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Notation for n bodies
Case of celestial mechanics

For n ∈ N particles in
d ∈ N degrees of freedom
the configuration space is M̂ := Rnd \∆,
with collision set
∆ := {q = (q1, . . . ,qn) ∈ Rnd | qi = qj for some i 6= j}.
Given masses m1, . . . ,mn > 0 and
interaction parameters I i,j ∈ R \ {0}

we consider the Hamiltonian

Ĥ : T ∗M̂ → R , Ĥ(p,q) := K (p) + V (q), (1)

with K (p) :=
n∑

i=1

‖pi‖2

2mi
and V (q) :=

∑
1≤i<j≤n

Ii,j
‖qi − qj‖

.
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Notions for n body motion

Phase space P̂ := T ∗M̂,
Maximal flow Φ = (p,q) : D → P̂ with domain

D = {(t , x) ∈ R× P̂ | T−(x) < t < T +(x)}.

Definition

Set Sing :=
{

x ∈ P̂ | T +(x) < +∞
}

of phase space points
encountering a singularity in the future;
Subset of phase space points encountering a collision singularity:

Coll :=
{

x ∈ Sing | lim
t↗T +(x)

q(t , x) exists
}
.
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Measure of collision orbits

Theorem (Saari)

For dimension d = 3 and forces ∇Vi,j(q) = −mimj q/‖q‖1+α

collisions are improbable for α < 17/7.
Binary collisions are improbable for α < 3.

Don Saari: Improbability of Collisions in Newtonian Gravitational Systems. II. Transactions of the AMS 181, 351–368 (1973)

Generalisation: Dimension d ≥ 2

V (q) =
∑

1≤i<j≤n

Vi,j(qi − qj) with Vi,j ∈ C2(Rd \{0},R
)

Definition
A potential V is called

moderate if ‖∇Vi,j(q)‖ ≤ C‖q‖−3+ε for ‖q‖≤1,
long ranged if ‖∇Vi,j(q)‖ ≤ C‖q‖−1−ε for ‖q‖≥1.
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Measure of collision orbits

Theorem (St. Fleischer, AK)
For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section H(m) in phase
space ’around’ the collision set ∆, with

surface area
∫
H(m) iXH Ω (with phase space volume form Ω) going

to zero as m→∞,
and any collision orbit intersecting all H(m) with m large.
Cluster: set partition C = {C1, . . . ,Ck} of {1, . . . ,n}
CollC := {x ∈ Coll | limt↗T +(x)

(
qi(t , x)− qj(t , x)

)
= 0 iff i ∼=C j},

Coll =
⋃̇
C
CollC .

Use internal and external coordinates for cluster C to define H(m):
modulus of internal position as function of other coordinates. �
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Measure of non-collision singularities
For an n-center – two-body system

Non-collision singularities exist in the
four-body problem.
Z. Xia: The existence of noncollision singularities in Newtonian
systems. Annals of Mathematics 135, 411–468 (1992)

They are improbable in the four-body problem.
D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267–271 (1971)

Non-collision singularities exist in a simplified four-body problem.
J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013
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Measure of non-collision singularities

Theorem (St. Fleischer, AK)
For moderate pair potentials non-collision singularities are improbable.

Fixed centers s1, . . . , sn ∈ Rd

two moving particles
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Poincaré surfaces for collision set

Picture in configuration space, for
d = 1 dimension,
n = 3 bodies,
in center of mass system.

