How to cross multiple strong resonance

Chong-Qing CHENG \& Jinxin XUE
Nanjing University \& University of Chicago
June 3-8, 2015 - St. Petersburg

Arnold diffusion

a priori unstable system: Bernard (08), C.-Yan (04), Delshames-de la Llave-Seara (06), Treschev (04)...
a priori stable system (nearly integrable systems)

$$
H(x, y)=h(y)+\epsilon P(x, y), \quad(x, y) \in \mathbb{T}^{n} \times \mathbb{R}^{n}
$$

Question: Under typical perturbation $\epsilon P, \exists$ orbit $(x(t), y(t))$ s.t. $y(t)$ connects any two (finitely many) small balls in the same energy level set $H^{-1}(E)$ for $E>\min h$.

If h is positive definite \exists announcements and works

- $\mathrm{n}=3$ (2.5): Mather, C., Kaloshin-Zhang, Marco,
- $\mathrm{n}=3.5$: Kaloshin-Zhang
- arbitrary n: C.-Xue (2015)

Ingredients of the proof (for nearly integrable systems)

(1) away from multiple-strong resonance \Rightarrow 2-dimensional normally hyperbolic invariant cylinder (NHIC) (for time-1-map)
(1) higher energy $\Rightarrow \mathrm{KAM}$
(2) intermediate energy \Rightarrow variational
(3) lower energy (very close the m-strong resonance) \Rightarrow hyperbolic dynamics
with 2-d NHIC one obtains a priori unstable system (C-Yan 04,09)
(2) cross multiple-strong resonance (lack of 2-d NHIC), for $n=3$, double resonance problem
I shall focus on this issue in this talk, for details refer to C.-Xue: arXiv1503.04153 (109 pages)

- Tonelli Lagrangian $L: T \mathbb{T}^{n} \rightarrow \mathbb{R}$ if it is positive definite in \dot{x} with super-liner growth and its Lagrangian flow is complete;
- A Tonelli Lagrangian is uniquely related to a Hamiltonian

$$
H(x, y)=\max _{\dot{x}}\langle\dot{x}, y\rangle-L(x, \dot{x}) ;
$$

- Given $c \in H^{1}\left(\mathbb{T}^{n}, \mathbb{R}\right)=\mathbb{R}^{n}$, a holonomic probability measure μ_{c} on $T \mathbb{T}^{n} \times \mathbb{T}$ is called c-minimal if

$$
\int(L-\langle c, \dot{x}\rangle) d \mu_{c}=\inf _{\nu \in \mathfrak{H}} \int(L-\langle c, \dot{x}\rangle) d \nu:=-\alpha(c)
$$

- the α-function $\alpha: H^{1}\left(\mathbb{T}^{n}, \mathbb{R}\right) \rightarrow \mathbb{R}$ is convex with super-linear growth. If the system is integrable $H=h(y) \Rightarrow y=c$ and $\alpha(c)=h(c)$.

Definitions and notations (continued)

- Given $g \in H_{1}\left(\mathbb{T}^{n}, \mathbb{R}\right)$, let $\beta(g)=\max _{c}\langle g, c\rangle-\alpha(c)$, called β-function;
- Legendre-Fenchel duality $g \rightarrow \mathscr{L}(g) \in H^{1}\left(\mathbb{T}^{n}, \mathbb{R}\right)$,

$$
c \in \mathscr{L}(g) \Longleftrightarrow \alpha(c)+\beta(g)=\langle g, c\rangle .
$$

- Both α - β-functions are usually not smooth. Usually, if g is in k-resonance, $\mathscr{L}(g)$ is k-dim.
(1) A cylinder of periodic orbits with type $\lambda g \Rightarrow \mathscr{L}(\lambda g) 1$-codim, $\mathbb{C}(g)=\cup_{\lambda>0} \mathscr{L}(\lambda g)$ makes up a channel;
(2) hyperbolic fixed point $\mathscr{L}(0)$ full dimensional.
- Mather set $\tilde{\mathcal{M}}(c)=U \operatorname{supp} \mu_{c}, \mathcal{M}(c)=\pi \tilde{\mathcal{M}}(c)$;
- Mañé set $\tilde{\mathcal{N}}(c)(\mathcal{N}(c))$: the set of c-minimal orbits (curves), Each weak KAM solution of $H(x, \partial u+c)=\alpha(c)$ produces c-minimal curves (orbits): $(x, \partial u(x))$ is the initial condition.

