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The analytic gauge invariant NLS

Consider the equation

−iut +∆u = |u|2(d−1)u + G′(|u|2)u, d ∈ N, d ≥ 2

where x ∈ T
2 = R

2/(2πZ)2, t ∈ R and u : R× T
2 → C.

G(y) is an analytic function with a zero of degree at least d + 1.

Defocusing implies well posed globally in time.

Solutions of NLS conserve the quantities:

The Hamiltonian

E [u](t) =

∫

T2

(

1

2
|∇u|2 +

1

2d
|u|2d +

1

2
G(|u|2)

)

dx

(2π)2
dx(t)

The mass

M[u](t) =

∫

T2

|u|2dx(t) =

∫

T2

|u|2dx(0),

the square of the L2-norm.
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Transfer of energy

Fourier series of u,

u(x , t) =
∑

n∈Z2

an(t)e
inx .

Can we have transfer of energy to higher and higher modes as

t → +∞?

We measure it with the growth of s-Sobolev norms (s > 1)

‖u(t)‖Hs(T2) := ‖u(t , ·)‖Hs(T2) :=





∑

n∈Z2

〈n〉2s|an(t)|
2





1/2

,

where 〈n〉 = (1 + |n|2)1/2.

Thanks to mass and energy conservation,

‖u(t)‖H1(T2) ≤ C‖u(0)‖H1(T2) for all t ≥ 0.
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How fast the energy transfer can be?

Dimension 1 and d = 2 (cubic case), a priori bounds for all Hs.

Dimension D ≥ 2 or power d > 2: growth of Hs expected to

happen.

Polynomial upper bounds for the growth of Hs, s > 1:

‖u(t)‖Hs ≤ tA‖u(0)‖Hs for t → +∞.

for some A > 0.

Question by Bourgain (2000): Are there solutions u such that for

s > 1,

‖u(t)‖Hs → +∞ as t → +∞?
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The cubic case

We are interested in small initial data.

Cubic case: −iut +∆u = |u|2u

Theorem (Colliander, Keel, Staffilani, Takaoka, Tao (2010))

Fix s > 1, C ≫ 1 and µ ≪ 1. Then there exists a global solution u of

NLS on T
2 and T satisfying that

‖u(0)‖Hs ≤ µ, ‖u(T )‖Hs ≥ C.

Valid on any T
D, D ≥ 2.
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The cubic case

M. G. and V. Kaloshin: T ∼ e

(

C

µ

)A

for some A > 0.

M. G. and V. Kaloshin also in the cubic case: Fix K ≫ 1, there

exists a solution u of NLS on T
2 and T satisfying that

‖u(T )‖Hs ≥ K‖u(0)‖Hs , T ∼ KB , for some B > 0

and

‖u(t)‖L2 ≤ K−σ for some σ > 0.

E. Haus and M. Procesi generalized the I-team result to the quintic

NLS (d = 3 and D ≥ 2).

−iut +∆u = |u|4u
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Main result

−iut +∆u = |u|2(d−1)u + G′(|u|2)u

Theorem (M. G. – E. Haus – M. Procesi)

Let d ≥ 2 and s > 1. There exists c > 0 with the following property: for

any large C ≫ 1 and small µ ≪ 1, there exists a global solution

u(t) = u(t , ·) of NLS and a time T satisfying

T ≤ e

(

C

µ

)c

such that

‖u(0)‖Hs ≤ µ and ‖u(T )‖Hs ≥ C.

Valid on any T
D, D ≥ 2.

If we do not assume small initial Sobolev norm, we do not get

better time estimates.
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The I-team approach for the cubic case

Cubic NLS as an ode (of infinite dimension) for the Fourier

coefficients of u:

−i ȧn = |n|2an +
∑

n1,n2,n3∈Z
2

n1−n2+n3=n

an1
an2

an3
, n ∈ Z

2.

Drift through resonances.

Resonant monomial

n1 − n2 + n3 − n = 0 and |n1|
2 − |n2|

2 + |n3|
2 − |n|2 = 0

Non-degenerate resonances form a rectangle in Z
2.
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The I-team approach for the cubic case

They choose carefully a finite set of modes which interact through the

resonances in a very particular way.

Roughly speaking:

Consider a finite set of modes Λ ⊂ Z
2 of large size |Λ| = N2N−1

with N ∼ log(C/µ) ≫ 1.

