Non-equilibrium statistical mechanics of crystals in medium

Andrey Dymov (Université de Cergy-Pontoise)

Saint Petersbourg, June 4, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let
$$\Lambda \subset \mathbb{Z}^d$$
, $d \ge 1$, be a bounded set,
 $(p,q) = (p_j,q_j)_{j \in \Lambda}$, the Hamiltonian

$$H^{\nu} = \sum_{j \in \Lambda} \left(\frac{p_j^2}{2} + \frac{q_j^2}{2} \right) + \frac{\nu}{2} \sum_{j,k \in \Lambda: |j-k|=1} V(q_j,q_k),$$

where u > 0, $V(q_j, q_k) \equiv V(q_k, q_j)$ is smooth.

Let $\Lambda \subset \mathbb{Z}^d$, $d \ge 1$, be a bounded set, $(p,q) = (p_j, q_j)_{j \in \Lambda}$, the Hamiltonian $H^{\nu} = \sum_{j \in \Lambda} \left(\frac{p_j^2}{2} + \frac{q_j^2}{2}\right) + \frac{\nu}{2} \sum_{j,k \in \Lambda: |j-k|=1} V(q_j, q_k),$

where $\nu > 0$, $V(q_j, q_k) \equiv V(q_k, q_j)$ is smooth.

Let $\Lambda \subset \mathbb{Z}^d$, $d \ge 1$, be a bounded set, $(p,q) = (p_j, q_j)_{j \in \Lambda}$, the Hamiltonian $H^{\nu} = \sum_{j \in \Lambda} \left(\frac{p_j^2}{2} + \frac{q_j^2}{2}\right) + \frac{\nu}{2} \sum_{j,k \in \Lambda: |j-k|=1} V(q_j, q_k),$

where $\nu > 0$, $V(q_j, q_k) \equiv V(q_k, q_j)$ is smooth.

1 Existence and uniqueness of a stationary measure μ ? Convergence of solutions to it as $t \to \infty$?

Eckmann, Pillet, Rey-Bellet '98

Let $\Lambda \subset \mathbb{Z}^d$, $d \ge 1$, be a bounded set, $(p,q) = (p_j, q_j)_{j \in \Lambda}$, the Hamiltonian $H^{\nu} = \sum_{j \in \Lambda} \left(\frac{p_j^2}{2} + \frac{q_j^2}{2}\right) + \frac{\nu}{2} \sum_{j,k \in \Lambda: |j-k|=1} V(q_j, q_k),$

where $\nu > 0$, $V(q_j, q_k) \equiv V(q_k, q_j)$ is smooth.

1 Existence and uniqueness of a stationary measure μ ? Convergence of solutions to it as $t \to \infty$?

Eckmann, Pillet, Rey-Bellet '98

2 Fourier law?

$$\langle \mu, J \rangle \stackrel{N \gg 1}{\approx} \kappa(T) \frac{T_L - T_R}{N},$$

where J is the energy flow through some cross section, $T = (T_L + T_R)/2$ and κ is the conductivity. Linear case: Rieder, Lebowitz, Lieb '67 ($\kappa = \infty$) Non-linear case: no results

Toy models: each particle is perturbed by sufficiently strong noise

Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ...

The Fourier law is studied only for the linear case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Toy models: each particle is perturbed by sufficiently strong noise

Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ... The Fourier law is studied only for the linear case.

Stochastic perturbation $\rightarrow 0$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Toy models: each particle is perturbed by sufficiently strong noise

Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, ... The Fourier law is studied only for the linear case.

Stochastic perturbation $\rightarrow 0$?

Crystal weakly interacting with medium

 $\varepsilon \rightarrow 0?$

Setting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equations of motion

$$\frac{d}{dt}q_j = p_j, \quad \frac{d}{dt}p_j = -\partial_{q_j}H^{\nu}(p,q) \underbrace{-\varepsilon p_j + \sqrt{2\varepsilon T_j} \frac{d}{dt}B_j}_{-\varepsilon p_j, -\varepsilon p_j, -\varepsilon$$

where $(B_j)_{j \in \Lambda}$ are standard independent Brownian motions, $T_j > 0$ are temperatures.

Equation above has a unique stationary measure, which is mixing.