Choice of diffusion path

Given two frequency vectors $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$ and $\omega^{\prime}=\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \cdots, \omega_{n}^{\prime}\right)$, we choose a path

$$
\begin{aligned}
& \left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \rightarrow\left(\omega_{1}^{\prime}, \omega_{2}, \cdots, \omega_{n}\right) \rightarrow \\
& \left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \cdots, \omega_{n}\right) \rightarrow \cdots \rightarrow \\
& \left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \cdots, \omega_{n-1}^{\prime}, \omega_{n}\right) \rightarrow\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \cdots, \omega_{n-1}^{\prime}, \omega_{n}^{\prime}\right)
\end{aligned}
$$

For the segment $\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \rightarrow\left(\omega_{1}^{\prime}, \omega_{2}, \cdots, \omega_{n}\right)$ we use approximation of rational $\left(a, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}, \hat{\omega}_{n-3}\right)$.
(1) we assume $\hat{\omega}_{n-3}$ is irrational (Diophantine) \Rightarrow as a increases from ω_{1} to $\omega_{1}^{\prime}, \exists$ single and double resonance,
(2) coordinate change $\left(a, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}, \hat{\omega}_{n-3}\right) \rightarrow\left(a, 0, \frac{p_{3}^{\prime}}{q_{3}^{\prime}}, \frac{p_{4}^{\prime}}{q_{4}^{\prime}}, \hat{\omega}_{n-4}\right)$
(3) reduction of order, around single resonance, reduce n degrees of freedom to $n-1$ (Delshame-de la Llave-Seare 08)

Multiple-strong resonance

\& after k-th step of reduction, further reduction can be done along single resonance;
\& after $n-3$ steps of reduction, we get a system of 3 degrees of freedom;
\& once a point becomes strong double resonant at k-th step of reduction, we call it ($n-k$)-multiple strong resonance;
\& around multiple strong resonance, the dynamics turns out to be complicated.

Normal form

After $n-2$ steps of transformation we get a normal form around strong ($n-1$)-resonance from $H(x, y,-s, G)=E$

$$
\begin{aligned}
G(x, y, s)= & \frac{1}{2}\langle A y, y\rangle-V_{2}\left(x_{1}, x_{2}\right)-\sum_{j=3}^{n-1} \delta_{j} V_{j}\left(x_{1}, \cdots, x_{j}\right) \\
& -\epsilon^{\sigma} R(x, y, s) \\
L(x, \dot{x}, s)= & \frac{1}{2}\left\langle A^{-1} \dot{x}, \dot{x}\right\rangle+V_{2}\left(x_{1}, x_{2}\right)+\sum_{j=3}^{n-1} \delta_{j} V_{j}\left(x_{1}, \cdots, x_{j}\right) \\
& +\epsilon^{\sigma} R^{\prime}(x, \dot{x}, s)
\end{aligned}
$$

where $(x, y) \in \mathbb{T}^{n-1} \times \mathbb{R}^{n-1}, \tau \in \mathbb{T}$,

$$
0 \ll \epsilon^{\sigma} \ll \delta_{n-1} \ll \cdots \ll \delta_{3} \ll 1
$$

The matrix A has some singularities, but it does not cause trouble.

Special case: $n=3$

As the first step, let us consider the simplest case $n=3$ (double resonance) and assume V_{2} has a unique minimal point at $x=0$, non-degenerate. Ignore the term $\epsilon^{\sigma} R$ we have

$$
L=\frac{1}{2}\left\langle A^{-1} \dot{x}, \dot{x}\right\rangle+V_{2}(x)
$$

The point $(\dot{x}, x)=(0,0)$ is a hyperbolic fixed point, and there is a disk $\mathbb{F}_{0}=\alpha_{G}\left(\min \alpha_{G}\right) \subset H^{1}\left(\mathbb{T}^{2}, \mathbb{R}\right)=\mathbb{R}^{2}$

For $c \in \operatorname{int} \mathbb{F}_{0}$, the Mather set $\tilde{\mathcal{M}}(c)=(0,0)$.