Collision set ∆
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Regularisation

Why another regularisation?
There are already regularisations by
Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:
All dimensions d ≥ 1
simultaneously for all energies
no change of time parameter
symplectic extension of phase space.
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Regularisation

What kind of regularity?
regularity of the single collision orbits, e.g. analyticity in t1/3

regularity of a Poincaré map (block regularity)
regularity of the flow.
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Regularisation by phase space extension: Kepler case

Hamiltonian, attractive case (I < 0):

Ĥ : T ∗
(
Rd \{0}

)
→ R , Ĥ(p,q) =

‖p‖2

2m
+

I
‖q‖

ε–neighborhood of the excluded fiber T ∗0 Rd

Ûε :=
{

(p,q) ∈ T ∗
(
Rd \{0}

) ∣∣∣ ‖q‖ < ε, ‖p‖
2

2m > 3
4
|I|
‖q‖

}
T̂ : Ûε → R: the time elapsed since the closest encounter of the
Kepler solution with the pericentre.
Laplace-Runge-Lenz vector (with L̂(p,q) := q ∧ p)

Ã : Ûε → Rd , Ã(p,q) := −L̂(p,q)p + mI
q
‖q‖

.

its direction Â : Ûε → Sd−1 , Â := Ã/‖Ã‖ .
B̂ : Ûε → Rd , B̂ := L̂Â
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{

(p,q) ∈ T ∗
(
Rd \{0}

) ∣∣∣ ‖q‖ < ε, ‖p‖
2

2m > 3
4
|I|
‖q‖

}
T̂ : Ûε → R: the time elapsed since the closest encounter of the
Kepler solution with the pericentre.
Laplace-Runge-Lenz vector (with L̂(p,q) := q ∧ p)

Ã : Ûε → Rd , Ã(p,q) := −L̂(p,q)p + mI
q
‖q‖

.

its direction Â : Ûε → Sd−1 , Â := Ã/‖Ã‖ .
B̂ : Ûε → Rd , B̂ := L̂Â
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Andreas Knauf New Techniques for the n–Body Problem



Regularisation: Kepler case

Together we obtain a smooth map
Ψ̂ :=

(
Ĥ, T̂ , Â, B̂

)
: Ûε −→ T ∗(R× Sd−1),

all entries except time T̂ are constants of the motion.
im(Ψ̂) misses the zero section ∼= R× Sd−1 of the cotangent
bundle, since the collision orbits are characterized by zero angular
momentum and thus B̂ = L̂Â = 0, and the point of collision on
such an orbit corresponds to T̂ → 0.
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Regularisation: Kepler case

We now complete phase space by setting

P := T ∗
(
Rd \ {0}

)
∪ (R× Sd−1)

and introducing a second chart Ψ with domain

Uε := Ûε ∪ (R× Sd−1) ⊆ P,

Ψ ≡
(
H,T ,A,B

)
: Uε → T ∗(R× Sd−1),

Ψ�bUε := Ψ̂ and Ψ�R×Sd−1(h,a) := (h,0,a,0).
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Kepler regularization: Smooth & complete

Lemma

Ψ̂ is a diffeomorphism onto its image. On Uε for all 1 ≤ i , j ≤ d

{H,T} = 1 , {Ai ,Bj} = δi,j − AiAj , {Bi ,Bj} = Li,j ,

all other Poisson brackets being zero.
The Hamiltonian system (P, ω,H) is a smooth complete extension of(
T ∗(Rd \{0}) , dq ∧ dp , Ĥ

)
.
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n-body simultaneous binary regularisation:
non-smooth dynamics

McGehee (1974): Triple collisions are not regularizable.
So regularize all (simultaneous) binary collisions by extending
T ∗M̂ (with M̂ = Rnd \∆) to a smooth manifold P like above.
Then orbits without higher order near–collision exist for all times.
Martínez–Simó: Poincaré map no smoother than C8/3.
R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary
collisions in some N–body problems. Nonlinearity 13, 2107–2130 (2000)

Regularisation (ElBialy): Simultaneous binary collisions are
continuous (and become rest points).
M. ElBialy: Collective branch regularization of simultaneous binary collisions in the 3D N–body problem.
J. Math. Phys. 50 052702 (2009)
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Intuition for the Martínez–Simó C8/3 result

This is for special one-parameter solutions, the parameter ∆t ∈ R
being the time between the two binary collisions.
Example: Four equal masses on a line, distance one at simultaneous

binary collision.
Distance between first pair: 2a(t), between second pair: 2b(t).