Impose each mode only interacts with other modes through two

rectangles.

It receives energy from one of them and pumps energy into the

other.
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The I-team approach for the cubic case

Doing further reductions: finite dimensional (toy) model

ḃj = −ib2
j bj + 2ibj

(

b2
j−1 + b2

j+1

)

, j = 1, . . .N.

which approximates well certain solutions of NLS.

Each bj represents 2N−1 modes.

It can be seen as a Hamiltonian system on a lattice Z with nearest

neighbor interactions.

Hamiltonian:

h(b) :=
1

4

N
∑

j=1

|bj |
4 −

1

2

N
∑

j=1

(

b
2

j b2
j−1 + b2

j b
2

j−1

)

.

It has the mass as a first integral M =
∑N

i=1 |bi |
2.
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Transfer of energy for the cubic toy model

N

N

N

b

b

b

There are orbit b(t) of the toy model such that at t = 0 is localized

in b1 and at a certain t = T ≫ 1 is localized in bN .
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Dynamics of the cubic toy model

We analyze the dynamics of the toy model

ḃj = −ib2
j bj + 2ibj

(

b2
j−1 + b2

j+1

)

, j = 0, . . .N,

Each 4-dimensional plane

Lj = {b1 = · · · = bj−1 = bj+2 = · · · = bN = 0}

is invariant.
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There are solutions that stay close to the planes {Lj}
N−1
j=2 and go

from one intersection lj = Lj ∩ Lj+1 to the next one

lj+1 = Lj+1 ∩ Lj+2 consequently for j = 3, . . . ,N − 1.

In the intersections lj only bj is nonzero.

The planes Lj have normal positive Lyapunov exponents.
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The resonant sets in the general case

Resonant monomials

2d
∑

i=1

(−1)ini = 0 and

2d
∑

i=1

(−1)i |ni |
2 = 0.

Geometry and combinatorics of resonances are far more

complicated.

Idea from Procesi and Haus (2014): use still rectangles as

building blocks.

They seem to be better suited to lead to transfer of energy.
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The resonant sets in the general case

We need to impose further conditions to avoid non-desired

resonances.

Some resonances are unavoidable: take two rectangles with a

common vertex

n1 − n2 + n3 − n4 = 0 |n1|
2 − |n2|

2 + |n3|
2 − |n4|

2 = 0

n4 − n5 + n6 − n7 = 0 |n4|
2 − |n5|

2 + |n6|
2 − |n7|

2 = 0

They create the resonant sextuple

n1 − n2 + n3 − n5 + n6 − n7 = 0

|n1|
2 − |n2|

2 + |n3|
2 − |n5|

2 + |n6|
2 − |n7|

2 = 0.

Each mode receives and pumps energy through more than two

rectangles.
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The toy model in the general case

We imposing combinatorial restrictions on the interactions

between modes to avoid undesired resonances.

Hamiltonian of the toy model

h(b) =

(

N
∑

i=1

|bi |
2

)d−2 [

1

4

N
∑

i=1

|bi |
4 −

N−1
∑

i=1

Re (b2
i b̄2

i+1)

]

+
1

2N
P

(

b, b̄,
1

2N

)

.

Recall N ∼ log(C/µ) ≫ 1.

M =
∑N

i=1 |bi |
2 is a first integral.

Roughly speaking: unavoidable “higher order” resonances only

appear at higher order.

The drift obtained for the cubic toy model takes long time.

We have to analyze carefully P to see that we have a behavior

similar to the cubic case.
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Properties on P

Using combinatorics, we can impose extra properties on P.

These properties imply that we have the same structure as in the

cubic case.

All monomials in P are of even degree in (bj ,bj).

The subspaces {bj = 0} are invariant.

Now we do not have nearest neighbor interaction.

The strongest non-nearest neighbor interaction is integrable:

a monomial depending on two modes i , j , |i − j | 6= 1, is of the form

|bi ||bj |
d−2.
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Shadowing the invariant planes

The planes Lj = {b1 = · · · = bj−1 = bj+2 = · · · = bN = 0} are still

invariant.

We proceed as in M. G.– V. Kaloshin.

We construct solutions that drift through the planes

These shadowing orbits are a good first order of orbits of NLS

undergoing growth of Sobolev norms
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