Dynamics around the fixed point

Heuristics:
\& the stable and unstable manifolds intersect "transversally" along homoclinics, it destructs invariant tori around $\{\dot{x}=0\}$;
\& it seems \exists Birkhoff instability region, any two Aubry-Mather sets are connected, but the proof turns out to be in another way.
Back to rigorous way
(1) the boundary $\partial \mathbb{F}_{0}=\partial^{*} \mathbb{F}_{0} \cup\left(\partial \mathbb{F}_{0} \backslash \partial^{*} \mathbb{F}_{0}\right)$ where

$$
\partial^{*} \mathbb{F}_{0}=\left\{c \in \partial \mathbb{F}_{0}: \mathcal{M}(c) \backslash\{0\} \neq \varnothing\right\}
$$

(2) $\partial \mathbb{F}_{0} \backslash \partial^{*} \mathbb{F}_{0}$ contains countably many edges $\left\{\mathbb{E}_{i}\right\}, \forall c \in \mathbb{E}_{i} \Rightarrow$ c-minimal orbits are either the fixed point or minimal homoclinics with a homological type $g_{i} \in H_{1}\left(\mathbb{T}^{2}, \mathbb{Z}\right)$;
(3) the set $\partial^{*} \mathbb{F}_{0}$ may not be empty.

Generic potential destructs everything

Goal: \exists residual set $\mathfrak{V} \subset C^{r}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ s.t. $\forall V \in \mathfrak{V}$ it holds \forall $c \in \partial \mathbb{F}_{0}$ that $\mathcal{N}(c) \nsubseteq \mathbb{T}^{2}$ (no invariant torus for each $c \in \partial \mathbb{F}_{0}$).
(1) each edge $\mathbb{E}_{i} \subset \partial \mathbb{F}_{0} \backslash \partial^{*} \mathbb{F}_{0}$ determines one barrier function \Rightarrow countably many perturbations on $V_{2} \Rightarrow$ open-dense in C^{r}
(2) $\forall c \in \partial^{*} \mathbb{F}_{0}$, if the Mañé set is an invariant torus $\mathcal{N}(c)=\mathbb{T}^{2}$, one of the two cases occurs

the orbits in the sector lie on stable (unstable) manifold, the angle $\geq \frac{\pi}{2} \Rightarrow$ there are at most 4 points (edges) of first cohomology class when $\mathcal{N}(c)=\mathbb{T}^{2}$, destruct one by one!

Candidates of Birkhoff instability region

$\partial \mathbb{F}_{0}$ is compact, the upper semi-continuity of Mañé set on the first cohomology class $\Rightarrow \exists$ an annulus around \mathbb{A} around \mathbb{F}_{0}

$\forall c \in \mathbb{A}$, Mañé set is not an invariant torus. For positive energy, the dynamics on $G^{-1}(E)$ is similar to a twist map. $E>0 \Rightarrow \forall$ $c \in \mathbb{A}$ non-zero rotation vector

Topology of Mañé set

x_{2}

Recover the small perturbation $\frac{1}{2}\left\langle A^{-1} \dot{x}, \dot{x}\right\rangle+V(x)+\epsilon^{\sigma} R(x, \dot{x}, s)$. By the upper semi-continuity, for small $\epsilon^{\sigma} R$, we have

$\mathcal{N}(c) \nsubseteq \mathbb{T}^{2} \Rightarrow$ section Σ_{c} transversal to the flow s.t.

$$
H_{1}\left(\mathcal{N}(c) \cap \Sigma_{c}, \mathbb{Z}\right)=\operatorname{span}(0,0,1)
$$

(1) The Hamiltonian $G(x, y)=\frac{1}{2}\langle A y, y\rangle-V(x)-\epsilon^{\sigma} R$ is obtained from the Hamiltonian H

$$
H=\frac{1}{2}\left\langle\bar{A}\left(y, y_{3}\right),\left(y, y_{3}\right)\right\rangle+\frac{y_{3}}{\sqrt{\epsilon}}-V(x)+\epsilon^{\sigma} \bar{R}=\frac{E}{\epsilon}
$$

where $\left(x_{3}, y_{3}\right)=(-s, \sqrt{\epsilon} G)$
(2) α_{H} for H, on the energy level set $\left(c, c_{3}\right) \in \alpha_{H}\left(\frac{E}{\epsilon}\right) \Rightarrow$

$$
c_{3}=\sqrt{\epsilon} \alpha_{G}(c)
$$

where α_{G} for G.