Force on second pair: b̈ = −1
2b−2+

1
2

(
(1 + a− b)−2 + (1− a− b)−2 − (1 + a + b)−2 − (1− a + b)−2

)
= −1

2b−2 + 4b + 8b3 + 24a2b + . . .

Perturbation theory: b(t) = (3
2 t)2/3 + . . ., a(t) =

(3
2(t + ∆t)

)2/3
+ . . .
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Intuition for the Martínez–Simó C8/3 result

Rate of change in energy of b pair, for t of same order as ∆t :

b̈ḃ = . . .+ ka2bḃ = . . .+ k sign(∆t) ∆t5/3.
Integrate for time ∼ ∆t : k sign(∆t) ∆t8/3

This C8/3 result is valid for the celestial mechanics case.
Less differentiability for (attracting) charged particles.
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Regularity of the flow

Proposition (J. Fejoz, AK, R. Montgomery)
After simultaneous binary regularization the (incomplete) n–body flow
is continuously differentiable.

..after additional coordinate change...
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Train correspondences

Two Wood Burners in Kamloops Train Yards: Circa 1888
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Specific idea:
find solution where the celestial bodies meet at kinematically prescribed points

Ideal reality (for Coulomb repulsion)
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Kinematics: Setup

between collisions, the n
particles (figure: n = 4) move
with constant velocity
at collision, there is energy
and momentum conservation
for each cluster.
we prescribe the succession
of clusters
(figure: 123, 24, 23, 34, 12)
and consider the variety of all
solutions of this
non-deterministic dynamics
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Kinematics of n-body scattering
(the hard problems!)

Question: How many collisions for n balls on the line, having equal
mass? (deterministic for binary collisions)

Answer:
(n

2

)
, look at position qk (t) of ball no. k at time t !

Question: How many collisions for n balls on the line, having nearly
equal mass (mass ratios in [1− ε,1 + ε])?
Answers: 1) Best upper bound is super-exponential in n
D. Burago, S. Ferleger & A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards.
Annals of Mathematics 147, 695–708 (1998)

2) Between
(n−1

1

)
and (at least)

(n+1
3

)
, depending on precise masses

A. Knauf, M. Stepan: Elastic Scattering of Point Particles with Nearly Equal Masses (2010)
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Kinematics: No way from B to A!

Consider for given succession of
clusters all pairs

(v−, v+) ∈ SD × SD

of initial/final velocities v±, with
D := d(n − 1)− 1
(conservation of total kinetic
energy and of total momentum)
Whereas the n-body collision has
codimension zero,
for binary clusters the
codimension is at least n − 2.
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Transversality; long range of gravity

Transversality: We only consider kinematic solutions for which
1 all collisions are binary
2 the initial velocities of all

particles are different
(same for final velocities)

3 forward scattering (that is,
collision without scattering)
does not occur.

4 No particle is allowed to go
through without any deflection.

Long range of the 1/r potential: already Kepler hyperbolae are not
asymptotic in time to any straight line.
Thus kinematic solutions can at most be approximated by n-body
solutions locally uniformly in time.
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Main result

Rescale all interactions: Ik ,` 7→ εIk ,`.

Theorem
In the limit ε↘ 0 any transversal kinematic solution is approximated
locally uniformly by n-body solutions.

Corollary
Homogeneity of the kinetic and the potential part in H leads to
corresponding n-body solutions for any given positive energy,
with interaction Ik ,` unchanged but spatial scale↗∞.
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Asymptotic velocity
(discussion for smooth long-ranged pair potentials)

v : T ∗Rnd → Rnd , v(x) := lim
t→+∞

q(t , x)

t
Known:

Asymptotic velocity v exists.
v is discontinuous.

Theorem (FKM)

On the free phase space region Pfree := v−1(Rnd \∆) it is smooth.
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Questions

1 Can we obtain a global topological picture of three-body scattering
in celestial mechanics?

2 Can we show for m electrons in a molecule with n fixed nuclei
existence of solution x : R→ P for a.e. initial condition x0 ∈ P?
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