New Techniques for the n-Body Problem

Andreas Knauf

Department Mathematik
Universität Erlangen-Nürnberg (Germany)

Hamiltonian systems and their applications
Euler Institute (St. Petersburg) June 3, 2015

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Reqularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Andreas Knauf
New Techniques for the n-Body Problem

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unnublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Overview

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions
with Stefan Fleischer, respectively with
Jacques Fejoz and Richard Montgomery
Unpublished!

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set
$\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j}\right.$ for some $\left.i \neq j\right\}$.
- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $l_{i j} \in \mathbb{R} \backslash\{0\}$

we consider the Hamiltonian

$$
\begin{equation*}
\widehat{H}: T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q) \tag{1}
\end{equation*}
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set
$\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j}\right.$ for some $\left.i \neq j\right\}$.
- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $l_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set
$\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j}\right.$ for some $\left.i \neq j\right\}$.
- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $I_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \hat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set

$$
\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j} \text { for some } i \neq j\right\}
$$

- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $l_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set
$\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j}\right.$ for some $\left.i \neq j\right\}$.
- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $l_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \hat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set

$$
\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j} \text { for some } i \neq j\right\}
$$

- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $I_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set

$$
\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j} \text { for some } i \neq j\right\}
$$

- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $I_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q)
$$

Notation for n bodies

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M}:=\mathbb{R}^{n d} \backslash \Delta$,
- with collision set

$$
\Delta:=\left\{q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n d} \mid q_{i}=q_{j} \text { for some } i \neq j\right\}
$$

- Given masses $m_{1}, \ldots, m_{n}>0$ and
- interaction parameters $I_{i, j} \in \mathbb{R} \backslash\{0\}$
we consider the Hamiltonian

$$
\begin{equation*}
\widehat{H}: T^{*} \widehat{M} \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q):=K(p)+V(q) \tag{1}
\end{equation*}
$$

with $K(p):=\sum_{i=1}^{n} \frac{\left\|p_{i}\right\|^{2}}{2 m_{i}} \quad$ and $\quad V(q):=\sum_{1 \leq i<j \leq n} \frac{l_{i, j}}{\left\|q_{i}-q_{j}\right\|}$.

Notions for n body motion

- Phase space $\widehat{P}:=T^{*} \widehat{M}$,
- Maximal flow $\Phi=(p, q): D \rightarrow \widehat{P}$ with domain

$$
D=\left\{(t, x) \in \mathbb{R} \times \widehat{P} \mid T^{-}(x)<t<T^{+}(x)\right\} .
$$

Definition

- Set Sing := $\left\{x \in \widehat{P} \mid T^{+}(x)<+\infty\right\}$ of phase space points encountering a singularity in the future;
- Subset of phase space points encountering a collision singularity:

$$
\text { Coll }:=\left\{x \in \operatorname{Sing} \mid \lim _{t / T^{+}(x)} q(t, x) \text { exists }\right\} .
$$

Measure of collision orbits

Theorem (Saari)

For dimension $d=3$ and forces $\nabla V_{i, j}(q)=-m_{i} m_{j} q /\|q\|^{1+\alpha}$

- collisions are improbable for $\alpha<17 / 7$.
- Binary collisions are improbable for $\alpha<3$.

Don Saari: Improbability of Collisions in Newtonian Gravitational Systems. II. Transactions of the AMS 181, 351-368 (1973)
Generalisation: Dimension $d \geq 2$

Definition
A potential V is called

- moderate if $\left\|\nabla V_{i, j}(q)\right\| \leq C\|q\|^{-3+\varepsilon}$ for $\|q\| \leq 1$,
- long ranged if $\left\|\nabla V_{i, j}(q)\right\| \leq C\|q\|^{-1-\varepsilon}$ for $\|q\| \geq 1$.

