New Techniques for the *n*–Body Problem

Andreas Knauf

Department Mathematik Universität Erlangen-Nürnberg (Germany)

Hamiltonian systems and their applications Euler Institute (St. Petersburg) June 3, 2015

A (10) + A (10) +

Measure of the collision orbits

- Measure of non-collision singularities (2 bodies, n centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

< 回 > < 回 > < 回 > -

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

・白・・ヨ・・ モー

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

▲□ → ▲ □ → ▲ □ → □

э

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

▲□ → ▲ □ → ▲ □ → □

э

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

▲□ → ▲ □ → ▲ □ → …

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

▲□ → ▲ □ → ▲ □ → …

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

▲□ → ▲ □ → ▲ □ → …

- Measure of the collision orbits
- Measure of non-collision singularities (2 bodies, *n* centers)
- Regularization of the Kepler problem
- Regularization of (simultaneous) binary collisions)
- Kinematics
- Train correspondences
- Classical scattering
- Open questions

with Stefan Fleischer, respectively with Jacques Fejoz and Richard Montgomery

Unpublished!

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^* \widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q), \tag{1}$$
with $K(p) := \sum_{i=1}^n \frac{\|p_i\|^2}{2m_i} \quad \text{and} \quad V(q) := \sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n \\ \text{d} \neq j \le k}} \frac{I_{i,j}}{\|q_i - q_j\|}.$

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set $\Delta := \{q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j\}.$
- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^* \widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q), \tag{1}$$
with $K(p) := \sum_{i=1}^n \frac{\|p_i\|^2}{2m_i} \quad \text{and} \quad V(q) := \sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n \\ \text{d} \neq i \ \neq j \le k}} \frac{I_{i,j}}{\|q_i - q_j\|}.$

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set $\Delta := \{q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j\}.$
- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^* \widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q), \tag{1}$$
with $K(p) := \sum_{i=1}^n \frac{\|p_i\|^2}{2m_i} \quad \text{and} \quad V(q) := \sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n \\ n > 1}} \frac{I_{i,j}}{\|q_i - q_j\|}.$

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

• Given masses $m_1, \ldots, m_n > 0$ and

• interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^* \widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q), \tag{1}$$
with $K(p) := \sum_{i=1}^n \frac{\|p_i\|^2}{2m_i} \quad \text{and} \quad V(q) := \sum_{1 \le i < j \le n} \frac{I_{i,j}}{\|q_i - q_j\|}.$

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

• Given masses $m_1, \ldots, m_n > 0$ and

• interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^*\widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q), \tag{1}$$

$$ith \ K(p) := \sum_{i=1}^n \frac{\|p_i\|^2}{2m_i} \quad and \quad V(q) := \sum_{1 \le i < j \le n} \frac{I_{i,j}}{\|q_i - q_j\|}.$$

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^*\widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q),$$
 (1)

with
$$K(p) := \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i}$$
 and $V(q) := \sum_{1 \le i < j \le n} \frac{I_{i,j}}{\|q_i - q_j\|}$.

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \dots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^*\widehat{M} \to \mathbb{R} \quad , \quad \widehat{H}(p,q) := K(p) + V(q),$$
 (1)

with
$$K(p) := \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i}$$
 and $V(q) := \sum_{1 \le i < j \le n} \frac{I_{i,j}}{\|q_i - q_j\|}$.

Case of celestial mechanics

- For $n \in \mathbb{N}$ particles in
- $d \in \mathbb{N}$ degrees of freedom
- the configuration space is $\widehat{M} := \mathbb{R}^{nd} \setminus \Delta$,
- with collision set

 $\Delta := \{ q = (q_1, \ldots, q_n) \in \mathbb{R}^{nd} \mid q_i = q_j \text{ for some } i \neq j \}.$

- Given masses $m_1, \ldots, m_n > 0$ and
- interaction parameters $I_{i,j} \in \mathbb{R} \setminus \{0\}$

$$\widehat{H}: T^*\widehat{M} \to \mathbb{R}$$
, $\widehat{H}(p,q) := K(p) + V(q),$ (1)

