How to cross multiple strong resonance

Chong-Qing CHENG & Jinxin XUE

Nanjing University & University of Chicago

June 3-8, 2015 - St. Petersburg

a priori unstable system: Bernard (08), C.-Yan (04), Delshames-de la Llave-Seara (06), Treschev (04)...

a priori stable system (nearly integrable systems)

$$H(x,y) = h(y) + \epsilon P(x,y), \qquad (x,y) \in \mathbb{T}^n \times \mathbb{R}^n.$$

Question: Under typical perturbation ϵP , \exists orbit (x(t), y(t)) s.t. y(t) connects any two (finitely many) small balls in the same energy level set $H^{-1}(E)$ for $E > \min h$.

If h is positive definite \exists announcements and works

- n=3 (2.5): Mather, C., Kaloshin-Zhang, Marco,
- n=3.5: Kaloshin-Zhang
- arbitrary n: C.-Xue (2015)

Ingredients of the proof (for nearly integrable systems)

- away from multiple-strong resonance ⇒ 2-dimensional normally hyperbolic invariant cylinder (NHIC) (for time-1-map)
 - higher energy \Rightarrow KAM
 - ② intermediate energy \Rightarrow variational
 - o lower energy (very close the *m*-strong resonance) ⇒ hyperbolic dynamics

with 2-d NHIC one obtains *a priori* unstable system (C-Yan 04,09)

cross multiple-strong resonance (lack of 2-d NHIC), for n = 3, double resonance problem
 l shall focus on this issue in this talk, for details refer to
 C.-Xue: arXiv1503.04153 (109 pages)

Definitions and notations

- Tonelli Lagrangian L: TTⁿ → ℝ if it is positive definite in x
 with super-liner growth and its Lagrangian flow is complete;
- A Tonelli Lagrangian is uniquely related to a Hamiltonian

$$H(x,y) = \max_{\dot{x}} \langle \dot{x}, y \rangle - L(x, \dot{x});$$

• Given $c \in H^1(\mathbb{T}^n, \mathbb{R}) = \mathbb{R}^n$, a holonomic probability measure μ_c on $T\mathbb{T}^n \times \mathbb{T}$ is called *c*-minimal if

$$\int (L - \langle \boldsymbol{c}, \dot{\boldsymbol{x}} \rangle) d\mu_{\boldsymbol{c}} = \inf_{\boldsymbol{\nu} \in \mathfrak{H}} \int (L - \langle \boldsymbol{c}, \dot{\boldsymbol{x}} \rangle) d\boldsymbol{\nu} := -\alpha(\boldsymbol{c})$$

the α-function α: H¹(Tⁿ, ℝ) → ℝ is convex with super-linear growth. If the system is integrable H = h(y) ⇒ y = c and α(c) = h(c).

Definitions and notations (continued)

- Given $g \in H_1(\mathbb{T}^n, \mathbb{R})$, let $\beta(g) = \max_c \langle g, c \rangle \alpha(c)$, called β -function;
- Legendre-Fenchel duality $g o \mathscr{L}(g) \in H^1(\mathbb{T}^n,\mathbb{R})$,

$$c \in \mathscr{L}(g) \iff \alpha(c) + \beta(g) = \langle g, c \rangle.$$

- Both α- β-functions are usually not smooth. Usually, if g is in k-resonance, L(g) is k-dim.
 - A cylinder of periodic orbits with type $\lambda g \Rightarrow \mathscr{L}(\lambda g)$ 1-codim, $\mathbb{C}(g) = \bigcup_{\lambda > 0} \mathscr{L}(\lambda g)$ makes up a channel;

2 hyperbolic fixed point $\mathscr{L}(0)$ full dimensional.

- Mather set $\tilde{\mathcal{M}}(c) = \cup \mathrm{supp}\mu_c$, $\mathcal{M}(c) = \pi \tilde{\mathcal{M}}(c)$;
- Mañé set Ñ(c) (N(c)): the set of c-minimal orbits (curves), Each weak KAM solution of H(x, ∂u + c) = α(c) produces c-minimal curves (orbits): (x, ∂u(x)) is the initial condition.

