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Introduction

Let Λ ⊂ Zd , d ≥ 1, be a bounded set,
(p, q) = (pj , qj)j∈Λ, the Hamiltonian

Hν =
∑
j∈Λ

(p2
j

2
+

q2
j

2

)
+
ν

2

∑
j,k∈Λ:|j−k|=1

V (qj , qk),

where ν > 0,
V (qj , qk) ≡ V (qk , qj) is smooth.

1 Existence and uniqueness of a stationary measure µ?
Convergence of solutions to it as t →∞?

Eckmann, Pillet, Rey-Bellet ’98

2 Fourier law?

〈µ, J〉
N�1
≈ κ(T )

TL − TR

N
,

where J is the energy flow through some cross section,
T = (TL + TR)/2 and κ is the conductivity.

Linear case: Rieder, Lebowitz, Lieb ’67 (κ =∞)
Non-linear case: no results
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Toy models: each particle is perturbed by sufficiently strong
noise

Basile, Bernardin, Bonetto, Lebowitz, Liverani, Lukkarinen, Olla, . . .

The Fourier law is studied only for the linear case.

Stochastic perturbation → 0?

Crystal weakly interacting with medium

ε→ 0?
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Setting

Equations of motion

d

dt
qj = pj ,

d

dt
pj = −∂qjHν(p, q)

Langevin thermostat︷ ︸︸ ︷
−εpj +

√
2εTj

d

dt
Bj , j ∈ Λ,

where (Bj)j∈Λ are standard independent Brownian motions, Tj > 0 are
temperatures.

Equation above has a unique stationary measure, which is mixing.

Scaling
ν = ε

Natural time scale is t ∼ ε−1 ⇒ slow time τ = εt, τ ∼ 1

Equations of motion in the slow time

q̇j = ε−1pj , ṗj = −ε−1qj −
∑

k∈Λ:|j−k|=1

∂qjV (qj , qk)−pj +
√

2Tj Ḃj , j ∈ Λ,

(1)
where the dot denotes the derivative w.r.t. τ .
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2Tj Ḃj , j ∈ Λ,

(1)
where the dot denotes the derivative w.r.t. τ .



Setting

Equations of motion

d

dt
qj = pj ,

d

dt
pj = −∂qjHν(p, q)

Langevin thermostat︷ ︸︸ ︷
−εpj +

√
2εTj

d

dt
Bj , j ∈ Λ,

where (Bj)j∈Λ are standard independent Brownian motions, Tj > 0 are
temperatures.

Equation above has a unique stationary measure, which is mixing.

Scaling
ν = ε

Natural time scale is t ∼ ε−1 ⇒ slow time τ = εt, τ ∼ 1

Equations of motion in the slow time

q̇j = ε−1pj , ṗj = −ε−1qj −
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Limiting as ε→ 0 behavior of solutions of eq. (1)

Action-angle variables for H0 are
(I , ϕ) ∈ R|Λ| × T|Λ|, where

Ij =
p2
j + q2

j

2
, ϕj = arg (pj + iqj), j ∈ Λ.

Equations of motion

İj = O(1), ϕ̇j = ε−1 + O(1)

·I−1
j

, j ∈ Λ

Averaging of the I -eq. along the diagonal 1 = (1, 1, . . . , 1) of the
torus T|Λ|

=
the resonant averaging

〈f 〉R =
1

2π

∫ 2π

0

f (I , ϕ+ θ1) dθ

Singularities ⇒ Guess an effective equation such that for its solution
(p, q)(τ) we have I (p, q)(τ) satisfies 〈I -eq.〉R .
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Effective equation

q̇j = ∂pjH
res − qj

2
+
√
Tj Ḃ

1
j , ṗj = −∂qjH res − pj

2
+
√
Tj Ḃ

2
j , (2)

where B1,2
j are standard independent Brownian motions and

H res =
〈1

2

∑
k,j∈Λ:|k−j|=1

V (qj , qk)
〉
R
.

Let (p0, q0) be some ”not very bad” random initial conditions. Fix T > 0.

Theorem

1 Let (pε, qε)(τ) be a unique solution of eq. (1) and (p, q)(τ) be that
of eq. (2), satisfying (pε, qε)(0) = (p, q)(0) = (p0, q0). Then

D
(
I (pε, qε)(·)

) ε→0
⇀ D

(
I (p, q)(·)

)
in C ([0, T ],R|Λ|)

uniformly in |Λ|.
2 Let µε be a unique stationary measure of eq. (1) and µ be that of

eq. (2). Then µε
ε→0
⇀ µ. Under some additional assumption this

convergence holds uniformly in |Λ|.



Limiting as ε→ 0 energy transport in eq. (1)

Scaling

ν = ελ, where λ� 1 is independent from ε.

small low temperature oscillations

Jkj := pk∂qkV (qk , qj)− pj∂qjV (qk , qj)
is the Hamiltonian energy flow from the k-th

oscillator to the j-th one.

〈µε, Jkj〉 → ? as ε→ 0

Here µε is the unique stationary measure of eq. (1).
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Theorem
There exists a function κ : R2

+ 7→ R+, κ(x , y) ≡ κ(y , x), which is

• smooth, • strictly positive,

such that for any k, j ∈ Λ satisfying |k − j | = 1 we have

〈µε, Jkj〉 → λκ(Tk ,Tj)(Tk − Tj) + o(λ) as ε→ 0 uniformly in |Λ|.

This resembles the Fourier law. However, it is not.

Proof.

1. Theorem 1 implies 〈µε, Jkl〉 → 〈µ, Jkl〉 as ε→ 0, where µ is the unique
stationary measure of the effective equation.

2. µ = µ0 + λµ1 + o(λ).

3. 〈µ0, Jkj〉 = 0, 〈µ1, Jkj〉 = κ(Tk ,Tj)(Tk − Tj).
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