Steklov Mathematical Institute of RAS

Valery V. Kozlov

Homogeneous systems with quadratic integrals, Lie-Poisson quasi-brackets, and Kowalewski method

> (joint with Ivan Bizyaev)

Linear systems

$$
\begin{equation*}
\dot{x}=A x, \quad x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Proposition. If this linear system admits as a first integral a nondegenerate quadratic form

$$
H=\frac{1}{2}(B x, x), \quad \operatorname{det} B \neq 0
$$

then $\operatorname{div}(A x)=\operatorname{tr} A=0$. Therefore, the phase flow of (1) preserves the standard measure in $\mathbb{R}^{n}=\{x\}$.

Proof. H is a first integral of (1) if and only if

$$
B A+A B=0
$$

Hence, $A=-B^{-1} A B$, and $\operatorname{tr} A=-\operatorname{tr}\left(B^{-1} A B\right)=-\operatorname{tr} A$. Then $\operatorname{tr} A=0$.

The following result is not so obvious. If the operator A is also degenerate ($\operatorname{det} A \neq 0$), then the linear system (1) is a Hamiltonian system (with respect of some symplectic structure), and H is the Hamiltonian function. In particular, n is even.

You can easily find this symplectic structure yourselves.
If $\operatorname{det} A \neq 0$, and H is a positive definite form, then the system (1) admits $n / 2$ independent quadratic first integrals.

Quadratic systems

$$
\begin{equation*}
\dot{x}_{k}=\sum_{i, j} a_{i j}^{k} x_{i} x_{j}, \quad a_{i j}^{k}=\text { const }, \quad 1 \leqslant k \leqslant n . \tag{2}
\end{equation*}
$$

This system is invariant under the action of the group of homotheties $x \mapsto \alpha x, t \mapsto t / \alpha ; \alpha \in \mathbb{R} \backslash\{0\}$.

Example. The Euler-Poincaré equations on the Lie algebra g :

$$
\begin{equation*}
\dot{m}_{k}=\sum c_{j k}^{i} m_{i} \omega_{j}, \quad k=1, \ldots, n . \tag{3}
\end{equation*}
$$

$\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ is the velocity of the mechanical system $(\omega \in g)$, $m=\left(m_{1}, \ldots, m_{n}\right)$ is the momentum ($m \in g^{*}$), $m_{p}=\sum I_{p q} \omega_{q}$, where $\left\|I_{p q}\right\|=I$ is the inertia tensor, $c_{i j}^{k}$ are the structure constants of g.
$H=\frac{1}{2}(I \omega, \omega)=\frac{1}{2}\left(I^{-1} m, m\right)$, the kinetic energy.
(3) $\Longleftrightarrow \quad \dot{m}_{k}=\left\{m_{k}, H\right\}, \quad 1 \leqslant k \leqslant n$.
$\{$,$\} is the Lie-Poisson bracket:$

$$
\left\{m_{i}, m_{j}\right\}=\sum c_{i j}^{p} m_{p}
$$

The Jacobi identity:

$$
\left\{\left\{m_{i}, m_{j}\right\}, m_{k}\right\}+\left\{\left\{m_{j}, m_{k}\right\}, m_{i}\right\}+\left\{\left\{m_{k}, m_{i}\right\}, m_{j}\right\}=0 .
$$

Homogeneous systems with quadratic integrals

$$
F=\frac{1}{2}(A x, x), \quad H=\frac{1}{2}(B x, x)
$$

F is positive definite,

$$
\operatorname{det}(B-\lambda A)=0, \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}
$$

Theorem 1. If $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$, then after some linear transformation the system (2) takes the following form:

$$
\begin{equation*}
\dot{x}_{k}=\sum_{i<j} c_{i j}^{k}\left(\lambda_{i}-\lambda_{j}\right) x_{i} x_{j} \tag{4}
\end{equation*}
$$

where $c_{k i}^{j}=c_{j k}^{i}=c_{i j}^{k}=-c_{i k}^{j}=-c_{k j}^{i}=-c_{j i}^{k}$.