Setting

Equations of motion

$$\frac{d}{dt}q_j = p_j, \quad \frac{d}{dt}p_j = -\partial_{q_j}H^{\nu}(p,q) \underbrace{-\varepsilon p_j + \sqrt{2\varepsilon T_j}\frac{d}{dt}B_j}_{dt}, \quad j \in \Lambda,$$

where $(B_j)_{j \in \Lambda}$ are standard independent Brownian motions, $T_j > 0$ are temperatures.

Equation above has a unique stationary measure, which is mixing. Scaling

 $\nu = \varepsilon$

Natural time scale is $t \sim \varepsilon^{-1} \Rightarrow$ slow time $\tau = \varepsilon t$, $\tau \sim 1$

Setting

Equations of motion

$$\frac{d}{dt}q_j = p_j, \quad \frac{d}{dt}p_j = -\partial_{q_j}H^{\nu}(p,q) \underbrace{-\varepsilon p_j + \sqrt{2\varepsilon T_j}\frac{d}{dt}B_j}_{dt}, \quad j \in \Lambda,$$

where $(B_j)_{j \in \Lambda}$ are standard independent Brownian motions, $T_j > 0$ are temperatures.

Equation above has a unique stationary measure, which is mixing. Scaling

 $\nu = \varepsilon$

Natural time scale is $t \sim \varepsilon^{-1} \Rightarrow$ slow time $\tau = \varepsilon t$, $\tau \sim 1$

Equations of motion in the slow time

$$\dot{q}_{j} = \varepsilon^{-1} p_{j}, \ \dot{p}_{j} = -\varepsilon^{-1} q_{j} - \sum_{k \in \Lambda: |j-k|=1} \partial_{q_{j}} V(q_{j}, q_{k}) - p_{j} + \sqrt{2T_{j}} \dot{B}_{j}, \ j \in \Lambda,$$
(1)

where the dot denotes the derivative w.r.t. τ .

Limiting as $\varepsilon \to 0$ behavior of solutions of eq. (1)

Action-angle variables for H^0 are $(I, \varphi) \in \mathbb{R}^{|\Lambda|} \times \mathbb{T}^{|\Lambda|}$, where $I_j = \frac{p_j^2 + q_j^2}{2}, \quad \varphi_j = \arg(p_j + iq_j), \quad j \in \Lambda.$ Equations of motion $\dot{I}_i = O(1), \quad \dot{\varphi}_i = \varepsilon^{-1} + O(1) \quad , \quad j \in \Lambda$

Averaging of the I-eq. along the diagonal $\boldsymbol{1}=(1,1,\ldots,1)$ of the torus $\mathbb{T}^{|\Lambda|}$

the resonant averaging

$$\langle f \rangle_R = rac{1}{2\pi} \int_0^{2\pi} f(I, \varphi + \theta \mathbf{1}) \, d\theta$$

Limiting as $\varepsilon \to 0$ behavior of solutions of eq. (1)

Action-angle variables for H^0 are $(I, \varphi) \in \mathbb{R}^{|\Lambda|} \times \mathbb{T}^{|\Lambda|}$, where $I_j = \frac{p_j^2 + q_j^2}{2}$, $\varphi_j = \arg(p_j + iq_j)$, $j \in \Lambda$. Equations of motion $\dot{I}_i = O(1)$, $\dot{\varphi}_i = \varepsilon^{-1} + O(1) \cdot I_i^{-1}$, $j \in \Lambda$

Averaging of the I-eq. along the diagonal $\mathbf{1}=(1,1,\ldots,1)$ of the torus $\mathbb{T}^{|\Lambda|}$

the resonant averaging

$$\langle f \rangle_R = rac{1}{2\pi} \int_0^{2\pi} f(I, \varphi + \theta \mathbf{1}) \, d\theta$$

Singularities \Rightarrow Guess an effective equation such that for its solution $(p,q)(\tau)$ we have $I(p,q)(\tau)$ satisfies $\langle I - eq_{\mathbb{P}} \rangle_{R^{-1}} = 1$ **Effective equation**

$$\dot{q}_j = \partial_{p_j} H^{\text{res}} - \frac{q_j}{2} + \sqrt{T_j} \dot{B}_j^1, \quad \dot{p}_j = -\partial_{q_j} H^{\text{res}} - \frac{p_j}{2} + \sqrt{T_j} \dot{B}_j^2, \quad (2)$$

where $B_i^{1,2}$ are standard independent Brownian motions and

$$H^{res} = \Big\langle rac{1}{2} \sum_{k,j \in \Lambda: |k-j|=1} V(q_j,q_k) \Big
angle_R.$$