Notions for *n* body motion

• Phase space $\widehat{P} := T^* \widehat{M}$,

• Maximal flow $\Phi = (p, q) : D \rightarrow \widehat{P}$ with domain

$$D = \{(t, x) \in \mathbb{R} \times \widehat{P} \mid T^{-}(x) < t < T^{+}(x)\}.$$

Definition

- Set Sing := {x ∈ P | T⁺(x) < +∞} of phase space points encountering a singularity in the future;
- Subset of phase space points encountering a collision singularity:

$$Coll := \Big\{ x \in Sing \mid \lim_{t \nearrow T^+(x)} q(t, x) \text{ exists} \Big\}.$$

Measure of collision orbits

Theorem (Saari)

For dimension d = 3 and forces $\nabla V_{i,j}(q) = -m_i m_j q/||q||^{1+\alpha}$

- collisions are improbable for $\alpha < 17/7$.
- Binary collisions are improbable for $\alpha < 3$.

Don Saari: Improbability of Collisions in Newtonian Gravitational Systems. II. Transactions of the AMS 181, 351-368 (1973)

Generalisation: Dimension $d \ge 2$

 $V(q) = \sum_{1 \leq i < j \leq n} V_{i,j}(q_i - q_j) \quad \text{with} \quad V_{i,j} \in C^2(\mathbb{R}^d \setminus \{0\}, \mathbb{R})$

Definition

A potential V is called

- moderate if $\|\nabla V_{i,j}(q)\| \leq C \|q\|^{-3+\varepsilon}$ for $\|q\| \leq 1$,
- long ranged if $\|\nabla V_{i,j}(q)\| \leq C \|q\|^{-1-\varepsilon}$ for $\|q\| \geq 1$.

Measure of collision orbits

Theorem (Saari)

For dimension d = 3 and forces $\nabla V_{i,j}(q) = -m_i m_j q/||q||^{1+\alpha}$

- collisions are improbable for $\alpha < 17/7$.
- Binary collisions are improbable for $\alpha < 3$.

Don Saari: Improbability of Collisions in Newtonian Gravitational Systems. II. Transactions of the AMS 181, 351-368 (1973)

Generalisation: Dimension $d \ge 2$

$$V(q) = \sum_{1 \leq i < j \leq n} V_{i,j}(q_i - q_j) \quad \text{with} \quad V_{i,j} \in C^2(\mathbb{R}^d \setminus \{0\}, \mathbb{R})$$

Definition

A potential V is called

- moderate if $\|\nabla V_{i,j}(q)\| \leq C \|q\|^{-3+\varepsilon}$ for $\|q\| \leq 1$,
- long ranged if $\|\nabla V_{i,j}(q)\| \leq C \|q\|^{-1-\varepsilon}$ for $\|q\| \geq 1$.

Measure of collision orbits

Theorem (St. Fleischer, AK)

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area ∫_{H(m)} i_{X_H}Ω (with phase space volume form Ω) going to zero as m → ∞,
- and any collision orbit intersecting all H^(m) with m large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$
- $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t, x) q_j(t, x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_H} \Omega$ (with phase space volume form Ω) going to zero as $m \to \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with *m* large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$
- $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t, x) q_j(t, x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_H} \Omega$ (with phase space volume form Ω) going to zero as $m \to \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with *m* large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$
- $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t, x) q_j(t, x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_H} \Omega$ (with phase space volume form Ω) going to zero as $m \to \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with *m* large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$

• $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t, x) - q_j(t, x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_H} \Omega$ (with phase space volume form Ω) going to zero as $m \to \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with *m* large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$
- $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t,x) q_j(t,x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For moderate (and long ranged) potentials V collisions are improbable.