Cohomology equivalence for autonomous system

The definition was introduced in C-Li 10

$\Gamma=\left\{\left(c, c_{3}\right): \alpha_{H}\left(c, c_{3}\right)=\alpha^{*}, c_{3}=\right.$ const. $\} \Rightarrow\left(c, c_{3}\right),\left(c^{\prime}, c_{3}^{\prime}\right) \in \Gamma$

$$
\begin{gathered}
\left(c, c_{3}\right)-\left(c^{\prime}, c_{3}^{\prime}\right)=\left(c-c^{\prime}, 0\right) \in V_{c}^{\perp} \\
V_{c}=\operatorname{span}\{(0,0,1)\} .
\end{gathered}
$$

Any two classes on 「 are cohomologically equivalent.

A way to cross double resonance

(1) around the flat $\mathbb{F}_{0} \exists$ an annulus \mathbb{A} with thickness ϵd, admits a foliation of circles $\left\{\Gamma_{E}\right\}, \forall c, c^{\prime} \in \Gamma_{E} \Rightarrow\left(c, \alpha_{G}(c)\right)$ and ($c^{\prime}, \alpha_{G}\left(c^{\prime}\right)$) are equivalent \Rightarrow connecting orbits (C-Li 10)
(2) corresponding to each channel, $\exists \mathrm{NHIC}$ which can reach $\epsilon^{1+\delta}$-close to \mathbb{F}_{0} (in terms of energy) \Rightarrow connecting orbits along cylinder (C-Yan 04, 09)

(3) As two channels extend into the annulus, we obtain a diffusion path crossing the double resonance.

What do the diffusion orbits look like?

(1) assume the boundary $\partial \mathbb{F}_{0}$ consists of k edges, each of them corresponds to a homoclinic orbit, they stay on $G^{-1}(0)$;
(2) in the energy level slightly higher than zero, there are k hyperbolic periodic orbits close to the homoclinic orbits, getting close to the hyperbolic fixed point;
(3) the stable manifold of one periodic orbit intersects transversally the unstable manifold of another one;
(9) in the phase space, by the λ-lemma, we get orbits moving from one periodic orbit to another. Indeed, if we label these periodic orbits by $1,2, \cdots, k$, then for all prescribed bi-infinite symbolic sequence in $\{1,2, \cdots, k\}^{\mathbb{Z}}$, there is an orbit visiting these periodic orbits according to the given sequence;
(5) if $\partial \mathbb{F}_{0}$ contains infinitely many edges, some of them correspond to Aubry-Mather set, ...

Diffusion path when $n>3$

The truncated normal form $\left(1 \gg \delta_{3} \gg \cdots \gg \delta_{n-1}\right)$

$$
G(x, y, s)=\frac{1}{2}\langle A y, y\rangle-V_{2}\left(x_{1}, x_{2}\right)-\sum_{j=3}^{n-1} \delta_{j} V_{j}\left(x_{1}, \cdots, x_{j}\right)
$$

\& if we ignore the terms $\delta_{j} V_{j}$, the flat $\tilde{\mathbb{F}}_{0}=\alpha_{G}^{-1}\left(\min \alpha_{G}\right)$ is a 2-dim disk, $\hat{y}=\left(y_{3}, \cdots, y_{n-1}\right)$ keep constant;
\& recover the terms $\delta_{j} V_{j}$, the flat $\mathbb{F}_{0}=\alpha_{G}^{-1}\left(\min \alpha_{G}\right)$ looks like a pizza, stay in $O\left(\sqrt{\delta_{3}}\right)$-neighbourhood of $\tilde{\mathbb{F}}_{0}$;
\AA for $g \in H_{1}\left(\mathbb{T}^{n-1}, \mathbb{Z}\right)$ let $\mathbb{C}(g)=\cup_{\lambda>0} \mathscr{L}(\lambda g) \subset H^{1}\left(\mathbb{T}^{n-1}, \mathbb{R}\right)$, $\forall c \in \mathscr{L}(\lambda g)$ with $\lambda \geq \lambda_{0}>0$ sufficiently small \Rightarrow Mather set is a periodic orbit with type g;
\& these channels $\left\{\mathbb{C}\left(g_{i}\right)\right\}$ are connected to \mathbb{F}_{0} at $\lambda=0$.
© what cohomology equivalence do we have? If we ignore the terms $\left\{\delta_{j} V_{j}\right\}$, the Mañé set admits a product structure