Measure of collision orbits

Theorem (Saari)

For dimension $d=3$ and forces $\nabla V_{i, j}(q)=-m_{i} m_{j} q /\|q\|^{1+\alpha}$

- collisions are improbable for $\alpha<17 / 7$.
- Binary collisions are improbable for $\alpha<3$.

Don Saari: Improbability of Collisions in Newtonian Gravitational Systems. II. Transactions of the AMS 181, 351-368 (1973)
Generalisation: Dimension $d \geq 2$

$$
V(q)=\sum_{1 \leq i<j \leq n} V_{i, j}\left(q_{i}-q_{j}\right) \quad \text { with } \quad V_{i, j} \in C^{2}\left(\mathbb{R}^{d} \backslash\{0\}, \mathbb{R}\right)
$$

Definition

A potential V is called

- moderate if $\left\|\nabla V_{i, j}(q)\right\| \leq C\|q\|^{-3+\varepsilon}$ for $\|q\| \leq 1$,
- long ranged if $\left\|\nabla V_{i, j}(q)\right\| \leq C\|q\|^{-1-\varepsilon}$ for $\|q\| \geq 1$.

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase
space 'around' the collision set \triangle, with

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ, with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_{H}} \Omega$ (with phase space volume form Ω) going to zero as $m \rightarrow \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with m large. set partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of $\{1, \ldots, n\}$

- Use internal and external coordinates for cluster \mathcal{C} to define $\mathcal{H}^{(m)}$ modulus of internal position as function of other coordinates.

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ, with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_{H}} \Omega$ (with phase space volume form Ω) going to zero as $m \rightarrow \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with m large.

- Use internal and external coordinates for cluster \mathcal{C} to define $\mathcal{H}^{(m)}$ modulus of internal position as function of other coordinates.

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ, with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_{H}} \Omega$ (with phase space volume form Ω) going to zero as $m \rightarrow \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with m large.
- Cluster: set partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of $\{1, \ldots, n\}$

- Use internal and external coordinates for cluster \mathcal{C} to define $\mathcal{H}^{(m)}$ modulus of internal nosition as function of other coordinates.

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ, with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_{H}} \Omega$ (with phase space volume form Ω) going to zero as $m \rightarrow \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with m large.
- Cluster: set partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of $\{1, \ldots, n\}$
- Coll $:=\left\{x \in \operatorname{Coll} \mid \lim _{t / T^{+}(x)}\left(q_{i}(t, x)-q_{j}(t, x)\right)=0\right.$ iff $\left.i \cong_{\mathcal{C}} j\right\}$,

$$
\text { Coll }=\bigcup_{\mathcal{C}} \text { Coll }_{\mathcal{C}} .
$$

- Use internal and external coordinates for cluster \mathcal{C} to define $\mathcal{H}^{(m)}$ modulus of internal nosition as function of other coordinates.

Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.
Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ, with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_{H}} \Omega$ (with phase space volume form Ω) going to zero as $m \rightarrow \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with m large.
- Cluster: set partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of $\{1, \ldots, n\}$
- Coll $_{\mathcal{C}}:=\left\{x \in \operatorname{Coll} \mid \lim _{t / T^{+}(x)}\left(q_{i}(t, x)-q_{j}(t, x)\right)=0\right.$ iff $\left.i \cong_{\mathcal{C}} j\right\}$,

$$
\text { Coll }=\bigcup_{\mathcal{C}} \text { Coll }{ }_{\mathcal{C}} .
$$

- Use internal and external coordinates for cluster \mathcal{C} to define $\mathcal{H}^{(m)}$: modulus of internal position as function of other coordinates.