Choice of diffusion path

Given two frequency vectors $\omega = (\omega_1, \omega_2, \cdots, \omega_n)$ and $\omega' = (\omega'_1, \omega'_2, \cdots, \omega'_n)$, we choose a path

$$\begin{aligned} (\omega_1, \omega_2, \cdots, \omega_n) &\to (\omega'_1, \omega_2, \cdots, \omega_n) \to \\ (\omega'_1, \omega'_2, \cdots, \omega_n) \to \cdots \to \\ (\omega'_1, \omega'_2, \cdots, \omega'_{n-1}, \omega_n) \to (\omega'_1, \omega'_2, \cdots, \omega'_{n-1}, \omega'_n) \end{aligned}$$

For the segment $(\omega_1, \omega_2, \cdots, \omega_n) \rightarrow (\omega'_1, \omega_2, \cdots, \omega_n)$ we use approximation of rational $(a, \frac{p_2}{q_2}, \frac{p_3}{q_3}, \hat{\omega}_{n-3})$.

- we assume $\hat{\omega}_{n-3}$ is irrational (Diophantine) \Rightarrow as *a* increases from ω_1 to ω'_1 , \exists single and double resonance,
- $\textbf{ ordinate change } (a, \frac{p_2}{q_2}, \frac{p_3}{q_3}, \hat{\omega}_{n-3}) \rightarrow (a, 0, \frac{p'_3}{q'_3}, \frac{p'_4}{q'_4}, \hat{\omega}_{n-4})$
- reduction of order, around single resonance, reduce n degrees of freedom to n 1 (Delshame-de la Llave-Seare 08)

- after k-th step of reduction, further reduction can be done along single resonance;
- ♣ after n − 3 steps of reduction, we get a system of 3 degrees of freedom;
- once a point becomes strong double resonant at k-th step of reduction, we call it (n k)-multiple strong resonance;
- around multiple strong resonance, the dynamics turns out to be complicated.

Normal form

After n-2 steps of transformation we get a normal form around strong (n-1)-resonance from H(x, y, -s, G) = E

$$G(x, y, s) = \frac{1}{2} \langle Ay, y \rangle - V_2(x_1, x_2) - \sum_{j=3}^{n-1} \delta_j V_j(x_1, \cdots, x_j)$$
$$- \epsilon^{\sigma} R(x, y, s),$$
$$L(x, \dot{x}, s) = \frac{1}{2} \langle A^{-1} \dot{x}, \dot{x} \rangle + V_2(x_1, x_2) + \sum_{j=3}^{n-1} \delta_j V_j(x_1, \cdots, x_j)$$
$$+ \epsilon^{\sigma} R'(x, \dot{x}, s),$$

where $(x,y) \in \mathbb{T}^{n-1} imes \mathbb{R}^{n-1}$, $au \in \mathbb{T}$,

$$0 \ll \epsilon^{\sigma} \ll \delta_{n-1} \ll \cdots \ll \delta_3 \ll 1.$$

The matrix A has some singularities, but it does not cause trouble.

b 4 3

Special case: n = 3

As the first step, let us consider the simplest case n = 3 (double resonance) and assume V_2 has a unique minimal point at x = 0, non-degenerate. Ignore the term $\epsilon^{\sigma} R$ we have

$$L = \frac{1}{2} \langle A^{-1} \dot{x}, \dot{x} \rangle + V_2(x)$$

The point $(\dot{x}, x) = (0, 0)$ is a hyperbolic fixed point, and there is a disk $\mathbb{F}_0 = \alpha_G(\min \alpha_G) \subset H^1(\mathbb{T}^2, \mathbb{R}) = \mathbb{R}^2$

For $c\in \mathrm{int}\mathbb{F}_0$, the Mather set $\mathcal{\tilde{M}}(c)=(0,0).$

Dynamics around the fixed point

Heuristics:

- the stable and unstable manifolds intersect "transversally" along homoclinics, it destructs invariant tori around {x = 0};
- ♣ it seems ∃ Birkhoff instability region, any two Aubry-Mather sets are connected, but the proof turns out to be in another way.

Back to rigorous way

 $\bullet \ \text{the boundary} \ \partial \mathbb{F}_0 = \partial^* \mathbb{F}_0 \cup (\partial \mathbb{F}_0 \backslash \partial^* \mathbb{F}_0) \ \text{where}$

$$\partial^* \mathbb{F}_0 = \{ c \in \partial \mathbb{F}_0 : \mathcal{M}(c) \setminus \{0\} \neq \varnothing \},\$$

- ∂𝔽₀\∂*𝔽₀ contains countably many edges {𝔼_i}, ∀ c ∈ 𝔼_i ⇒ c-minimal orbits are either the fixed point or minimal homoclinics with a homological type g_i ∈ H₁(𝔼², 𝔼);
- (a) the set $\partial^* \mathbb{F}_0$ may not be empty.

