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Linear systems

&= Az, x € R™. (1)

Proposition. If this linear system admits as a first integral
a nondegenerate quadratic form

1
H = E(Bm, x), det B # 0,

then div(Ax) = tr A = 0. Therefore, the phase flow of (1) preserves
the standard measure in R™ = {x}.

Proof. H is a first integral of (1) if and only if
BA + AB = 0.

Hence, A= —B 'AB, and tr A = —tr(B"1AB) = —tr A. Then
tr A =0. O
] p. 2



The following result is not so obvious. If the operator A is also
degenerate (det A # 0), then the linear system (1) is a Hamiltonian
system (with respect of some symplectic structure), and H is the

Hamiltonian function. In particular, n is even.
You can easily find this symplectic structure yourselves.

If det A # 0, and H is a positive definite form, then the system (1)

admits n/2 independent quadratic first integrals.



Quadratic systems

& = E afja:iacj, afj =const, 1<k<n. (2)
i?j

This system is invariant under the action of the group of
homotheties = — ax, t — t/a; o € R\ {0}.

Example. The Euler—Poincaré equations on the Lie algebra g:

My :Zc;.kmiwj, k=1,...,n. (3)
w = (w1,...,wy) is the velocity of the mechanical system (w € g),
m = (Mmq,...,My) is the momentum (m € g*),
mp =Y Ipqwq, where ||Iq|| = I is the inertia tensor,
cfj are the structure constants of g.

1 1
H = E(Iwa w) = 5(1_1m,m), the kinetic energy.

] p.



3) <= mp={mk, H}, 1<k<n.

{, } is the Lie—Poisson bracket:
{m;,m;} = Z crimp.
The Jacobi identity:

{{mi, m;}, me} + {{my, mi}, mi} + {{mi, m;}, m;} = 0.



EEEE—————
Homogeneous systems with quadratic integrals

1 1
F = E(Aa:, x), H = E(Bsc,w)

F is positive definite,

det(B — AA) = 0, Alyeeey An €R.

Theorem 1. If X\; # \j for i # j, then after some linear
transformation the system (2) takes the following form:

mk_Zc (i — Aj)zzg, (4)
1<g
where CL =ct L = c = _CZk cfcj = —c;?i,

] p.



I
In fact, Theorem 1 goes back to Vito Volterra
(Sopra una classe di equazioni dinamiche // Atti della Reale
Accademia delle Scienze di Torino. 1898. V. 33. P. 451-475).

r O(H,F)

T = Y —,
k “ 8(:13,;,:13]')

Theorem 2. The system (4) has the Hamiltonian form
&y = {xx, H},
where { , } is a Lie—Poisson quasi-bracket:
{z;yz;} = Z cfjmk.
F is a Casimir function: {z;, F} =0 forj=1,...,n.

Theorem 3. If \; # \; for i # j, then the phase flow of quadratic
system (2) preserves the volume form

dxi N\ --- Ndx,,.



Theorem 3 is not valid if A; = A; for some 2 # j.

Example (n = 3).
1 = x2(axy + Bx2 + vx3), T2 = —x1(0xy + Bx2 + yx3), T3 =10

1 1
F = 5(w%+m§+x§), H:E(mf—i—mg);
)\1:>\2:1, )\320.

divZ0 if a2 +p82#£0
= {z: azx; + Bxs + yx3 = 0}

The density of an invariant
measure has singularities:

p = |laxy + Bxa + yxs| ™.




Casen =3
According to Theorem 1
T = M()\z - )\3)3323337 To = H(A3 - )\1)9333317 T3 = M(Al - >\2)331wza

where p = c3; = —c2; = c3,.

If i # 0, then after substitution x — —x/p we obtain the famous
Euler equation from rigid body dynamics.

The Lie—Poisson ‘quasi-bracket’ is the real bracket on the Lie group
SO(3).



Kowalewski method

c
Let ) = ?k (k=1,...,n) be a solution of (2).
Then Zafjc,-cj =—c, (1<k<n).
Let (¢1,...,¢n) = ¢ be a non-zero solution (c € C™).
8vi
Set vy, = Zafjmwj, and K = oz, (¢) + dij]|-
K is the Kowalewski matrix; eigenvalues p1,...,p, of K are called

the Kowalewski exponents: det(K — pE) = 0.
Theorem 4. Kowalewski exponents contain the numbers
_19 27 23

and

p1r+p2+---+pn=n.

Example (n=3). py=—-1,p2=2,p3 =2, > p; = 3.