Proof. Use family of global Poincaré surfaces of section $\mathcal{H}^{(m)}$ in phase space 'around' the collision set Δ , with

- surface area $\int_{\mathcal{H}^{(m)}} \mathbf{i}_{X_H} \Omega$ (with phase space volume form Ω) going to zero as $m \to \infty$,
- and any collision orbit intersecting all $\mathcal{H}^{(m)}$ with *m* large.
- Cluster: set partition $C = \{C_1, \ldots, C_k\}$ of $\{1, \ldots, n\}$
- $\operatorname{Coll}_{\mathcal{C}} := \{ x \in \operatorname{Coll} \mid \lim_{t \nearrow T^+(x)} (q_i(t,x) q_j(t,x)) = 0 \text{ iff } i \cong_{\mathcal{C}} j \},$

$$\operatorname{Coll} = \bigcup_{\mathcal{C}} \operatorname{Coll}_{\mathcal{C}}.$$

For an *n*-center – two-body system

Non-collision singularities exist in the four-body problem.

Z. Xia: The existence of noncollision singularities in Newtonian systems. *Annals of Mathematics* **135**, 411–468 (1992)

They are improbable in the four-body problem.

D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267–271 (1971)

- Non-collision singularities exist in a simplified four-body problem.
 - J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

< 17 ▶

(B) ((B))

For an *n*-center – two-body system

Non-collision singularities exist in the four-body problem.

Z. Xia: The existence of noncollision singularities in Newtonian systems. *Annals of Mathematics* **135**, 411–468 (1992)

They are improbable in the four-body problem.

D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267–271 (1971)

- Non-collision singularities exist in a simplified four-body problem.
 - J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

For an *n*-center – two-body system

Non-collision singularities exist in the four-body problem.

Z. Xia: The existence of noncollision singularities in Newtonian systems. *Annals of Mathematics* **135**, 411–468 (1992)

• They are improbable in the four-body problem.

D. Saari: Improbability of Collisions in Newtonian Gravitational Systems. Transactions AMS 162, 267–271 (1971)

Non-collision singularities exist in a simplified four-body problem.

J. Xue, D. Dolgopyat: Non-collision singularities in the planar two-center-two-body problem. arXiv:1307.2645, 2013

Theorem (St. Fleischer, AK)

For moderate pair potentials non-collision singularities are improbable.

Fixed centers s₁,..., s_n ∈ ℝ^d
two moving particles

3 1 4 3 1

 q_1

Picture in configuration space, for

- d = 1 dimension,
- *n* = 3 bodies,

• in center of mass system.

Collision set Δ

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions d ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions d ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

イロト イ理ト イヨト イヨト

2

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions d ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

伺 ト イ ヨ ト イ ヨ ト -

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions d ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions d ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

ヨトィヨト

Why another regularisation?

There are already regularisations by Levi-Civita, Kustaanheimo-Stiefel, Moser, Souriau...

Advantages:

- All dimensions *d* ≥ 1
- simultaneously for all energies
- no change of time parameter
- symplectic extension of phase space.

3 1 4 3 1

- regularity of the single collision orbits, *e.g.* analyticity in $t^{1/3}$
- regularity of a Poincaré map (block regularity)
- regularity of the flow.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

2

- regularity of the single collision orbits, *e.g.* analyticity in $t^{1/3}$
- regularity of a Poincaré map (block regularity)
- regularity of the flow.

- 同下 - ヨト - ヨト

크

- regularity of the single collision orbits, *e.g.* analyticity in $t^{1/3}$
- regularity of a Poincaré map (block regularity)

• regularity of the flow.

< 同 > < 回 > < 回 > <

크

- regularity of the single collision orbits, *e.g.* analyticity in $t^{1/3}$
- regularity of a Poincaré map (block regularity)
- regularity of the flow.

크

• Hamiltonian, attractive case (*I* < 0):

$$\widehat{H}: \, T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R} \ , \ \widehat{H}(p,q) = rac{\|p\|^2}{2m} + rac{||p||^2}{\|q\|}$$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{\varepsilon} := \left\{ (p,q) \in \mathcal{T}^* \big(\mathbb{R}^d \setminus \{0\} \big) \ \Big| \ \|q\| < \varepsilon, \ \frac{\|p\|^2}{2m} > \frac{3}{4} \frac{|l|}{\|q\|} \right\}$$

- *T*: *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p,q) := q \wedge p$)

$$\widetilde{A}: \widehat{U}^{\varepsilon} \to \mathbb{R}^{d}$$
, $\widetilde{A}(p,q) := -\widehat{L}(p,q)p + ml rac{q}{\|q\|}.$