$$
\begin{array}{r}
c=(\tilde{c}, \hat{c}), y=(\tilde{y}, \hat{y}), \tilde{c}, \tilde{y} \in \mathbb{R}^{2}, \hat{c}, \tilde{c} \in \mathbb{R}^{n-3} \\
\mathcal{N}(c)=\mathcal{N}_{\hat{y}}(\tilde{c}) \times \mathbb{T}^{n-3}
\end{array}
$$

\& \exists a section Σ_{c} of \mathbb{T}^{n-1} s.t. $e_{i} \in \mathbb{R}^{n-1}$ standard unit vector

$$
V_{c}=H_{1}\left(\mathcal{N}(c) \cap \Sigma_{c}, \mathbb{Z}\right)=\operatorname{span}\left\{e_{3}, e_{4}, \cdots, e_{n-1}\right\}
$$

\& using upper semi-continuity of Mañé set, for small $\delta_{j} V_{j}, \exists$ annulus \mathbb{A} around the pizza \mathbb{F}_{0} which admits a foliation of curves of cohomology equivalence

$$
\begin{gathered}
\left(c, c_{n}\right),\left(c^{\prime}, c_{n}^{\prime}\right) \in\left\{\left(c, c_{n}\right): \alpha_{H}\left(c, c_{n}\right)=\alpha^{*}, c_{n}=\text { const. }\right\} \Rightarrow \\
\left(\tilde{c}, \hat{c}, c_{n}\right)-\left(\tilde{c}^{\prime}, \hat{c}^{\prime}, c_{n}^{\prime}\right)=\left(\tilde{c}-\tilde{c}^{\prime}, 0\right) \in V_{c}^{\perp}
\end{gathered}
$$

What is the new difficulty when $n>3$

\& along each curve of cohomology equivalence, \hat{c} keeps constant;
\& different channels $\left\{\mathbb{C}\left(g_{i}\right)\right\}$ may be connected to the flat \mathbb{F}_{0} with different "height" (different \tilde{c}-coordinate)

these curves of cohomology equivalence may not connect that two channels. How to solve this problem?

$$
\Rightarrow \text { Ladder climbing }
$$

Construction of ladder

\& the following system can be treated as two degrees of freedom

$$
\frac{1}{2}\langle A y, y\rangle-V_{2}\left(x_{1}, x_{2}\right)
$$

\exists normally hyperbolic invariant cylinder (NHIC) close to the m-strong resonance \Rightarrow NHIM of 2(n-1)-d, (Delshams-de la Llave-Seare 08$) \Rightarrow$ reduction of order;

$$
\tilde{h}\left(I+\tau_{3} y_{3}\right)+\frac{1}{2} A_{3} y_{3}^{2}+\frac{1}{2}\left\langle\hat{A}_{n-4} \hat{y}_{n-4}, \hat{y}_{n-4}\right\rangle
$$

\& turn on one small term $\delta_{3} V_{3}$

$$
\begin{gathered}
\frac{1}{2}\langle A y, y\rangle-V_{2}\left(x_{1}, x_{2}\right)-\delta_{3} V_{3}\left(x_{1}, x_{2}, x_{3}\right) \Rightarrow \\
\tilde{h}\left(I+\tau_{3} y_{3}\right)+\frac{1}{2} A_{3} y_{3}^{2}-\delta_{3} V_{3}^{\prime}\left(\theta, x_{3}, I+\tau_{3} y_{3}\right)+\frac{1}{2}\left\langle\hat{A}_{n-4} \hat{y}_{n-4}, \hat{y}_{n-4}\right\rangle
\end{gathered}
$$

