Non-equilibrium statistical mechanics of crystals in medium

Andrey Dymov (Université de Cergy-Pontoise)

Saint Petersbourg, June 4, 2015

Introduction

Let $\Lambda \subset \mathbb{Z}^{d}, d \geq 1$, be a bounded set, $(p, q)=\left(p_{j}, q_{j}\right)_{j \in \Lambda}$, the Hamiltonian

$$
\begin{aligned}
& H^{\nu}=\sum_{j \in \Lambda}\left(\frac{p_{j}^{2}}{2}+\frac{q_{j}^{2}}{2}\right)+\frac{\nu}{2} \sum_{j, k \in \Lambda:|j-k|=1} V\left(q_{j}, q_{k}\right) \\
& \text { where } \nu>0 \\
& V\left(q_{j}, q_{k}\right) \equiv V\left(q_{k}, q_{j}\right) \text { is smooth. }
\end{aligned}
$$

Introduction

Let $\Lambda \subset \mathbb{Z}^{d}, d \geq 1$, be a bounded set,

$T L>T R>0$
$(p, q)=\left(p_{j}, q_{j}\right)_{j \in \Lambda}$, the Hamiltonian

$$
H^{\nu}=\sum_{j \in \Lambda}\left(\frac{p_{j}^{2}}{2}+\frac{q_{j}^{2}}{2}\right)+\frac{\nu}{2} \sum_{j, k \in \Lambda:|j-k|=1} V\left(q_{j}, q_{k}\right)
$$

where $\nu>0$,

$$
V\left(q_{j}, q_{k}\right) \equiv V\left(q_{k}, q_{j}\right) \text { is smooth. }
$$

Introduction

Let $\Lambda \subset \mathbb{Z}^{d}, d \geq 1$, be a bounded set,

$T L>T R>0$
$(p, q)=\left(p_{j}, q_{j}\right)_{j \in \Lambda}$, the Hamiltonian
$H^{\nu}=\sum_{j \in \Lambda}\left(\frac{p_{j}^{2}}{2}+\frac{q_{j}^{2}}{2}\right)+\frac{\nu}{2} \sum_{j, k \in \Lambda:|j-k|=1} V\left(q_{j}, q_{k}\right)$,
where $\nu>0$,

$$
V\left(q_{j}, q_{k}\right) \equiv V\left(q_{k}, q_{j}\right) \text { is smooth. }
$$

(1) Existence and uniqueness of a stationary measure μ ?

Convergence of solutions to it as $t \rightarrow \infty$?
Eckmann, Pillet, Rey-Bellet '98

Introduction

Let $\Lambda \subset \mathbb{Z}^{d}, d \geq 1$, be a bounded set,
 $(p, q)=\left(p_{j}, q_{j}\right)_{j \in \Lambda}$, the Hamiltonian

$$
H^{\nu}=\sum_{j \in \Lambda}\left(\frac{p_{j}^{2}}{2}+\frac{q_{j}^{2}}{2}\right)+\frac{\nu}{2} \sum_{j, k \in \Lambda:|j-k|=1} V\left(q_{j}, q_{k}\right),
$$

$\mathrm{TL}>\mathrm{TR}>0 \quad$ where $\nu>0$,

$$
V\left(q_{j}, q_{k}\right) \equiv V\left(q_{k}, q_{j}\right) \text { is smooth. }
$$

(1) Existence and uniqueness of a stationary measure μ ?

Convergence of solutions to it as $t \rightarrow \infty$?
Eckmann, Pillet, Rey-Bellet '98
(2) Fourier law?

$$
\langle\mu, J\rangle \stackrel{N \gtrsim}{\approx}{ }^{1} \kappa(T) \frac{T_{L}-T_{R}}{N},
$$

where J is the energy flow through some cross section,
$T=\left(T_{L}+T_{R}\right) / 2$ and κ is the conductivity.
Linear case: Rieder, Lebowitz, Lieb '67 $(\kappa=\infty)$
Non-linear case: no results

Toy models: each particle is perturbed by sufficiently strong noise
Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ... The Fourier law is studied only for the linear case.

Toy models: each particle is perturbed by sufficiently strong noise
Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ... The Fourier law is studied only for the linear case.

Stochastic perturbation $\rightarrow 0$?

Toy models: each particle is perturbed by sufficiently strong

 noiseBasile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ...
The Fourier law is studied only for the linear case.

Stochastic perturbation $\rightarrow 0$?

Crystal weakly interacting with medium

$$
\varepsilon \rightarrow 0 ?
$$

Setting

Equations of motion

$$
\frac{d}{d t} q_{j}=p_{j}, \quad \frac{d}{d t} p_{j}=-\partial_{q_{j}} H^{\nu}(p, q) \overbrace{-\varepsilon p_{j}+\sqrt{2 \varepsilon T_{j}} \frac{d}{d t} B_{j}}^{\text {Langevin thermostat }}, j \in \Lambda,
$$

where $\left(B_{j}\right)_{j \in \Lambda}$ are standard independent Brownian motions, $T_{j}>0$ are temperatures.
Equation above has a unique stationary measure, which is mixing.