- its direction $\widehat{A} : \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A} := \widetilde{A} / \|\widetilde{A}\|$.
- $\widehat{B}: \widehat{U}^arepsilon o \mathbb{R}^d$, $\widehat{B}:=\widehat{L}\widehat{A}$

• Hamiltonian, attractive case (*I* < 0):

$$\widehat{H}: \, T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R} \ , \ \widehat{H}(oldsymbol{
ho}, q) = rac{\|oldsymbol{
ho}\|^2}{2m} + rac{I}{\|q\|}$$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{arepsilon} := \left\{ (oldsymbol{p},oldsymbol{q}) \in \mathcal{T}^*ig(\mathbb{R}^dackslash \{m{0}\}ig) \ \Big| \ \|oldsymbol{q}\| < arepsilon, \ rac{\|oldsymbol{p}\|^2}{2m} > rac{3}{4} rac{|I|}{\|oldsymbol{q}\|}
ight\}$$

T: *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.

• Laplace-Runge-Lenz vector (with $\hat{L}(p,q) := q \wedge p$)

$$\widetilde{A}: \widehat{U}^{\varepsilon} \to \mathbb{R}^d$$
, $\widetilde{A}(p,q) := -\widehat{L}(p,q)p + ml rac{q}{\|q\|}.$

• its direction $\widehat{A}: \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A}:= \widetilde{A}/\|\widetilde{A}\|$.

• $\widehat{B}: \widehat{U}^arepsilon o \mathbb{R}^d$, $\widehat{B}:= \widehat{L}\widehat{A}$

• Hamiltonian, attractive case (*I* < 0):

$$\widehat{H}: T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R}$$
 , $\widehat{H}(oldsymbol{
ho}, q) = rac{\|oldsymbol{p}\|^2}{2m} + rac{I}{\|q\|}$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{arepsilon} := \left\{ (oldsymbol{
ho}, oldsymbol{q}) \in T^* ig(\mathbb{R}^d ackslash \{ m{0} \} ig) \ \Big| \ \|oldsymbol{q}\| < arepsilon, \ rac{\|oldsymbol{
ho}\|^2}{2m} > rac{3}{4} rac{|I|}{\|oldsymbol{q}\|}
ight\}$$

- *T* : *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p,q) := q \wedge p$)

$$\widetilde{A}: \widehat{U}^{arepsilon} o \mathbb{R}^d$$
 , $\widetilde{A}(p,q) := -\widehat{L}(p,q)p + m l rac{q}{\|q\|}.$

• its direction $\widehat{A}: \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A}:= \widetilde{A}/\|\widetilde{A}\|$.

• $\widehat{B}: \widehat{U}^{\varepsilon} \to \mathbb{R}^d$, $\widehat{B}:=\widehat{L}\widehat{A}$

• Hamiltonian, attractive case (*I* < 0):

$$\widehat{H}: T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R}$$
 , $\widehat{H}(oldsymbol{
ho}, q) = rac{\|oldsymbol{p}\|^2}{2m} + rac{I}{\|q\|}$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{\varepsilon} := \left\{ (\boldsymbol{p}, \boldsymbol{q}) \in \mathcal{T}^* \big(\mathbb{R}^{\boldsymbol{d}} \setminus \{\boldsymbol{0}\} \big) \ \Big| \ \|\boldsymbol{q}\| < \varepsilon, \ \frac{\|\boldsymbol{p}\|^2}{2m} > \frac{3}{4} \frac{|\boldsymbol{l}|}{\|\boldsymbol{q}\|} \right\}$$

- *T*: *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q) := q \land p$)

$$ilde{\mathcal{A}}:\widehat{U}^arepsilon o \mathbb{R}^d$$
 , $ilde{\mathcal{A}}(p,q):=-\widehat{\mathcal{L}}(p,q)p+mlrac{q}{\|q\|}.$

• its direction $\widehat{A}: \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A}:= \widetilde{A}/\|\widetilde{A}\|$.