In fact, Theorem 1 goes back to Vito Volterra
(Sopra una classe di equazioni dinamiche // Atti della Reale Accademia delle Scienze di Torino. 1898. V. 33. P. 451-475).

$$
\dot{x}_{k}=\sum c_{i j}^{k} \frac{\partial(H, F)}{\partial\left(x_{i}, x_{j}\right)}
$$

Theorem 2. The system (4) has the Hamiltonian form

$$
\dot{x}_{k}=\left\{x_{k}, H\right\}
$$

where $\{$,$\} is a Lie-Poisson quasi-bracket:$

$$
\left\{x_{i}, x_{j}\right\}=\sum c_{i j}^{k} x_{k}
$$

F is a Casimir function: $\left\{x_{j}, F\right\}=0$ for $j=1, \ldots, n$.
Theorem 3. If $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$, then the phase flow of quadratic system (2) preserves the volume form

$$
d x_{1} \wedge \cdots \wedge d x_{n}
$$

Theorem 3 is not valid if $\lambda_{i}=\lambda_{j}$ for some $i \neq j$.
Example $(n=3)$.
$\dot{x}_{1}=x_{2}\left(\alpha x_{1}+\beta x_{2}+\gamma x_{3}\right), \dot{x}_{2}=-x_{1}\left(\alpha x_{1}+\beta x_{2}+\gamma x_{3}\right), \dot{x}_{3}=0$
$F=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right), \quad H=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) ;$
$\lambda_{1}=\lambda_{2}=1, \quad \lambda_{3}=0$.

$\operatorname{div} \not \equiv 0$ if $\alpha^{2}+\beta^{2} \neq 0$
$\pi=\left\{x: \alpha x_{1}+\beta x_{2}+\gamma x_{3}=0\right\}$
The density of an invariant measure has singularities:
$\rho=\left|\alpha x_{1}+\beta x_{2}+\gamma x_{3}\right|^{-1}$.

Case $n=3$

According to Theorem 1
$\dot{x}_{1}=\mu\left(\lambda_{2}-\lambda_{3}\right) x_{2} x_{3}, \quad \dot{x}_{2}=\mu\left(\lambda_{3}-\lambda_{1}\right) x_{3} x_{1}, \quad \dot{x}_{3}=\mu\left(\lambda_{1}-\lambda_{2}\right) x_{1} x_{2}$,
where $\mu=c_{23}^{1}=-c_{13}^{2}=c_{12}^{3}$.
If $\mu \neq 0$, then after substitution $x_{k} \mapsto-x_{k} / \mu$ we obtain the famous Euler equation from rigid body dynamics.
The Lie-Poisson 'quasi-bracket' is the real bracket on the Lie group $\mathrm{SO}(3)$.

Kowalewski method

Let $x_{k}=\frac{c_{k}}{t} \quad(k=1, \ldots, n)$ be a solution of (2).
Then $\sum a_{i j}^{k} c_{i} c_{j}=-c_{k} \quad(1 \leqslant k \leqslant n)$.
Let $\left(c_{1}, \ldots, c_{n}\right)=c$ be a non-zero solution $\left(c \in \mathbb{C}^{\boldsymbol{n}}\right)$.
Set $v_{k}=\sum a_{i j}^{k} x_{i} x_{j}$, and $K=\left\|\frac{\partial v_{i}}{\partial x_{j}}(c)+\delta_{i j}\right\|$.
K is the Kowalewski matrix; eigenvalues $\rho_{1}, \ldots, \rho_{n}$ of K are called the Kowalewski exponents: $\operatorname{det}(K-\rho E)=0$.

Theorem 4. Kowalewski exponents contain the numbers

$$
-1,2,2
$$

and

$$
\rho_{1}+\rho_{2}+\cdots+\rho_{n}=n
$$

Example $(n=3) . \rho_{1}=-1, \rho_{2}=2, \rho_{3}=2, \quad \sum \rho_{i}=3$.

