usupppe, M(c) = nM(c);
Maiié set N'(c) (NV(c)): the set of c-minimal orbits (curves),
Each weak KAM solution of H(x,du + ¢) = a(c) produces
c-minimal curves (orbits): (x,du(x)) is the initial condition.
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Choice of diffusion path

Given two frequency vectors w = (w1, wp, -+ ,wp) and
W' = (w,wh, -+ ,wh), we choose a path
/
((,4.)1,&)2,"‘ 7wn) — (w17w27'” 7wn) —
/ /
(w17w2,... ’wn) _> _>
/ / / !/ / / /
(Wi, W,y Wh_1,wn) = (W1, W, Wy_1,Wh)
For the segment (w1,wo, - ,wy) — (Wi, w2, -+ ,wp) we use
approximation of rational (a, %, %,(IJ",?,).

@ we assume @,_3 is irrational (Diophantine) = as a increases
from wy to wi, 3 single and double resonance,

/
@ coordinate change (a, 22, 2,&,_3) — (a,0, ] ,q/,w,, 4)

© reduction of order, around single resonance, reduce n degrees
of freedom to n — 1 (Delshame-de la Llave-Seare 08)
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Multiple-strong resonance

after k-th step of reduction, further reduction can be done
along single resonance;

after n — 3 steps of reduction, we get a system of 3 degrees of
freedom;

once a point becomes strong double resonant at k-th step of
reduction, we call it (n — k)-multiple strong resonance;

o P P P

around multiple strong resonance, the dynamics turns out to
be complicated.
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Normal form

After n — 2 steps of transformation we get a normal form around
strong (n — 1)-resonance from H(x,y,—s,G) = E

1
G(X7.y7s) :§<Ay,y>_V2(X]_,X2)_ 5j\/J(X17 7Xj)
j=3
—GUR(X,y,S),
1 n—1
L(x, %, 8) =3 (A7, %) + Valxa.xe) + 3 61V, )
j=3

+ € R'(x, X, s),
where (x,y) € T" 1 xR, 7 €T,
I €1 K- Kokl

The matrix A has some singularities, but it does not cause trouble.
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Special case: n =3

As the first step, let us consider the simplest case n = 3 (double
resonance) and assume V5 has a unique minimal point at x = 0,
non-degenerate. Ignore the term €° R we have

1
L= 5<A—1>'<,>'<) + Vo(x)

The point (x,x) = (0,0) is a hyperbolic fixed point, and there is a
disk Fo = ag(minag) C HY(T? R) = R?

S
b Flat
~

-
lﬁ @ )

For ¢ € intFg, the Mather set M(c) = (0,0).

channel channel
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Dynamics around the fixed point

Heuristics:
& the stable and unstable manifolds intersect “transversally”
along homoclinics, it destructs invariant tori around {x = 0};

& it seems 3 Birkhoff instability region, any two Aubry-Mather

sets are connected, but the proof turns out to be in another
way.

Back to rigorous way
@ the boundary 0Fy = 0*Fg U (0F¢\0*Fo) where

9" Fo = {c € 0Fo : M(c)\{0} # &},

@ OF(\0*Fy contains countably many edges {E;}, V c € E; =
c-minimal orbits are either the fixed point or minimal
homoclinics with a homological type g; € H1(T?,Z);

© the set *Fg may not be empty.
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Generic potential destructs everything

Goal: 3 residual set ¥ C C"(T?,R) s.t. ¥V V € U it holds V
c € OFg that A'(c) € T? (no invariant torus for each ¢ € dFy).