Measure of non-collision singularities

For an n-center - two-body system

- Non-collision singularities exist in the four-body problem.
Z. Xia: The existence of noncollision singularities in Newtonian systems. Annals of Mathematics 135, 411-468 (1992)

- They are improbable in the four-body problem.
D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267-271 (1971)
- Non-collision singularities exist in a simplified four-body problem.
J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

Measure of non-collision singularities

For an n-center - two-body system

- Non-collision singularities exist in the four-body problem.
Z. Xia: The existence of noncollision singularities in Newtonian systems. Annals of Mathematics 135, 411-468 (1992)

- They are improbable in the four-body problem.
D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267-271 (1971)
- Non-collision singularities exist in a simplified four-body problem.
J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

Measure of non-collision singularities

For an n-center - two-body system

- Non-collision singularities exist in the four-body problem.
Z. Xia: The existence of noncollision singularities in Newtonian systems. Annals of Mathematics 135, 411-468 (1992)

- They are improbable in the four-body problem.
D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267-271 (1971)
- Non-collision singularities exist in a simplified four-body problem.
J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

Measure of non-collision singularities

Theorem (St. Fleischer, AK)
For moderate pair potentials non-collision singularities are improbable.
s_{3}

- Fixed centers $s_{1}, \ldots, s_{n} \in \mathbb{R}^{d}$
- two moving particles

Poincaré surfaces for collision set

Picture in configuration space, for

- $d=1$ dimension,
- $n=3$ bodies,
- in center of mass system.

Collision set Δ
q_{1}

Regularisation

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

Regularisation

Why another regularisation?

There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

Regularisation

Why another regularisation?

There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions $d \geq 1$
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Regularisation

Why another regularisation?

There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions $d \geq 1$
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Regularisation

Why another regularisation?

There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions $d \geq 1$
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Regularisation

Why another regularisation?

There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions $d \geq 1$
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Regularisation

What kind of regularity?

Regularisation

What kind of regularity?

- regularity of the single collision orbits, e.g. analyticity in $t^{1 / 3}$
- regularity of a Poincaré map (block regularity) - regularity of the flow.

Regularisation

What kind of regularity?

- regularity of the single collision orbits, e.g. analyticity in $t^{1 / 3}$
- regularity of a Poincaré map (block regularity)
- regularity of the flow.

Regularisation

What kind of regularity?

- regularity of the single collision orbits, e.g. analyticity in $t^{1 / 3}$
- regularity of a Poincaré map (block regularity)
- regularity of the flow.

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \hat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{1}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

- $T: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $L(p, q):=q \wedge p$)

- its direction
 $\widehat{A}:=\tilde{A} /\|\tilde{A}\|$

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{l}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

$$
\widehat{U}^{\varepsilon}:=\left\{(p, q) \in T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \mid\|q\|<\varepsilon, \frac{\|p\|^{2}}{2 m}>\frac{3}{4} \frac{\| \|}{\|q\|}\right\}
$$

- $\widehat{T}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q):=q \wedge p$)

- its direction
 $\widehat{A}:=\tilde{A} /\|\tilde{A}\|$

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{l}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

$$
\widehat{U}^{\varepsilon}:=\left\{(p, q) \in T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \mid\|q\|<\varepsilon, \frac{\|p\|^{2}}{2 m}>\frac{3}{4} \frac{\| \|}{\|q\|}\right\}
$$

- $\widehat{T}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q):=q \wedge p$)
- its direction
 $\widehat{A}:=\tilde{A} /\|\tilde{A}\|$

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{l}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

$$
\widehat{U}^{\varepsilon}:=\left\{(p, q) \in T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \mid\|q\|<\varepsilon, \frac{\|p\|^{2}}{2 m}>\frac{3}{4} \frac{\| \|}{\|q\|}\right\}
$$

- $\widehat{T}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q):=q \wedge p$)

$$
\tilde{A}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}^{d} \quad, \quad \tilde{A}(p, q):=-\widehat{L}(p, q) p+m / \frac{q}{\|q\|}
$$

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{l}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

$$
\widehat{U}^{\varepsilon}:=\left\{(p, q) \in T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \mid\|q\|<\varepsilon, \frac{\|p\|^{2}}{2 m}>\frac{3}{4} \frac{\| \|}{\|q\|}\right\}
$$

- $\widehat{T}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q):=q \wedge p$)

$$
\tilde{A}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}^{d} \quad, \quad \tilde{A}(p, q):=-\widehat{L}(p, q) p+m / \frac{q}{\|q\|}
$$

- its direction $\widehat{A}: \widehat{U}^{\varepsilon} \rightarrow S^{d-1} \quad, \quad \widehat{A}:=\tilde{A} /\|\tilde{A}\|$.