• Hamiltonian, attractive case (I < 0):

$$\widehat{H}: T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R}$$
 , $\widehat{H}(oldsymbol{
ho}, q) = rac{\|oldsymbol{p}\|^2}{2m} + rac{I}{\|q\|}$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{\varepsilon} := \left\{ (\boldsymbol{\rho}, \boldsymbol{q}) \in \mathcal{T}^* \big(\mathbb{R}^{\boldsymbol{d}} \setminus \{\boldsymbol{0}\} \big) \ \Big| \ \|\boldsymbol{q}\| < \varepsilon, \ \frac{\|\boldsymbol{\rho}\|^2}{2m} > \frac{3}{4} \frac{|\boldsymbol{l}|}{\|\boldsymbol{q}\|} \right\}$$

- *T*: *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q) := q \land p$)

$$ilde{\mathcal{A}}:\widehat{U}^arepsilon o \mathbb{R}^d$$
 , $ilde{\mathcal{A}}(p,q):=-\widehat{L}(p,q)p+mlrac{q}{\|q\|}.$

• its direction $\widehat{A}: \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A}:= \widetilde{A}/\|\widetilde{A}\|$.

• $\widehat{B}: \widehat{U}^{\varepsilon} \to \mathbb{R}^d$. $\widehat{B}:=\widehat{I}\widehat{A}$

• Hamiltonian, attractive case (I < 0):

$$\widehat{H}: \, T^*ig(\mathbb{R}^dackslash\{0\}ig) o \mathbb{R} \ , \ \widehat{H}(oldsymbol{
ho}, q) = rac{\|oldsymbol{
ho}\|^2}{2m} + rac{I}{\|q\|}$$

• ε -neighborhood of the excluded fiber $T_0^* \mathbb{R}^d$

$$\widehat{U}^{\varepsilon} := \left\{ (\boldsymbol{\rho}, \boldsymbol{q}) \in \mathcal{T}^* \big(\mathbb{R}^{\boldsymbol{d}} \setminus \{\boldsymbol{0}\} \big) \ \Big| \ \|\boldsymbol{q}\| < \varepsilon, \ \frac{\|\boldsymbol{\rho}\|^2}{2m} > \frac{3}{4} \frac{|\boldsymbol{l}|}{\|\boldsymbol{q}\|} \right\}$$

- *T* : *Û*^ε → ℝ: the time elapsed since the closest encounter of the Kepler solution with the pericentre.
- Laplace-Runge-Lenz vector (with $\hat{L}(p, q) := q \land p$)

$$ilde{\mathcal{A}}:\widehat{U}^arepsilon o \mathbb{R}^d$$
 , $ilde{\mathcal{A}}(p,q):=-\widehat{L}(p,q)p+mlrac{q}{\|q\|}.$

• its direction $\widehat{A} : \widehat{U}^{\varepsilon} \to S^{d-1}$, $\widehat{A} := \widetilde{A} / \|\widetilde{A}\|$. • $\widehat{B} : \widehat{U}^{\varepsilon} \to \mathbb{R}^{d}$, $\widehat{B} := \widehat{L}\widehat{A}$

Regularisation: Kepler case

Together we obtain a smooth map $\widehat{\Psi} := (\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}) : \widehat{U}^{\varepsilon} \longrightarrow T^*(\mathbb{R} \times S^{d-1}),$

all entries except time *T* are constants of the motion.
 im(Ψ̂) misses the zero section ≅ ℝ × S^{d-1} of the cotangent bundle, since the collision orbits are characterized by zero angular momentum and thus B̂ = LÂ = 0, and the point of collision on such an orbit corresponds to T̂ → 0.

Regularisation: Kepler case

Together we obtain a smooth map

 $\widehat{\Psi} := \left(\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}\right) : \widehat{U}^{\varepsilon} \longrightarrow T^*(\mathbb{R} \times S^{d-1}),$

- all entries except time \hat{T} are constants of the motion.
- im(Ψ̂) misses the zero section ≅ ℝ × S^{d-1} of the cotangent bundle, since the collision orbits are characterized by zero angular momentum and thus B̂ = LÂ = 0, and the point of collision on such an orbit corresponds to T̂ → 0.