Case $n=4$

$$
\begin{align*}
& \dot{x}_{1}=\mu_{2}\left(\lambda_{3}-\lambda_{4}\right) x_{3} x_{4}+\mu_{3}\left(\lambda_{2}-\lambda_{4}\right) x_{2} x_{4}+\mu_{4}\left(\lambda_{2}-\lambda_{3}\right) x_{2} x_{3}, \\
& \dot{x}_{2}=\mu_{1}\left(\lambda_{3}-\lambda_{4}\right) x_{3} x_{4}+\mu_{3}\left(\lambda_{4}-\lambda_{1}\right) x_{4} x_{1}+\mu_{4}\left(\lambda_{3}-\lambda_{1}\right) x_{3} x_{1}, \tag{5}\\
& \dot{x}_{3}=\mu_{1}\left(\lambda_{4}-\lambda_{2}\right) x_{4} x_{2}+\mu_{2}\left(\lambda_{4}-\lambda_{1}\right) x_{4} x_{1}+\mu_{4}\left(\lambda_{1}-\lambda_{2}\right) x_{1} x_{2}, \\
& \dot{x}_{4}=\mu_{1}\left(\lambda_{2}-\lambda_{3}\right) x_{2} x_{3}+\mu_{2}\left(\lambda_{1}-\lambda_{3}\right) x_{1} x_{3}+\mu_{3}\left(\lambda_{1}-\lambda_{2}\right) x_{1} x_{2} .
\end{align*}
$$

Here $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are $c_{i j}^{k}$ (with signs).

Theorem 5.

1°. The system (5) admits an additional linear integral

$$
G=\mu_{1} x_{1}-\mu_{2} x_{2}+\mu_{3} x_{3}-\mu_{4} x_{4} .
$$

2°. The system (5) admits the representation

$$
\dot{x}_{j}=\frac{\partial\left(x_{j}, G, F, H\right)}{\partial\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}, \quad 1 \leqslant j \leqslant 4 .
$$

3°. The bracket $\left\{x_{i}, x_{j}\right\}=\sum c_{i j}^{k} x_{k}$ is the Lie-Poisson bracket of the Lie algebra $\mathbb{R} \oplus$ so(3) with the Casimir functions G and F. 4°. Solutions of (5) are elliptic functions of time t.

The existence of an additional linear integral is predicted by Theorem 4: for $n=4$ the Kowalewski exponents are -1, 2, 2, and 1.

Case $n=5$

In general, for $n=5$ the quadratic equations are not
Euler-Poincaré equations on any Lie algebra $g, \operatorname{dim} g=5$. But if

$$
\begin{aligned}
& \tilde{c}_{1}=c_{23}^{1} c_{45}^{1}-c_{24}^{1} c_{35}^{1}+c_{25}^{1} c_{34}^{1}=0, \\
& \tilde{c}_{2}=c_{23}^{1} c_{45}^{2}-c_{24}^{1} c_{35}^{2}+c_{25}^{1} c_{34}^{2}=0, \\
& \tilde{c}_{3}=c_{23}^{1} c_{45}^{3}-c_{34}^{1} c_{35}^{2}+c_{35}^{1} c_{34}^{2}=0, \\
& \tilde{c}_{4}=c_{24}^{1} c_{45}^{3}-c_{34}^{1} c_{45}^{2}+c_{45}^{1} c_{34}^{2}=0, \\
& \tilde{c}_{5}=c_{25}^{1} c_{45}^{3}-c_{35}^{1} c_{45}^{2}+c_{45}^{1} c_{35}^{2}=0,
\end{aligned}
$$

then there are two linear Casimir functions

$$
\begin{aligned}
& G_{1}=-c_{45}^{3} x_{1}+c_{45}^{1} x_{3}-c_{35}^{1} x_{4}+c_{34}^{1} x_{5} \\
& G_{2}=-c_{45}^{3} x_{2}+c_{45}^{2} x_{3}-c_{35}^{2} x_{4}+c_{34}^{2} x_{5}
\end{aligned}
$$

The quadratic equations are integrable Euler-Poincaré equations on the Lie algebra $\mathbb{R}^{2} \oplus \operatorname{so}(3)$.