Generic potential destructs everything

Goal: \exists residual set $\mathfrak{V} \subset C^r(\mathbb{T}^2, \mathbb{R})$ s.t. $\forall V \in \mathfrak{V}$ it holds $\forall c \in \partial \mathbb{F}_0$ that $\mathcal{N}(c) \subsetneq \mathbb{T}^2$ (no invariant torus for each $c \in \partial \mathbb{F}_0$).

- each edge $\mathbb{E}_i \subset \partial \mathbb{F}_0 \setminus \partial^* \mathbb{F}_0$ determines one barrier function \Rightarrow countably many perturbations on $V_2 \Rightarrow$ open-dense in C^r

the orbits in the sector lie on stable (unstable) manifold, the angle $\geq \frac{\pi}{2} \Rightarrow$ there are at most 4 points (edges) of first cohomology class when $\mathcal{N}(c) = \mathbb{T}^2$, destruct one by one!

Candidates of Birkhoff instability region

 $\partial \mathbb{F}_0$ is compact, the upper semi-continuity of Mañé set on the first cohomology class $\Rightarrow \exists$ an annulus around \mathbb{A} around \mathbb{F}_0

 $\forall c \in \mathbb{A}$, Mañé set is not an invariant torus. For positive energy, the dynamics on $G^{-1}(E)$ is similar to a twist map. $E > 0 \Rightarrow \forall c \in \mathbb{A}$ non-zero rotation vector

Topology of Mañé set

Recover the small perturbation $\frac{1}{2}\langle A^{-1}\dot{x},\dot{x}\rangle + V(x) + \epsilon^{\sigma}R(x,\dot{x},s)$. By the upper semi-continuity, for small $\epsilon^{\sigma}R$, we have

 $\mathcal{N}(c) \subsetneq \mathbb{T}^2 \Rightarrow$ section Σ_c transversal to the flow s.t.

 $\textit{H}_1(\mathcal{N}(c) \cap \Sigma_c, \mathbb{Z}) = \operatorname{span}(0, 0, 1)$

α -functions for 3-d and 2.5-d

• The Hamiltonian $G(x, y) = \frac{1}{2} \langle Ay, y \rangle - V(x) - \epsilon^{\sigma} R$ is obtained from the Hamiltonian H

$$H = \frac{1}{2} \langle \bar{A}(y, y_3), (y, y_3) \rangle + \frac{y_3}{\sqrt{\epsilon}} - V(x) + \epsilon^{\sigma} \bar{R} = \frac{E}{\epsilon}$$

where
$$(x_3, y_3) = (-s, \sqrt{\epsilon}G)$$

3 α_H for H, on the energy level set $(c, c_3) \in \alpha_H(\frac{E}{\epsilon}) \Rightarrow$

$$c_3 = \sqrt{\epsilon} \alpha_G(c)$$

where α_{G} for G.

Cohomology equivalence for autonomous system

The definition was introduced in C-Li 10

 $\Gamma = \{ (c, c_3) : \alpha_H(c, c_3) = \alpha^*, \ c_3 = \text{const.} \} \Rightarrow (c, c_3), (c', c'_3) \in \Gamma$ $(c, c_3) - (c', c'_3) = (c - c', 0) \in V_c^{\perp}$

 $V_c = \text{span}\{(0,0,1)\}.$

Any two classes on Γ are cohomologically equivalent.

A way to cross double resonance

- around the flat $\mathbb{F}_0 \exists$ an annulus \mathbb{A} with thickness ϵd , admits a foliation of circles $\{\Gamma_E\}, \forall c, c' \in \Gamma_E \Rightarrow (c, \alpha_G(c))$ and $(c', \alpha_G(c'))$ are equivalent \Rightarrow connecting orbits (C-Li 10)
- ② corresponding to each channel, ∃ NHIC which can reach $\epsilon^{1+\delta}$ -close to \mathbb{F}_0 (in terms of energy) ⇒ connecting orbits along cylinder (C-Yan 04, 09)

As two channels extend into the annulus, we obtain a diffusion path crossing the double resonance.