@ each edge E; C 0F\0*Fy determines one barrier function =
countably many perturbations on V, = open-dense in C*

@ V c € 9'Fy, if the Mafié set is an invariant torus N(c) = T?,
one of the two cases occurs

the orbits in the sector lie on stable (unstable) manifold, the
angle > 7 = there are at most 4 points (edges) of first
cohomology class when N(c) = T?, destruct one by one!
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Candidates of Birkhoff instability region

OFg is compact, the upper semi-continuity of Mafié set on the first
cohomology class = 3 an annulus around A around Fq

V ¢ € A, Maiié set is not an invariant torus. For positive energy,
the dynamics on G~1(E) is similar to a twist map. E >0 =V
¢ € A non-zero rotation vector
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Topology of Maié set

1Lt

1 Ty 71

T
~—
\\:!\
~

Recover the small perturbation 3(A™1x, %) + V/(x)+€” R(x, X, s).
By the upper semi-continuity, for small € R, we have

=

N(c) & T? = section ¥ transversal to the flow s.t.

Hi(N(c) N X¢,Z) = span(0,0,1)
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a-functions for 3-d and 2.5-d

@ The Hamiltonian G(x,y) = 3(Ay,y) — V(x) — ¢’R is
obtained from the Hamiltonian H

1.3 y3 s E
H=-(A EA RNV R — —
2< (YaY3),(YaY3)>+\/E (X)+€ c
where (x3,y3) = (=5, /€G)
@ oy for H, on the energy level set (c, c3) € ay(E) =

C3 = \/EO[G(C)

where a¢ for G.
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Cohomology equivalence for autonomous system

The definition was introduced in C-Li 10

M={(c,3): an(c,c3) =a*, c3=-const.} = (c,c3),(c’,c§) el
(c,c3) —(c/,ch) =(c—c,0)e V+

V. = span{(0,0,1)}.

Any two classes on [ are cohomologically equivalent.
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A way to cross double resonance

@ around the flat Fg 3 an annulus A with thickness ed, admits a
foliation of circles {T'g}, V ¢,c’ € Tg = (¢, ag(c)) and
(c’,ag(c)) are equivalent = connecting orbits (C-Li 10)

@ corresponding to each channel, 3 NHIC which can reach

e'*9-close to Fy (in terms of energy) = connecting orbits
along cylinder (C-Yan 04, 09)

© As two channels extend into the annulus, we obtain a diffusion
path crossing the double resonance.
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What do the diffusion orbits look like?

@ assume the boundary JF( consists of k edges, each of them
corresponds to a homoclinic orbit, they stay on G~1(0);

@ in the energy level slightly higher than zero, there are k
hyperbolic periodic orbits close to the homoclinic orbits,
getting close to the hyperbolic fixed point;

© the stable manifold of one periodic orbit intersects
transversally the unstable manifold of another one;

@ in the phase space, by the A-lemma, we get orbits moving
from one periodic orbit to another. Indeed, if we label these
periodic orbits by 1,2, --- , k, then for all prescribed bi-infinite
symbolic sequence in {1,2,---, k}%, there is an orbit visiting
these periodic orbits according to the given sequence;

@ if OF( contains infinitely many edges, some of them
correspond to Aubry-Mather set, ...
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Diffusion path when n > 3

The truncated normal form (1 > d3 > - > 0, 1)

n—1

1
G(x,y,s) = §<Ay7y> - VQ(X1>X2) _Z(Sj\/j(xla aXJ)
j=3

& if we ignore the terms §;V/, the flat Fp = ag'(minag) is a
2-dim disk, y = (y3, -+ ,y,—1) keep constant;

& recover the terms §;V;, the flat Fq = agl(min ag) looks like a
pizza, stay in O(1/33)-neighbourhood of Fy;

& for g € Hi(T" 1, Z) let C(g) = Ups0-Z(A\g) C HY(T" 1, R),
Ve € Z(Ag) with A > Ao > 0 sufficiently small = Mather set
is a periodic orbit with type g;

& these channels {C(g;j)} are connected to Fp at A = 0.
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What cohomology equivalence do we have for n > 37

& what cohomology equivalence do we have? If we ignore the
terms {J;V;}, the Mafié set admits a product structure
c=(82¢8),y=(y,9), &yecR? ¢cecR3

N(€) = Nj(&) x T3
& T asection X of T 1st. ¢ ¢ R" ! standard unit vector
Ve = HI(N(C) N ZC7Z) = span{eg, €4, aen—l}