] p.
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Casen =4

1 = p2(A3 — Ag)xzxs + ps(Az2 — Ag)xaxs + pa(A2 — Ag)zaxs,
Tz = p1(A3 — Ag)xzxs + p3s(Aa — A1)xaxq + pa(As — A1) zzeq, 5)
T3 = p1(Ag — A2)Tax2 + p2(Ag — A1) xaz1 + pa(A1 — A2)z122,

Ta = p1(A2 — Ag)xaxs + p2 (A1 — Az)zixs + p3(A1 — A2)z1 2.

Here p1, pe2, ps, g are c?j (with signs).



Theorem 5.
1°. The system (5) admits an additional linear integral

G = p1T1 — P22 + H3T3 — HaTy.

2°. The system (5) admits the representation

. a(mjaGaFaH)
Tj

- 1<j<4.
6(1111, I2,T3, $4) ’

3°. The bracket {x;,x;} = Zcfj:ck is the Lie—Poisson bracket of the
Lie algebra R @ so(3) with the Casimir functions G and F.

4°. Solutions of (5) are elliptic functions of time t.

The existence of an additional linear integral is predicted by

Theorem 4: for n = 4 the Kowalewski exponents are —1, 2, 2, and 1.

] p.
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N ——.—.
Casen =5

In general, for n = 5 the quadratic equations are not
Euler—Poincaré equations on any Lie algebra g, dimg = 5.
But if

_ 1.1 1.1 1.1 _
C1 = Cy3Cy5 — Co4C35 + Cy5C34 = 0,

= _ 1.2 _ 1.2 1.2 _
C2 = C3Cy5 — C4C35 + C35C34 = 0,

= _ 1.3 _ 1.2 1.2 _
C3 = C3Cy5 — C34C35 1+ C35C34 = 0,
~ _ 1.3 _ 1.2 1.2 _

C4 = C54Cy5 — C34Cy5 + C45C34 = 0,

~ _ 1.3 _ 1.2 1.2 _
Cs = Cy5Cy5 — C35C45 + C45C35 = 0,

then there are two linear Casimir functions
_ 3 1 1 1
G1 = —cjyx1 + C T3 — C35T4 + C3,T5,
_ 3 2 2 2
G2 = —cCyexa + €T3 — C5 Ty + C3, T

The quadratic equations are integrable Euler—Poincaré equations on
the Lie algebra R? @ so(3).
] b. 13



Let

~ ~ ~ ~ ~ —1
N = (é1x1 + €2x2 + €3%3 + Ca%a + C5%5)

and

”
{zi,x;} = N{x;,z;} = NZ cfjwk.
The bracket {7, } satisfies the Jacobi identity.
Therefore, the equations are presented in conformally Hamiltonian

form
i = Nz, H}, 1<k<n.

After the change of time

dr = Ndt

we obtain the Hamiltonian equations.

In general case for n = 5 the quadratic equations are not integrable.



Casen =6

In general, for n = 6 there is no reducing factor IN.

Example. G = E(3), dim G = 6. The Euler—Poincaré equations
on g are the well-known Kirchhoff equations (describing the motion
of the rigid body in ideal fluid). They admit one more Casimir

function, but in general case they are not integrable.



The case, when Casimir function
is not positive definite

First integrals
1 1
F = E(w%+"'+m;_$;+1_"'_wi)’ H = E(Ala:f—i—---—l—)\na:i)

Theorem 6. If \; #\; fori<j<pandp<i<j, and
Ai+ X #0 fori<p<j, then after a linear transformation the
quadratic system takes the following form:

T = Z ij()\i — )\j)CBiZBJ‘ + Z C?j()\i + Aj)fL"ifL'j

i<isp i<p<j
+ ) (i — Xzim;  for k < p,
p<i<j
T = — Z (N — Aj)zix; + Z k(i + X))z
i<j<p i<p<J
- Z cfj(Ai — Xj)ziz;  for k > p.
p<i<j

] e
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Example (from a letter of S. Kowalewski to G. Mittag-Leffier,
1884).

1 =mn(—v1+y2+9y3), Y2 =y2(—y2+ys+y1),
¥Us = y3(—ys + v1 + y2).

2F = y1ys + Y293 — 2y1Y2, 2H = y2y3 — Y1Y2-
1
A1=1, XA=0, Az3=——.
2
In ‘canonical’ coordinates
. . 12 .
Ty = —5312333, T2 = —5583331, T3 = —HT1IT2.
\/ia:l \/E-’L'z 2x3
rq1 — ) o H— ) rg3 — ———.
© % 7

L1 = T2x3, T2 = 3L, I3 = T1T2

(M. Petrera and Y. Suris, 2015).

These equations are the Euler—Poincaré equations on so(1, 2).
]
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