Non-equilibrium statistical mechanics of crystals
in medium

Andrey Dymov (Université de Cergy-Pontoise)

Saint Petersbourg, June 4, 2015



Introduction

Let A C Z9, d > 1, be a bounded set,
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Introduction
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where v > 0,
V(qj, gx) = V(qk, q;) is smooth.

@ Existence and uniqueness of a stationary measure 7
Convergence of solutions to it as t — co0?

Eckmann, Pillet, Rey-Bellet '98

® Fourier law?

N1 T, — T,
(i ) = R(T) =

where J is the energy flow through some cross section,
T = (T.+ Tr)/2 and & is the conductivity.

Linear case: Rieder, Lebowitz, Lieb '67 (k = o0)
Non-linear case: no results
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The Fourier law is studied only for the linear case.
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Crystal weakly interacting with medium

e — 07
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Equations of motion

Langevin thermostat
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where (Bj)jen are standard independent Brownian motions, T; > 0 are
temperatures.
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Equations of motion

Langevin thermostat

d d

v d .
U =P P = —0q,H" (P, q) —ep; + V2T B, Jeh

where (Bj)jen are standard independent Brownian motions, T; > 0 are
temperatures.

Scaling
v=c¢

Natural time scale is t ~ e~ = slow time 7 = ¢t, 7 ~ 1
Equations of motion in the slow time

G=cp B=—cq— Y, V(g a)—p+\2TB;, jEN,
keA:|j—k|=1
(1)

where the dot denotes the derivative w.r.t. 7.



Limiting as € — 0 behavior of solutions of eq. (1)
Action-angle variables for H° are

(1,¢) € RN x TIN where
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Limiting as € — 0 behavior of solutions of eq.

Action-angle variables for H° are
(1,¢) € RN x TIN where
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Equations of motion

j=0(1), ¢=c+0(Q1)", jeN

Averaging of the /-eq. along the diagonal 1 =(1,1,...,1) of the
torus TIN

the resonant averaging

1 2

(Fr f(l,p+601)do

Singularities = Guess an effective equation such that for its solution
(p, g)(7) we have I(p, q)(7) satisfies (I-eq.)g.

li= i =arg(p;+iq;), JjEN

(1)



Effective equation
. r q; . i r p; .
G ==~ L+ Tl fy=-oyH= -2+ TEL (@

where le’2 are standard independent Brownian motions and

S v,

kjeN:|k—jl=1
Let (po, go) be some "not very bad” random initial conditions. Fix 7 > 0.

Theorem

@ Let (p°, g°)(7) be a unique solution of eq. (1) and (p, q)(7) be that
of eq. (2), satisfying (p°, q°)(0) = (p, )(0) = (po. qo). Then

D(I(p%, ¢°)(-)) =°D(I(p,q)(-)) in C([0,T],RIN)

uniformly in |\|.
@® Let p be a unique stationary measure of eq. (1) and i be that of

eq. (2). Then uf 0 . Under some additional assumption this
convergence holds uniformly in |A|.
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Scaling
v=c), where A< 1 isindependent from «.
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Limiting as € — 0 energy transport in eq. (1)

Scaling
v=c), where A< 1 isindependent from e.
small low temperature oscillations
ka = Pkaqk V(qka qj) - pjaqj V(le qj)
N is the Hamiltonian energy flow from the k-th
| < k oscillator to the j-th one.
3 JKj

(L, dj) =7 as €—0

Here u° is the unique stationary measure of eq. (1).
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(s, Jj) = A6(Ti, T)) (T — Tj) +0o(N) as e — 0 uniformly in |A].



Theorem
There exists a function r : RZ — Ry, k(x,y) = k(y, x), which is

e smooth, e strictly positive,
such that for any k,j € N satisfying |k — j| = 1 we have

(s, Jj) = A6(Ti, T)) (T — Tj) +0o(N) as e — 0 uniformly in |A].

This resembles the Fourier law. However, it is not.



Theorem
There exists a function r : RZ — Ry, k(x,y) = k(y, x), which is

e smooth, e strictly positive,
such that for any k,j € N satisfying |k — j| = 1 we have

(s, Jj) = A6(Ti, T)) (T — Tj) +0o(N) as e — 0 uniformly in |A].

This resembles the Fourier law. However, it is not.

Proof.

1. Theorem 1 implies (u®, Ji) — (i, Jui) as € — 0, where 1 is the unique
stationary measure of the effective equation.

2. pu=p0 + At + o(N).
3. <,UfOquj> = 07 <M17ka> = H(Tk’ 7-1)(7-/( - 7-1)