& using upper semi-continuity of Mafié set, for small §;V;, 3
annulus A around the pizza Fy which admits a foliation of
curves of cohomology equivalence
(c,cn), (c',cl) € {(c,cn) : an(c,cn) = a*, c, = const.} =

(&,8,ch) — (&,8,c))=(¢—¢,0)e V-
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What is the new difficulty when n > 3

& along each curve of cohomology equivalence, & keeps
constant;

& different channels {C(g;)} may be connected to the flat Fy
with different "height” (different &-coordinate)

Channel

Ladder

Channel
contour line for cohomology equivalence

these curves of cohomology equivalence may not connect that two
channels. How to solve this problem?

= Ladder climbing
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Construction of ladder

& the following system can be treated as two degrees of freedom

1
§<Ay7)/> — Va(x1, x2)

3 normally hyperbolic invariant cylinder (NHIC) close to the
m-strong resonance = NHIM of 2(n-1)-d, (Delshams-de la
Llave-Seare 08) = reduction of order;

A

1 . .
A3Y3? + §<An—4.Vn—4>Yn—4>

~ 1
h(l 4 13y3) + 5

& turn on one small term d3V3
1
§<Ay,)/> — Va(x1, x2) — 83V3(x1, x2,x3) =

- 1 1, ~ "
h(l + 13y3) + §A3Y32 — 03V3(0, x3, 1 + T3y3) + §<An—4)’n—4,yn—4>
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Construction of ladder (continued)

& without d3 V3, the stable manifold of NHIM intersects its
unstable manifold, but not transversally;

& turn on the term §3Vj3, we still have regularity of weak KAM
for 2-d system restricted on energy level E > min «;

& by normal hyperbolicity, we extend this regularity to the whole
space = transversality for system with 3 degrees of freedom
(treat (y4, - ,yn—1) as parameter);

& move (/,y3) along energy level (using hyperbolic structure:
stable and unstable manifold of NHIC)

A
1932

& connecting orbits with incomplete intersection for the
follow-up construction of ladder
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Regularity of weak KAM for 2-d system

& why do we want NHIC of 2-d? = with which we obtained the
%—Hélder regularity (C.-Yan 04, Zhou 11);

& why do we need the regularity? it seems the way available
only to show the intersection transversality of stable and
unstable “set” of all Mather sets, there are uncountably many;

& is there another way to get the regularity? a Hamiltonian with
2-degrees of freedom, restricted on energy level set H~1(E)
with £ > mina. (C. 11)

e one Aubry class determines one elementary weak KAM
e barrier function is defined by elementary weak KAM

B;j(x) = ui (x) = u (x)

e all elementary weak KAM can be parameterized by “volume” o
so that 0 — uf is $-Hélder in C°-topology
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New mechanism of local connecting orbit

Before this work there are two types of local connecting orbts
e by cohomology equivalence: J\>l(c) can be connected to
M(c') if ¢ ~ ¢
e by Arnold’s mechanism: if the stable “set” of M(c) intersects
its unstable “set” transversally, then M(c) can be connected
to M(c’) if ¢’ is close to c.
To construct ladder, we need to generalize the second one

& weaker condition: intersection may not be transversal, may
contain some circles {/;},

& weaker result: some more restriction = (c — ¢/, [¢;]) = 0.

This version of local connecting orbit is good enough for the
construction of ladders.
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Composition of simple ladders

The 1-st step: on 2(n — 1)d NHIC the normal form

A~

- 1 1 . .
h(l 4+ 13y3) + 5/“3)’3 —03V3(0,x3, 1 + 7—3Y3)+§<An74)/nf4-,)/n74>

a simple ladder: L3 ¢3 — ¢§

The 2-nd step: on 2(n — 2)d NHIC the normal form

1 1.
h(l + Tays) + §A4yf — 04 Vy(0,xa, | + T4Y4)+§<Anf5%775-%775>

a simple ladder: Ly ¢4 — ¢

We finally construct the ladder (with small size)

L=Lpq%--*%xL3: (c3, -+ ,cn1)— (- ,cr_q)-
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