Regularisation: Kepler case

Together we obtain a smooth map

$$\widehat{\Psi} := \left(\widehat{H}, \widehat{T}, \widehat{A}, \widehat{B}
ight) : \widehat{U}^{\varepsilon} \longrightarrow T^*(\mathbb{R} \times S^{d-1}),$$

- all entries except time \hat{T} are constants of the motion.
- im(Ψ̂) misses the zero section ≅ ℝ × S^{d-1} of the cotangent bundle, since the collision orbits are characterized by zero angular momentum and thus B̂ = LÂ = 0, and the point of collision on such an orbit corresponds to T̂ → 0.

We now complete phase space by setting

$$P := T^*(\mathbb{R}^d \setminus \{0\}) \cup (\mathbb{R} \times S^{d-1})$$

and introducing a second chart Ψ with domain

$$U^{\varepsilon} := \widehat{U}^{\varepsilon} \cup (\mathbb{R} \times S^{d-1}) \subseteq P,$$

 $\Psi \equiv (H, T, A, B) : U^{\varepsilon} \to T^*(\mathbb{R} \times S^{d-1}),$
 $\Psi \upharpoonright_{\widehat{U}^{\varepsilon}} := \widehat{\Psi} \text{ and } \Psi \upharpoonright_{\mathbb{R} \times S^{d-1}} (h, a) := (h, 0, a, 0).$

3 N K 3 N

Lemma

 $\widehat{\Psi}$ is a diffeomorphism onto its image. On U arepsilon for all 1 \leq i, j \leq d

$$\{H,T\}=1$$
 , $\{A_i,B_j\}=\delta_{i,j}-A_iA_j$, $\{B_i,B_j\}=L_{i,j}$

all other Poisson brackets being zero. The Hamiltonian system (P, ω, H) is a smooth complete extension of $(T^*(\mathbb{R}^d \setminus \{0\}), dq \land dp, \widehat{H})$.

n-body simultaneous binary regularisation:

- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending *T*^{*} *M* (with *M* = ℝnd \ Δ) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}. R. Martinez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N-body problems. Nonlinearity 13, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

M. ElBialy: Collective branch regularization of simultaneous binary collisions in the 3D N-body problem. J. Math. Phys. 50 052702 (2009)

(日)

• McGehee (1974): Triple collisions are not regularizable.

- So regularize all (simultaneous) binary collisions by extending $T^*\widehat{M}$ (with $\widehat{M} = \mathbb{R}^{nd} \setminus \Delta$) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}.
 R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N–body problems. *Nonlinearity* **13**, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

M. ElBialy: Collective branch regularization of simultaneous binary collisions in the 3D *N*-body problem. *J. Math. Phys.* **50** 052702 (2009)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^*\widehat{M}$ (with $\widehat{M} = \mathbb{R}^{nd} \setminus \Delta$) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}.
 R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N–body problems. *Nonlinearity* **13**, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

Andreas Knauf New Techniques for the *n*–Body Problem

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^*\widehat{M}$ (with $\widehat{M} = \mathbb{R}^{nd} \setminus \Delta$) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}.
 R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some N-body problems. Nonlinearity 13, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

< 日 > < 回 > < 回 > < 回 > < 回 > <

- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^*\widehat{M}$ (with $\widehat{M} = \mathbb{R}^{nd} \setminus \Delta$) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}. R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some *N*-body problems. *Nonlinearity* **13**, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

3

- McGehee (1974): Triple collisions are not regularizable.
- So regularize all (simultaneous) binary collisions by extending $T^*\widehat{M}$ (with $\widehat{M} = \mathbb{R}^{nd} \setminus \Delta$) to a smooth manifold *P* like above.
- Then orbits without higher order near-collision exist for all times.
- Martínez–Simó: Poincaré map no smoother than C^{8/3}. R. Martínez, C. Simó: The degree of differentiability of the regularization of simultaneous binary collisions in some *N*-body problems. *Nonlinearity* **13**, 2107–2130 (2000)
- Regularisation (ElBialy): Simultaneous binary collisions are continuous (and become rest points).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-

Intuition for the Martínez–Simó C^{8/3} result

This is for special one-parameter solutions, the parameter $\Delta t \in \mathbb{R}$ being the time between the two binary collisions.