Regularisation by phase space extension: Kepler case

- Hamiltonian, attractive case $(I<0)$:

$$
\widehat{H}: T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R} \quad, \quad \widehat{H}(p, q)=\frac{\|p\|^{2}}{2 m}+\frac{l}{\|q\|}
$$

- ε-neighborhood of the excluded fiber $T_{0}^{*} \mathbb{R}^{d}$

$$
\widehat{U}^{\varepsilon}:=\left\{(p, q) \in T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \mid\|q\|<\varepsilon, \frac{\|p\|^{2}}{2 m}>\frac{3}{4} \frac{\| \|}{\|q\|}\right\}
$$

- $\widehat{T}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}$: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q):=q \wedge p$)

$$
\tilde{A}: \hat{U}^{\varepsilon} \rightarrow \mathbb{R}^{d} \quad, \quad \tilde{A}(p, q):=-\hat{L}(p, q) p+m / \frac{q}{\|q\|}
$$

- its direction $\widehat{A}: \widehat{U}^{\varepsilon} \rightarrow S^{d-1} \quad, \quad \widehat{A}:=\tilde{A} /\|\tilde{A}\|$.
- $\widehat{B}: \widehat{U}^{\varepsilon} \rightarrow \mathbb{R}^{d} \quad, \quad \widehat{B}:=\widehat{L} \widehat{A}$

Regularisation: Kepler case

Together we obtain a smooth map
$\widehat{\psi}:=(\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}): \widehat{U}^{\varepsilon} \longrightarrow T^{*}\left(\mathbb{R} \times S^{d-1}\right)$,

Regularisation: Kepler case

Together we obtain a smooth map
$\widehat{\psi}:=(\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}): \widehat{U}^{\varepsilon} \longrightarrow T^{*}\left(\mathbb{R} \times S^{d-1}\right)$,

- all entries except time \widehat{T} are constants of the motion.
- $\operatorname{im}(\Psi)$ misses the zero section $\cong \mathbb{R} \times S^{d-1}$ of the cotangent
bundle, since the collision orbits are characterized by zero angular momentum and thus $\widehat{B}=\widehat{L A}=0$, and the point of collision on
such an orbit corresponds to $\widehat{T} \rightarrow 0$.

Regularisation: Kepler case

Together we obtain a smooth map
$\widehat{\psi}:=(\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}): \widehat{U}^{\varepsilon} \longrightarrow T^{*}\left(\mathbb{R} \times S^{d-1}\right)$,

- all entries except time \widehat{T} are constants of the motion.
- $\operatorname{im}(\widehat{\Psi})$ misses the zero section $\cong \mathbb{R} \times S^{d-1}$ of the cotangent bundle, since the collision orbits are characterized by zero angular momentum and thus $\widehat{B}=\widehat{L} \widehat{A}=0$, and the point of collision on such an orbit corresponds to $\widehat{T} \rightarrow 0$.