Setting

Equations of motion

$$
\frac{d}{d t} q_{j}=p_{j}, \quad \frac{d}{d t} p_{j}=-\partial_{q_{j}} H^{\nu}(p, q) \overbrace{-\varepsilon p_{j}+\sqrt{2 \varepsilon T_{j}} \frac{d}{d t} B_{j}}^{\text {Langevin thermostat }} \quad j \in \Lambda,
$$

where $\left(B_{j}\right)_{j \in \Lambda}$ are standard independent Brownian motions, $T_{j}>0$ are temperatures.

Equation above has a unique stationary measure, which is mixing.

Scaling

$$
\nu=\varepsilon
$$

Natural time scale is $t \sim \varepsilon^{-1} \Rightarrow$ slow time $\tau=\varepsilon t, \tau \sim 1$

Setting

Equations of motion

$$
\frac{d}{d t} q_{j}=p_{j}, \quad \frac{d}{d t} p_{j}=-\partial_{q_{j}} H^{\nu}(p, q) \overbrace{-\varepsilon p_{j}+\sqrt{2 \varepsilon T_{j}} \frac{d}{d t} B_{j}}^{\text {Langevin thermostat }} \quad j \in \Lambda,
$$

where $\left(B_{j}\right)_{j \in \Lambda}$ are standard independent Brownian motions, $T_{j}>0$ are temperatures.

Equation above has a unique stationary measure, which is mixing.

Scaling

$$
\nu=\varepsilon
$$

Natural time scale is $t \sim \varepsilon^{-1} \Rightarrow$ slow time $\tau=\varepsilon t, \tau \sim 1$
Equations of motion in the slow time

$$
\begin{equation*}
\dot{q}_{j}=\varepsilon^{-1} p_{j}, \dot{p}_{j}=-\varepsilon^{-1} q_{j}-\sum_{k \in \Lambda:|j-k|=1} \partial_{q_{j}} V\left(q_{j}, q_{k}\right)-p_{j}+\sqrt{2 T_{j}} \dot{B}_{j}, j \in \Lambda, \tag{1}
\end{equation*}
$$

where the dot denotes the derivative w.r.t. τ.

Limiting as $\varepsilon \rightarrow 0$ behavior of solutions of eq. (1)

Action-angle variables for H^{0} are

$$
\begin{aligned}
& (I, \varphi) \in \mathbb{R}^{|\Lambda|} \times \mathbb{T}^{|\Lambda|}, \text { where } \\
& I_{j}=\frac{p_{j}^{2}+q_{j}^{2}}{2}, \quad \varphi_{j}=\arg \left(p_{j}+i q_{j}\right), \quad j \in \Lambda .
\end{aligned}
$$

Equations of motion

$$
\dot{i}_{j}=O(1), \quad \dot{\varphi}_{j}=\varepsilon^{-1}+O(1) \quad, \quad j \in \Lambda
$$

Averaging of the I-eq. along the diagonal $\mathbf{1}=(1,1, \ldots, 1)$ of the torus $\mathbb{T}^{|\Lambda|}$
the resonant averaging

$$
\langle f\rangle_{R}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(I, \varphi+\theta \mathbf{1}) d \theta
$$

Limiting as $\varepsilon \rightarrow 0$ behavior of solutions of eq. (1)

Action-angle variables for H^{0} are

$$
\begin{aligned}
& (I, \varphi) \in \mathbb{R}^{|\Lambda|} \times \mathbb{T}^{|\Lambda|}, \text { where } \\
& \quad I_{j}=\frac{p_{j}^{2}+q_{j}^{2}}{2}, \quad \varphi_{j}=\arg \left(p_{j}+i q_{j}\right), \quad j \in \Lambda .
\end{aligned}
$$

Equations of motion

$$
\dot{I}_{j}=O(1), \quad \dot{\varphi}_{j}=\varepsilon^{-1}+O(1) \cdot I_{j}^{-1}, \quad j \in \Lambda
$$

Averaging of the I-eq. along the diagonal $\mathbf{1}=(1,1, \ldots, 1)$ of the torus $\mathbb{T}^{|\Lambda|}$
the resonant averaging

$$
\langle f\rangle_{R}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(I, \varphi+\theta \mathbf{1}) d \theta
$$

Singularities \Rightarrow Guess an effective equation such that for its solution $(p, q)(\tau)$ we have $I(p, q)(\tau)$ satisfies $\langle I \text {-eq. }\rangle_{R}$.