What do the diffusion orbits look like?

- assume the boundary ∂𝔽₀ consists of k edges, each of them corresponds to a homoclinic orbit, they stay on G⁻¹(0);
- in the energy level slightly higher than zero, there are k hyperbolic periodic orbits close to the homoclinic orbits, getting close to the hyperbolic fixed point;
- the stable manifold of one periodic orbit intersects transversally the unstable manifold of another one;
- in the phase space, by the λ-lemma, we get orbits moving from one periodic orbit to another. Indeed, if we label these periodic orbits by 1, 2, ··· , k, then for all prescribed bi-infinite symbolic sequence in {1, 2, ··· , k}^Z, there is an orbit visiting these periodic orbits according to the given sequence;

Diffusion path when n > 3

The truncated normal form $(1 \gg \delta_3 \gg \cdots \gg \delta_{n-1})$

$$G(x,y,s)=\frac{1}{2}\langle Ay,y\rangle-V_2(x_1,x_2)-\sum_{j=3}^{n-1}\delta_jV_j(x_1,\cdots,x_j)$$

- * if we ignore the terms $\delta_j V_j$, the flat $\tilde{\mathbb{F}}_0 = \alpha_G^{-1}(\min \alpha_G)$ is a 2-dim disk, $\hat{y} = (y_3, \cdots, y_{n-1})$ keep constant;
- * recover the terms $\delta_j V_j$, the flat $\mathbb{F}_0 = \alpha_G^{-1}(\min \alpha_G)$ looks like a pizza, stay in $O(\sqrt{\delta_3})$ -neighbourhood of $\tilde{\mathbb{F}}_0$;
- ♣ for g ∈ H₁(Tⁿ⁻¹, Z) let C(g) = ∪_{λ>0}ℒ(λg) ⊂ H¹(Tⁿ⁻¹, R), ∀c ∈ ℒ(λg) with λ ≥ λ₀ > 0 sufficiently small ⇒ Mather set is a periodic orbit with type g;
- these channels $\{\mathbb{C}(g_i)\}$ are connected to \mathbb{F}_0 at $\lambda = 0$.

What cohomology equivalence do we have for n > 3?

♣ what cohomology equivalence do we have? If we ignore the terms {δ_jV_j}, the Mañé set admits a product structure c = (c̃, ĉ), y = (ỹ, ŷ), c̃, ỹ ∈ ℝ², ĉ, c̃ ∈ ℝⁿ⁻³

$$\mathcal{N}(c) = \mathcal{N}_{\hat{y}}(\tilde{c}) imes \mathbb{T}^{n-3}$$

♣ ∃ a section Σ_c of \mathbb{T}^{n-1} s.t. $e_i \in \mathbb{R}^{n-1}$ standard unit vector

$$V_c = H_1(\mathcal{N}(c) \cap \Sigma_c, \mathbb{Z}) = \operatorname{span}\{e_3, e_4, \cdots, e_{n-1}\}$$

♣ using upper semi-continuity of Mañé set, for small $\delta_j V_j$, ∃ annulus A around the pizza \mathbb{F}_0 which admits a foliation of curves of cohomology equivalence $(c, c_n), (c', c'_n) \in \{(c, c_n) : \alpha_H(c, c_n) = \alpha^*, c_n = \text{const.}\} \Rightarrow$

$$(\tilde{c},\hat{c},c_n)-(\tilde{c}',\hat{c}',c_n')=(\tilde{c}-\tilde{c}',0)\in V_c^{\perp}$$

What is the new difficulty when n > 3

- along each curve of cohomology equivalence, ĉ keeps constant;
- ♣ different channels {C(g_i)} may be connected to the flat F₀ with different "height" (different č-coordinate)

these curves of cohomology equivalence may not connect that two channels. How to solve this problem?