Regularisation: Kepler case

- We now complete phase space by setting

$$
P:=T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right) \cup\left(\mathbb{R} \times S^{d-1}\right)
$$

and introducing a second chart Ψ with domain

$$
\begin{gathered}
U^{\varepsilon}:=\widehat{U}^{\varepsilon} \cup\left(\mathbb{R} \times S^{d-1}\right) \subseteq P \\
\psi \equiv(H, T, A, B): U^{\varepsilon} \rightarrow T^{*}\left(\mathbb{R} \times S^{d-1}\right) \\
\Psi \upharpoonright_{\widehat{U}^{\varepsilon}}:=\widehat{\Psi} \quad \text { and }\left.\quad \psi\right|_{\mathbb{R} \times S^{d-1}}(h, a):=(h, 0, a, 0) .
\end{gathered}
$$

Kepler regularization: Smooth \& complete

Lemma

$\widehat{\Psi}$ is a diffeomorphism onto its image. On U^{ε} for all $1 \leq i, j \leq d$

$$
\{H, T\}=1 \quad, \quad\left\{A_{i}, B_{j}\right\}=\delta_{i, j}-A_{i} A_{j} \quad, \quad\left\{B_{i}, B_{j}\right\}=L_{i, j},
$$

all other Poisson brackets being zero.
The Hamiltonian system (P, ω, H) is a smooth complete extension of $\left(T^{*}\left(\mathbb{R}^{d} \backslash\{0\}\right), d q \wedge d p, \widehat{H}\right)$.

n-body simultaneous binary regularisation:

 non-smooth dynamics
n-body simultaneous binary regularisation:

 non-smooth dynamics- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^{*} \widehat{M}$ (with $\widehat{M}=\mathbb{R}^{n d} \backslash \Delta$) to a smooth manifold P like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez-Simó: Poincaré map no smoother than
R. Martinez, C. Simb: The degree of dififerentiability of the regularization of simuttaneous binary
collisions in some N-body problems. Nonlinearity $13,2107-2130$ (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).
M. EIBialy: Collective branch regularization of simutaneous binary collisions in the $3 \mathrm{D} N$-body problem.
J. Math. Phys. 50052702 (2009)

n-body simultaneous binary regularisation:

 non-smooth dynamics- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^{*} \widehat{M}$ (with $\widehat{M}=\mathbb{R}^{n d} \backslash \Delta$) to a smooth manifold P like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez-Simó: Poincaré map no smoother than R. Martinez, C. Simo: The degree of dififerentiability of the regularization of simultaneous binary collisions in some N-body problems. Nonlinearity $13,2107-2130$ (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are (and become rest points).
M. Elialy: Col ective branch regularization of simuttaneous binary collision sin the 3D N-body problem J. Math. Phys. 50052702 (2009)

n-body simultaneous binary regularisation:

 non-smooth dynamics- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^{*} \widehat{M}$ (with $\widehat{M}=\mathbb{R}^{n d} \backslash \Delta$) to a smooth manifold P like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez-Simó: Poincaré map no smoother than R. Martinez, C. Simo:: The degree of dififerentiability of the regularization of simultaneous binary
- Regularisation (ElBialy): Simultaneous binary collisions are (and become rest points)
M. EIBialy: Collective branch regularization of simutaneous binary collisions in the $3 \mathrm{D} N$-body problem. J. Math. Phys. 50052702 (2009)

n-body simultaneous binary regularisation:

 non-smooth dynamics- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^{*} \widehat{M}$ (with $\widehat{M}=\mathbb{R}^{n d} \backslash \Delta$) to a smooth manifold P like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez-Simó: Poincaré map no smoother than $C^{8 / 3}$.
R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N-body problems. Nonlinearity 13, 2107-2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are (and become rest points)
M. ElBialy: Collective branch regularization of simultaneous binary collisions in the 3D N -body problem. J. Math. Phys. 50052702 (2009)

n-body simultaneous binary regularisation:

 non-smooth dynamics- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^{*} \widehat{M}$ (with $\widehat{M}=\mathbb{R}^{n d} \backslash \Delta$) to a smooth manifold P like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez-Simó: Poincaré map no smoother than $C^{8 / 3}$.
R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N-body problems. Nonlinearity 13, 2107-2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).
M. ElBialy: Collective branch regularization of simultaneous binary collisions in the 3D N -body problem.
J. Math. Phys. 50052702 (2009)

Intuition for the Martínez-Simó $C^{8 / 3}$ result

This is for special one-parameter solutions, the parameter $\Delta t \in \mathbb{R}$ being the time between the two binary collisions.
Example: Four equal masses on a line, distance one at simultaneous binary collision.
Distance between first pair: $2 a(t)$, between second pair: $2 b(t)$.