Example: Four equal masses on a line, distance one at simultaneous binary collision.

Distance between first pair: 2a(t), between second pair: 2b(t).

Perturbation theory: $b(t) = (\frac{3}{2}t)^{2/3} + ..., a(t) = (\frac{3}{2}(t + \Delta t))^{2/3} + ...$

- Rate of change in energy of *b* pair, for *t* of same order as Δt : $\ddot{b}\dot{b} = \dots + k \frac{a^2 b \dot{b}}{a^2} = \dots + k \operatorname{sign}(\Delta t) \Delta t^{5/3}$.
- Integrate for time $\sim \Delta t$: $k \operatorname{sign}(\Delta t) \Delta t^{8/3}$
- This *C*^{8/3} result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

- Rate of change in energy of *b* pair, for *t* of same order as Δt : $\ddot{b}\dot{b} = \ldots + k \frac{a^2 b \dot{b}}{b} = \ldots + k \operatorname{sign}(\Delta t) \Delta t^{5/3}$.
- Integrate for time $\sim \Delta t$: $k \operatorname{sign}(\Delta t) \Delta t^{8/3}$
- This *C*^{8/3} result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

- Rate of change in energy of *b* pair, for *t* of same order as Δt : $\ddot{b}\dot{b} = \ldots + k \frac{a^2 b \dot{b}}{b} = \ldots + k \operatorname{sign}(\Delta t) \Delta t^{5/3}$.
- Integrate for time $\sim \Delta t$: $k \operatorname{sign}(\Delta t) \Delta t^{8/3}$
- This *C*^{8/3} result is valid for the celestial mechanics case. Less differentiability for (attracting) charged particles.

Proposition (J. Fejoz, AK, R. Montgomery)

After simultaneous binary regularization the (incomplete) n-body flow is continuously differentiable.

..after additional coordinate change...

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Proposition (J. Fejoz, AK, R. Montgomery)

After simultaneous binary regularization the (incomplete) n-body flow is continuously differentiable.

.. after additional coordinate change...

Train correspondences

Two Wood Burners in Kamloops Train Yards: Circa 1888

▶ < ≣ >

< 17 ▶

Specific idea:

find solution where the celestial bodies meet at kinematically prescribed points

Kinematics: Setup

- between collisions, the *n* particles (figure: *n* = 4) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters (figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic dynamics

A B F A B F

Kinematics: Setup

- between collisions, the n particles (figure: n = 4) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters (figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic dynamics

A B F A B F

Kinematics: Setup

- between collisions, the n particles (figure: n = 4) move with constant velocity
- at collision, there is energy and momentum conservation for each cluster.
- we prescribe the succession of clusters (figure: 123, 24, 23, 34, 12) and consider the variety of all solutions of this non-deterministic dynamics

Kinematics of *n*-body scattering

(the hard problems!)

• **Question:** How many collisions for *n* balls on the line, having equal mass? (deterministic for binary collisions)

Answer: $\binom{n}{2}$, look at position $q_k(t)$ of ball no. k at time t!

Question: How many collisions for *n* balls on the line, having *nearly* equal mass (mass ratios in [1 - ε, 1 + ε])?
 Answers: 1) Best upper bound is super-exponential in *n* D. Burago, S. Ferleger & A. Kononenko. Uniform estimates on the number of collisions in semi-dispersing billiards.

Annals of Mathematics 147, 695–708 (1998)

2) Between $\binom{n-1}{1}$ and (at least) $\binom{n+1}{3}$, depending on precise masses

A. Knauf, M. Stepan: Elastic Scattering of Point Particles with Nearly Equal Masses (2049), 🔥 🚌 👘 🚊 🔊

Kinematics of *n*-body scattering

(the hard problems!)

• **Question:** How many collisions for *n* balls on the line, having equal mass? (deterministic for binary collisions)

Answer: $\binom{n}{2}$, look at position $q_k(t)$ of ball no. k at time t!

• Question: How many collisions for *n* balls on the line, having *nearly* equal mass (mass ratios in $[1 - \varepsilon, 1 + \varepsilon]$)?