\Rightarrow Ladder climbing

Construction of ladder

the following system can be treated as two degrees of freedom

$$\frac{1}{2}\langle Ay,y\rangle-V_2(x_1,x_2)$$

 \exists normally hyperbolic invariant cylinder (NHIC) close to the *m*-strong resonance \Rightarrow NHIM of 2(n-1)-d, (Delshams-de la Llave-Seare 08) \Rightarrow reduction of order;

$$\tilde{h}(I+\tau_3y_3)+\frac{1}{2}A_3y_3^2+\frac{1}{2}\langle \hat{A}_{n-4}\hat{y}_{n-4},\hat{y}_{n-4}\rangle$$

 \clubsuit turn on one small term $\delta_3 V_3$

$$\frac{1}{2} \langle Ay, y \rangle - V_2(x_1, x_2) - \delta_3 V_3(x_1, x_2, x_3) \Rightarrow \\ \tilde{h}(I + \tau_3 y_3) + \frac{1}{2} A_3 y_3^2 - \delta_3 V_3'(\theta, x_3, I + \tau_3 y_3) + \frac{1}{2} \langle \hat{A}_{n-4} \hat{y}_{n-4}, \hat{y}_{n-4} \rangle$$

Construction of ladder (continued)

- * without $\delta_3 V_3$, the stable manifold of NHIM intersects its unstable manifold, but not transversally;
- * turn on the term $\delta_3 V_3$, we still have regularity of weak KAM for 2-d system restricted on energy level $E > \min \alpha$;
- ♣ by normal hyperbolicity, we extend this regularity to the whole space ⇒ transversality for system with 3 degrees of freedom (treat (y₄, · · · , y_{n-1}) as parameter);
- move (1, y₃) along energy level (using hyperbolic structure: stable and unstable manifold of NHIC)

connecting orbits with incomplete intersection for the follow-up construction of ladder

Regularity of weak KAM for 2-d system

- ♣ why do we want NHIC of 2-d? ⇒ with which we obtained the ¹/₂-Hölder regularity (C.-Yan 04, Zhou 11);
- why do we need the regularity? it seems the way available only to show the intersection transversality of stable and unstable "set" of all Mather sets, there are uncountably many;
- ♣ is there another way to get the regularity? a Hamiltonian with 2-degrees of freedom, restricted on energy level set $H^{-1}(E)$ with $E > \min \alpha$. (C. 11)
 - one Aubry class determines one elementary weak KAM
 - barrier function is defined by elementary weak KAM

$$B_{i,j}(x) = u_i^-(x) - u_i^+(x)$$

• all elementary weak KAM can be parameterized by "volume" σ so that $\sigma \to u_{\sigma}^{\pm}$ is $\frac{1}{3}$ -Hölder in C^0 -topology

New mechanism of local connecting orbit

Before this work there are two types of local connecting orbts

- by cohomology equivalence: $\tilde{\mathcal{M}}(c)$ can be connected to $\tilde{\mathcal{M}}(c')$ if $c \sim c';$
- by Arnold's mechanism: if the stable "set" of $\tilde{\mathcal{M}}(c)$ intersects its unstable "set" transversally, then $\tilde{\mathcal{M}}(c)$ can be connected to $\tilde{\mathcal{M}}(c')$ if c' is close to c.

To construct ladder, we need to generalize the second one

weaker condition: intersection may not be transversal, may contain some circles {l_i},

weaker result: some more restriction $\Rightarrow \langle c - c', [\ell_i] \rangle = 0.$

This version of local connecting orbit is good enough for the construction of ladders.

Composition of simple ladders

The 1-st step: on 2(n-1)d NHIC the normal form

$$\tilde{h}(I+\tau_{3}y_{3})+\frac{1}{2}A_{3}y_{3}^{2}-\delta_{3}V_{3}'(\theta,x_{3},I+\tau_{3}y_{3})+\frac{1}{2}\langle\hat{A}_{n-4}\hat{y}_{n-4},\hat{y}_{n-4}\rangle$$

a simple ladder: $\mathbb{L}_3 \ c_3 \to c_3'$

The 2-nd step: on 2(n-2)d NHIC the normal form

$$\tilde{h}(I + \tau_4 y_4) + \frac{1}{2} A_4 y_4^2 - \delta_4 V_4'(\theta, x_4, I + \tau_4 y_4) + \frac{1}{2} \langle \hat{A}_{n-5} \hat{y}_{n-5}, \hat{y}_{n-5} \rangle$$

a simple ladder: \mathbb{L}_4 $c_4
ightarrow c_4'$

We finally construct the ladder (with small size)

$$\mathbb{L}=\mathbb{L}_{n-1}*\cdots*\mathbb{L}_3: \ (c_3,\cdots,c_{n-1})
ightarrow (c_3',\cdots,c_{n-1}').$$