Construction of ladder (continued)

\& without $\delta_{3} V_{3}$, the stable manifold of NHIM intersects its unstable manifold, but not transversally;
\& turn on the term $\delta_{3} V_{3}$, we still have regularity of weak KAM for 2-d system restricted on energy level $E>\min \alpha$;
\& by normal hyperbolicity, we extend this regularity to the whole space \Rightarrow transversality for system with 3 degrees of freedom (treat $\left(y_{4}, \cdots, y_{n-1}\right)$ as parameter);
\& move (I, y_{3}) along energy level (using hyperbolic structure: stable and unstable manifold of NHIC)

\& connecting orbits with incomplete intersection for the follow-up construction of ladder

Regularity of weak KAM for 2-d system

\& why do we want NHIC of 2-d? \Rightarrow with which we obtained the $\frac{1}{2}$-Hölder regularity (C.-Yan 04, Zhou 11);
\& why do we need the regularity? it seems the way available only to show the intersection transversality of stable and unstable "set" of all Mather sets, there are uncountably many;
$\%$ is there another way to get the regularity? a Hamiltonian with 2-degrees of freedom, restricted on energy level set $H^{-1}(E)$ with $E>\min \alpha$. (C. 11)

- one Aubry class determines one elementary weak KAM
- barrier function is defined by elementary weak KAM

$$
B_{i, j}(x)=u_{i}^{-}(x)-u_{j}^{+}(x)
$$

- all elementary weak KAM can be parameterized by "volume" σ so that $\sigma \rightarrow u_{\sigma}^{ \pm}$is $\frac{1}{3}$-Hölder in C^{0}-topology

New mechanism of local connecting orbit

Before this work there are two types of local connecting orbts

- by cohomology equivalence: $\tilde{\mathcal{M}}(c)$ can be connected to $\tilde{\mathcal{M}}\left(c^{\prime}\right)$ if $c \sim c^{\prime}$;
- by Arnold's mechanism: if the stable "set" of $\tilde{M}(c)$ intersects its unstable "set" transversally, then $\tilde{\mathcal{M}}(c)$ can be connected to $\tilde{\mathcal{M}}\left(c^{\prime}\right)$ if c^{\prime} is close to c.
To construct ladder, we need to generalize the second one
\& weaker condition: intersection may not be transversal, may contain some circles $\left\{\ell_{i}\right\}$,
\& weaker result: some more restriction $\Rightarrow\left\langle c-c^{\prime},\left[\ell_{i}\right]\right\rangle=0$.
This version of local connecting orbit is good enough for the construction of ladders.

Composition of simple ladders

The 1-st step: on $2(n-1) d$ NHIC the normal form

$$
\tilde{h}\left(I+\tau_{3} y_{3}\right)+\frac{1}{2} A_{3} y_{3}^{2}-\delta_{3} V_{3}^{\prime}\left(\theta, x_{3}, I+\tau_{3} y_{3}\right)+\frac{1}{2}\left\langle\hat{A}_{n-4} \hat{y}_{n-4}, \hat{y}_{n-4}\right\rangle
$$

a simple ladder: $\mathbb{L}_{3} c_{3} \rightarrow c_{3}^{\prime}$
The 2-nd step: on $2(n-2) d$ NHIC the normal form

$$
\tilde{h}\left(I+\tau_{4} y_{4}\right)+\frac{1}{2} A_{4} y_{4}^{2}-\delta_{4} V_{4}^{\prime}\left(\theta, x_{4}, I+\tau_{4} y_{4}\right)+\frac{1}{2}\left\langle\hat{A}_{n-5} \hat{y}_{n-5}, \hat{y}_{n-5}\right\rangle
$$

a simple ladder: $\mathbb{L}_{4} c_{4} \rightarrow c_{4}^{\prime}$
\qquad
We finally construct the ladder (with small size)

$$
\mathbb{L}=\mathbb{L}_{n-1} * \cdots * \mathbb{L}_{3}: \quad\left(c_{3}, \cdots, c_{n-1}\right) \rightarrow\left(c_{3}^{\prime}, \cdots, c_{n-1}^{\prime}\right)
$$