Force on second pair: $\ddot{b}=-\frac{1}{2} b^{-2}+$

$$
\begin{aligned}
& \frac{1}{2}\left((1+a-b)^{-2}+(1-a-b)^{-2}-(1+a+b)^{-2}-(1-a+b)^{-2}\right) \\
= & -\frac{1}{2} b^{-2}+4 b+8 b^{3}+24 a^{2} b+\ldots
\end{aligned}
$$

Perturbation theory: $b(t)=\left(\frac{3}{2} t\right)^{2 / 3}+\ldots, a(t)=\left(\frac{3}{2}(t+\Delta t)\right)^{2 / 3}+\ldots$

Intuition for the Martínez-Simó $C^{8 / 3}$ result

- Rate of change in energy of b pair, for t of same order as Δt : $\ddot{b} \dot{b}=\ldots+k a^{2} b \dot{b}=\ldots+k \operatorname{sign}(\Delta t) \Delta t^{5 / 3}$.
- This $C^{8 / 3}$ result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

Intuition for the Martínez-Simó $C^{8 / 3}$ result

- Rate of change in energy of b pair, for t of same order as Δt : $\ddot{b} \dot{b}=\ldots+k a^{2} b \dot{b}=\ldots+k \operatorname{sign}(\Delta t) \Delta t^{5 / 3}$.
- Integrate for time $\sim \Delta t: k \operatorname{sign}(\Delta t) \Delta t^{8 / 3}$
- This $C^{8 / 3}$ result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

Intuition for the Martínez-Simó $C^{8 / 3}$ result

- Rate of change in energy of b pair, for t of same order as Δt :

$$
\ddot{b} \dot{b}=\ldots+k a^{2} b \dot{b}=\ldots+k \operatorname{sign}(\Delta t) \Delta t^{5 / 3} .
$$

- Integrate for time $\sim \Delta t: k \operatorname{sign}(\Delta t) \Delta t^{8 / 3}$
- This $C^{8 / 3}$ result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

Regularity of the flow

Proposition (J. Fejoz, AK, R. Montgomery)
After simultaneous binary regularization the (incomplete) n-body flow is continuously differentiable.
..after additional coordinate change.

Regularity of the flow

Proposition (J. Fejoz, AK, R. Montgomery)

After simultaneous binary regularization the (incomplete) n-body flow is continuously differentiable.
..after additional coordinate change...

Train correspondences

Two Wood Burners in Kamloops Train Yards: Circa 1888

Specific idea:

find solution where the celestial bodies meet at kinematically prescribed points

Ideal

reality (for Coulomb repulsion)

Kinematics: Setup

- between collisions, the n particles (figure: $n=4$) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters (figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic dynamics

Kinematics: Setup

- between collisions, the n particles (figure: $n=4$) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters
(figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic olynamics

Kinematics: Setup

- between collisions, the n particles (figure: $n=4$) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters
(figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic dynamics

Kinematics of n-body scattering

(the hard problems!)

- Question: How many collisions for n balls on the line, having equal mass? (deterministic for binary collisions)

Answer: $\binom{n}{2}$, look at position $q_{k}(t)$ of ball no. k at time t !

- Question: How many collisions for n balls on the line, having nearly equal mass (mass ratios in $[1-\varepsilon, 1+\varepsilon]$)?
Answers: 1) Best upper bound is
D. Burran S . Ferlener \& A. Kononenko. Unifiorm estimates on the number of collisions in semi-dispersing billards Annals of Mathematics 147, 695-708 (1998)

Kinematics of n-body scattering

(the hard problems!)