Effective equation

$$
\begin{equation*}
\dot{q}_{j}=\partial_{p_{j}} H^{\text {res }}-\frac{q_{j}}{2}+\sqrt{T_{j}} \dot{B}_{j}^{1}, \quad \dot{p}_{j}=-\partial_{q_{j}} H^{\text {res }}-\frac{p_{j}}{2}+\sqrt{T_{j}} \dot{B}_{j}^{2}, \tag{2}
\end{equation*}
$$

where $B_{j}^{1,2}$ are standard independent Brownian motions and

$$
H^{\text {res }}=\left\langle\frac{1}{2} \sum_{k, j \in \Lambda:|k-j|=1} V\left(q_{j}, q_{k}\right)\right\rangle_{R} .
$$

Let (p_{0}, q_{0}) be some " not very bad" random initial conditions. Fix $\mathcal{T}>0$.
Theorem
(1) Let $\left(p^{\varepsilon}, q^{\varepsilon}\right)(\tau)$ be a unique solution of eq. (1) and $(p, q)(\tau)$ be that of eq. (2), satisfying $\left(p^{\varepsilon}, q^{\varepsilon}\right)(0)=(p, q)(0)=\left(p_{0}, q_{0}\right)$. Then

$$
\mathcal{D}\left(I\left(p^{\varepsilon}, q^{\varepsilon}\right)(\cdot)\right)^{\varepsilon \rightarrow 0} \mathcal{D}(I(p, q)(\cdot)) \quad \text { in } \quad C\left([0, \mathcal{T}], \mathbb{R}^{|\Lambda|}\right)
$$

uniformly in $|\Lambda|$.
(2) Let μ^{ε} be a unique stationary measure of eq. (1) and μ be that of eq. (2). Then $\mu^{\varepsilon}{ }^{\varepsilon}{ }^{\varepsilon} \mu$. Under some additional assumption this convergence holds uniformly in $|\Lambda|$.

Limiting as $\varepsilon \rightarrow 0$ energy transport in eq. (1)

Scaling

$$
\begin{gathered}
\nu=\varepsilon \lambda, \quad \text { where } \lambda \ll 1 \text { is independent from } \varepsilon . \\
\text { small low temperature oscillations }
\end{gathered}
$$

Limiting as $\varepsilon \rightarrow 0$ energy transport in eq. (1)

Scaling

$$
\nu=\varepsilon \lambda, \quad \text { where } \quad \lambda \ll 1 \quad \text { is independent from } \quad \varepsilon
$$

small low temperature oscillations

$$
J_{k j}:=p_{k} \partial_{q_{k}} V\left(q_{k}, q_{j}\right)-p_{j} \partial_{q_{j}} V\left(q_{k}, q_{j}\right)
$$

is the Hamiltonian energy flow from the k-th oscillator to the j-th one.

$$
\left\langle\mu^{\varepsilon}, J_{k j}\right\rangle \rightarrow ? \text { as } \varepsilon \rightarrow 0
$$

Here μ^{ε} is the unique stationary measure of eq. (1).

Theorem

There exists a function $\kappa: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}_{+}, \kappa(x, y) \equiv \kappa(y, x)$, which is

- smooth,
- strictly positive,
such that for any $k, j \in \Lambda$ satisfying $|k-j|=1$ we have
$\left\langle\mu^{\varepsilon}, J_{k j}\right\rangle \rightarrow \lambda \kappa\left(T_{k}, T_{j}\right)\left(T_{k}-T_{j}\right)+o(\lambda) \quad$ as $\quad \varepsilon \rightarrow 0 \quad$ uniformly in $|\Lambda|$.

Theorem

There exists a function $\kappa: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}_{+}, \kappa(x, y) \equiv \kappa(y, x)$, which is

- smooth, - strictly positive,
such that for any $k, j \in \Lambda$ satisfying $|k-j|=1$ we have

$$
\left\langle\mu^{\varepsilon}, J_{k j}\right\rangle \rightarrow \lambda \kappa\left(T_{k}, T_{j}\right)\left(T_{k}-T_{j}\right)+o(\lambda) \quad \text { as } \quad \varepsilon \rightarrow 0 \quad \text { uniformly in }|\Lambda| .
$$

This resembles the Fourier law. However, it is not.

Theorem

There exists a function $\kappa: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}_{+}, \kappa(x, y) \equiv \kappa(y, x)$, which is

- smooth,
- strictly positive,
such that for any $k, j \in \Lambda$ satisfying $|k-j|=1$ we have

$$
\left\langle\mu^{\varepsilon}, J_{k j}\right\rangle \rightarrow \lambda \kappa\left(T_{k}, T_{j}\right)\left(T_{k}-T_{j}\right)+o(\lambda) \quad \text { as } \quad \varepsilon \rightarrow 0 \quad \text { uniformly in }|\Lambda| .
$$

This resembles the Fourier law. However, it is not.

Proof.

1. Theorem 1 implies $\left\langle\mu^{\varepsilon}, J_{k l}\right\rangle \rightarrow\left\langle\mu, J_{k l}\right\rangle$ as $\varepsilon \rightarrow 0$, where μ is the unique stationary measure of the effective equation.
2. $\mu=\mu^{0}+\lambda \mu^{1}+o(\lambda)$.
3. $\left\langle\mu^{0}, J_{k j}\right\rangle=0,\left\langle\mu^{1}, J_{k j}\right\rangle=\kappa\left(T_{k}, T_{j}\right)\left(T_{k}-T_{j}\right)$.