Answers: 1) Best upper bound is super-exponential in *n* D. Burago, S. Ferleger & A. Kononenko, *Uniform estimates on the number of collisions in semi-dispersing billiards.* Annals of Mathematics 147, 695–708 (1998)

2) Between $\binom{n-1}{1}$ and (at least) $\binom{n+1}{3}$, depending on precise masses

A. Knauf, M. Stepan: Elastic Scattering of Point Particles with Nearly Equal Masses (2010),

 Consider for given succession of clusters all pairs

 $(v^-,v^+)\in S^D imes S^D$

of initial/final velocities v^{\pm} , with D := d(n-1) - 1(conservation of total kinetic energy and of total momentum)

 Whereas the *n*-body collision has codimension zero,

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

for binary clusters the codimension is at least n – 2.

 Consider for given succession of clusters all pairs

 $(v^-,v^+)\in S^D imes S^D$

of initial/final velocities v^{\pm} , with D := d(n-1) - 1(conservation of total kinetic energy and of total momentum)

 Whereas the n-body collision has codimension zero,

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

for binary clusters the codimension is at least n – 2.

 Consider for given succession of clusters all pairs

$$(v^-,v^+)\in \mathcal{S}^D imes\mathcal{S}^D$$

of initial/final velocities v^{\pm} , with D := d(n-1) - 1(conservation of total kinetic energy and of total momentum)

• Whereas the *n*-body collision has codimension zero,

A B F A B F

of for binary clusters the codimension is at least *n* − 2.

 Consider for given succession of clusters all pairs

$$(v^-,v^+)\in \mathcal{S}^D imes \mathcal{S}^D$$

of initial/final velocities v^{\pm} , with D := d(n-1) - 1(conservation of total kinetic energy and of total momentum)

• Whereas the *n*-body collision has codimension zero,

A B F A B F

of the for binary clusters the codimension is at least *n* − 2.

 Consider for given succession of clusters all pairs

$$(v^-,v^+)\in \mathcal{S}^D imes\mathcal{S}^D$$

of initial/final velocities v^{\pm} , with D := d(n-1) - 1(conservation of total kinetic energy and of total momentum)

- Whereas the *n*-body collision has codimension zero,
- for binary clusters the codimension is at least *n* − 2.

Transversality; long range of gravity

- Transversality: We only consider kinematic solutions for which
 - all collisions are binary
 - the initial velocities of all particles are different (same for final velocities)
 - forward scattering (that is, collision without scattering) does not occur.
 - No particle is allowed to go through without any deflection.

Long range of the 1/r potential: already Kepler hyperbolae are not asymptotic in time to *any* straight line.

Thus kinematic solutions can at most be approximated by *n*-body solutions locally uniformly in time.

(B) (A) (B) (A)

Rescale all interactions: $I_{k,\ell} \mapsto \varepsilon I_{k,\ell}$.

Theorem

In the limit $\varepsilon \searrow 0$ any transversal kinematic solution is approximated locally uniformly by n-body solutions.

Corollary

Homogeneity of the kinetic and the potential part in H leads to corresponding n-body solutions for any given positive energy, with interaction $I_{k,\ell}$ unchanged but spatial scale $\nearrow \infty$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

(discussion for smooth long-ranged pair potentials)

$$\overline{v}: T^* \mathbb{R}^{nd} \to \mathbb{R}^{nd}$$
 , $\overline{v}(x) := \lim_{t \to +\infty} \frac{q(t,x)}{t}$

Known:

- Asymptotic velocity \overline{v} exists.
- \overline{v} is discontinuous.

Theorem (FKM)

On the free phase space region $P_{\text{free}} := \overline{v}^{-1}(\mathbb{R}^{nd} \setminus \Delta)$ it is smooth.

(日) (圖) (E) (E) (E)

- Can we obtain a global topological picture of three-body scattering in celestial mechanics?
- **2** Can we show for *m* electrons in a molecule with *n* fixed nuclei existence of solution $x : \mathbb{R} \to P$ for a.e. initial condition $x_0 \in P$?

-

Andreas Knauf New Techniques for the *n*–Body Problem