- Question: How many collisions for n balls on the line, having equal mass? (deterministic for binary collisions)

Answer: $\binom{n}{2}$, look at position $q_{k}(t)$ of ball no. k at time t !

- Question: How many collisions for n balls on the line, having nearly equal mass (mass ratios in $[1-\varepsilon, 1+\varepsilon]$)?
Answers: 1) Best upper bound is super-exponential in n
D. Burago, S. Ferleger \& A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards. Annals of Mathematics 147, 695-708 (1998)

2) Between $\binom{n-1}{1}$ and (at least) $\binom{n+1}{3}$, depending on precise masses
A. Knauf, M. Stepan: Elastic Scattering of Point Particles with Nearly Equal Masses (2010)

Kinematics: No way from B to A!

Kinematics: No way from B to A!

Kinematics: No way from B to $A!$

- Consider for given succession of clusters all pairs

$$
\left(v^{-}, v^{+}\right) \in S^{D} \times S^{D}
$$

of initial/final velocities $v^{ \pm}$, with $D:=d(n-1)-1$ (conservation of total kinetic energy and of total momentum)

- Whereas the n-body collision has codimension zero,
- for binary clusters the codimension is at least $n-2$.

Kinematics: No way from B to $A!$

- Consider for given succession of clusters all pairs

$$
\left(v^{-}, v^{+}\right) \in S^{D} \times S^{D}
$$

of initial/final velocities $v^{ \pm}$, with $D:=d(n-1)-1$ (conservation of total kinetic energy and of total momentum)

- Whereas the n-body collision has codimension zero,
- for binary clusters the
codimension is at least $n-2$.

Kinematics: No way from B to $A!$

- Consider for given succession of clusters all pairs

$$
\left(v^{-}, v^{+}\right) \in S^{D} \times S^{D}
$$

of initial/final velocities $v^{ \pm}$, with $D:=d(n-1)-1$ (conservation of total kinetic energy and of total momentum)

- Whereas the n-body collision has codimension zero,
- for binary clusters the codimension is at least $n-2$.

Transversality; long range of gravity

Transversality: We only consider kinematic solutions for which
(1) all collisions are binary
(2) the initial velocities of all particles are different (same for final velocities)
(3) forward scattering (that is, collision without scattering) does not occur.
(4) No particle is allowed to go through without any deflection.

Long range of the $1 / r$ potential: already Kepler hyperbolae are not asymptotic in time to any straight line.
Thus kinematic solutions can at most be approximated by n-body solutions locally uniformly in time.

Main result

Rescale all interactions: $I_{k, \ell} \mapsto \varepsilon I_{k, \ell}$.

Theorem

In the limit $\varepsilon \searrow 0$ any transversal kinematic solution is approximated locally uniformly by n-body solutions.

Corollary

Homogeneity of the kinetic and the potential part in H leads to corresponding n-body solutions for any given positive energy, with interaction $I_{k, \ell}$ unchanged but spatial scale $\nearrow \infty$.

Asymptotic velocity

(discussion for smooth long-ranged pair potentials)

$$
\bar{v}: T^{*} \mathbb{R}^{n d} \rightarrow \mathbb{R}^{n d} \quad, \quad \bar{v}(x):=\lim _{t \rightarrow+\infty} \frac{q(t, x)}{t}
$$

Known:

- Asymptotic velocity \bar{v} exists.
- \bar{v} is discontinuous.

Theorem (FKM)

On the free phase space region $P_{\text {free }}:=\bar{v}^{-1}\left(\mathbb{R}^{n d} \backslash \Delta\right)$ it is smooth.

Questions

(1) Can we obtain a global topological picture of three-body scattering in celestial mechanics?
(2) Can we show for m electrons in a molecule with n fixed nuclei existence of solution $x: \mathbb{R} \rightarrow P$ for a.e. initial condition $x_{0} \in P$?