Let (p_0, q_0) be some "not very bad" random initial conditions. Fix T > 0. Theorem

Let (p^ε, q^ε)(τ) be a unique solution of eq. (1) and (p, q)(τ) be that of eq. (2), satisfying (p^ε, q^ε)(0) = (p, q)(0) = (p₀, q₀). Then

$$\mathcal{D}\big(I(p^{\varepsilon},q^{\varepsilon})(\cdot)\big) \stackrel{\varepsilon \to 0}{\rightharpoonup} \mathcal{D}\big(I(p,q)(\cdot)\big) \quad in \quad C([0,\mathcal{T}],\mathbb{R}^{|\Lambda|})$$

uniformly in $|\Lambda|$.

2 Let μ^ε be a unique stationary measure of eq. (1) and μ be that of eq. (2). Then μ^ε ^{ε→0} μ. Under some additional assumption this convergence holds uniformly in |Λ|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling

 $\nu = \varepsilon \lambda, \quad \text{where} \quad \lambda \ll 1 \quad \text{is independent from} \quad \varepsilon.$

small low temperature oscillations

Scaling

 $u = \varepsilon \lambda, \quad \text{where} \quad \lambda \ll 1 \quad \text{is independent from} \quad \varepsilon.$

small low temperature oscillations

 $\begin{aligned} \mathbf{J}_{kj} &:= p_k \partial_{q_k} V(q_k, q_j) - p_j \partial_{q_j} V(q_k, q_j) \\ \text{is the Hamiltonian energy flow from the k-th} \\ & \text{oscillator to the j-th one.} \end{aligned}$

$$\langle \mu^{arepsilon}, J_{kj}
angle
ightarrow$$
? as $arepsilon
ightarrow 0$

Here μ^{ε} is the unique stationary measure of eq. (1).

Theorem There exists a function $\kappa : \mathbb{R}^2_+ \mapsto \mathbb{R}_+$, $\kappa(x, y) \equiv \kappa(y, x)$, which is

• smooth, • strictly positive,

such that for any $k, j \in \Lambda$ satisfying |k - j| = 1 we have

 $\langle \mu^{\varepsilon}, J_{kj}
angle o \lambda \kappa (T_k, T_j) (T_k - T_j) + o(\lambda)$ as $\varepsilon \to 0$ uniformly in $|\Lambda|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Theorem There exists a function $\kappa : \mathbb{R}^2_+ \mapsto \mathbb{R}_+$, $\kappa(x, y) \equiv \kappa(y, x)$, which is

• smooth, • strictly positive,

such that for any $k, j \in \Lambda$ satisfying |k - j| = 1 we have

 $\langle \mu^{\varepsilon}, J_{kj}
angle o \lambda \kappa (T_k, T_j) (T_k - T_j) + o(\lambda)$ as $\varepsilon \to 0$ uniformly in $|\Lambda|$.

This resembles the Fourier law. However, it is not.

Theorem There exists a function $\kappa : \mathbb{R}^2_+ \mapsto \mathbb{R}_+$, $\kappa(x, y) \equiv \kappa(y, x)$, which is

smooth,
 strictly positive,

such that for any $k, j \in \Lambda$ satisfying |k - j| = 1 we have

 $\langle \mu^{\varepsilon}, J_{kj}
angle o \lambda \kappa (T_k, T_j) (T_k - T_j) + o(\lambda)$ as $\varepsilon \to 0$ uniformly in $|\Lambda|$.

This resembles the Fourier law. However, it is not.

Proof.

1. Theorem 1 implies $\langle \mu^{\varepsilon}, J_{kl} \rangle \rightarrow \langle \mu, J_{kl} \rangle$ as $\varepsilon \rightarrow 0$, where μ is the unique stationary measure of the effective equation.

2.
$$\mu = \mu^0 + \lambda \mu^1 + o(\lambda)$$
.
3. $\langle \mu^0, J_{kj} \rangle = 0, \ \langle \mu^1, J_{kj} \rangle = \kappa(T_k, T_j)(T_k - T_j)$.