Let

$$
N=\left(\tilde{c}_{1} x_{1}+\tilde{c}_{2} x_{2}+\tilde{c}_{3} x_{3}+\tilde{c}_{4} x_{4}+\tilde{c}_{5} x_{5}\right)^{-1}
$$

and

$$
\left\{\widetilde{x_{i}, x_{j}}\right\}=N\left\{x_{i}, x_{j}\right\}=N \sum^{\prime \prime} c_{i j}^{k} x_{k}
$$

The bracket $\{\widetilde{,}\}$ satisfies the Jacobi identity.
Therefore, the equations are presented in conformally Hamiltonian form

$$
\dot{x}_{k}=N^{-1}\left\{\widetilde{x_{k}, H}\right\}, \quad 1 \leqslant k \leqslant n .
$$

After the change of time

$$
d \tau=N d t
$$

we obtain the Hamiltonian equations.
In general case for $n=5$ the quadratic equations are not integrable.

Case $n=6$

In general, for $n=6$ there is no reducing factor N.
Example. $G=E(3), \operatorname{dim} G=6$. The Euler-Poincaré equations on g are the well-known Kirchhoff equations (describing the motion of the rigid body in ideal fluid). They admit one more Casimir function, but in general case they are not integrable.

The case, when Casimir function is not positive definite

First integrals
$F=\frac{1}{2}\left(x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{n}^{2}\right), \quad H=\frac{1}{2}\left(\lambda_{1} x_{1}^{2}+\cdots+\lambda_{n} x_{n}^{2}\right)$.
Theorem 6. If $\lambda_{i} \neq \lambda_{j}$ for $i<j \leqslant p$ and $p<i<j$, and $\lambda_{i}+\lambda_{j} \neq 0$ for $i \leqslant p<j$, then after a linear transformation the quadratic system takes the following form:

$$
\begin{aligned}
\dot{x}_{k}= & \sum_{i<j \leqslant p} c_{i j}^{k}\left(\lambda_{i}-\lambda_{j}\right) x_{i} x_{j}+\sum_{i \leqslant p<j} c_{i j}^{k}\left(\lambda_{i}+\lambda_{j}\right) x_{i} x_{j} \\
& +\sum_{p<i<j} c_{i j}^{k}\left(\lambda_{i}-\lambda_{j}\right) x_{i} x_{j} \quad \text { for } k \leqslant p \\
\dot{x}_{k}=- & \sum_{i<j \leqslant p} c_{i j}^{k}\left(\lambda_{i}-\lambda_{j}\right) x_{i} x_{j}+\sum_{i \leqslant p<j} c_{i j}^{k}\left(\lambda_{i}+\lambda_{j}\right) x_{i} x_{j} \\
& -\sum_{p<i<j} c_{i j}^{k}\left(\lambda_{i}-\lambda_{j}\right) x_{i} x_{j} \quad \text { for } k>p
\end{aligned}
$$

Example (from a letter of S. Kowalewski to G. Mittag-Leffler, 1884).

$$
\begin{gathered}
\dot{y}_{1}=y_{1}\left(-y_{1}+y_{2}+y_{3}\right), \quad \dot{y}_{2}=y_{2}\left(-y_{2}+y_{3}+y_{1}\right), \\
\dot{y}_{3}=y_{3}\left(-y_{3}+y_{1}+y_{2}\right) . \\
2 F=y_{1} y_{3}+y_{2} y_{3}-2 y_{1} y_{2}, \quad 2 H=y_{2} y_{3}-y_{1} y_{2} . \\
\lambda_{1}=1, \quad \lambda_{2}=0, \quad \lambda_{3}=-\frac{1}{2} .
\end{gathered}
$$

In 'canonical' coordinates

$$
\begin{gathered}
\dot{x}_{1}=-\frac{\mu}{2} x_{2} x_{3}, \quad \dot{x}_{2}=-\frac{\mu}{2} x_{3} x_{1}, \quad \dot{x}_{3}=-\mu x_{1} x_{2} . \\
x_{1} \mapsto \frac{\sqrt{2} x_{1}}{\mu}, \quad x_{2} \mapsto \frac{\sqrt{2} x_{2}}{\mu}, \quad x_{3} \mapsto-\frac{2 x_{3}}{\mu} \\
\dot{x}_{1}=x_{2} x_{3}, \quad \dot{x}_{2}=x_{3} x_{1}, \quad \dot{x}_{3}=x_{1} x_{2}
\end{gathered}
$$

(M. Petrera and Y. Suris, 2015).

These equations are the Euler-Poincaré equations on so(1, 2).

