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Linear systems

ẋ = Ax, x ∈ Rn. (1)

Proposition. If this linear system admits as a first integral
a nondegenerate quadratic form

H =
1

2
(Bx, x), detB 6= 0,

then div(Ax) = trA = 0. Therefore, the phase flow of (1) preserves
the standard measure in Rn = {x}.

Proof. H is a first integral of (1) if and only if

BA+AB = 0.

Hence, A = −B−1AB, and trA = − tr(B−1AB) = − trA. Then
trA = 0. �
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The following result is not so obvious. If the operator A is also
degenerate (detA 6= 0), then the linear system (1) is a Hamiltonian
system (with respect of some symplectic structure), and H is the
Hamiltonian function. In particular, n is even.

You can easily find this symplectic structure yourselves.

If detA 6= 0, and H is a positive definite form, then the system (1)
admits n/2 independent quadratic first integrals.
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Quadratic systems

ẋk =
∑
i,j

ak
ijxixj, ak

ij = const, 1 6 k 6 n. (2)

This system is invariant under the action of the group of
homotheties x 7→ αx, t 7→ t/α; α ∈ R \ {0}.

Example. The Euler–Poincaré equations on the Lie algebra g:

ṁk =
∑

ci
jkmiωj, k = 1, . . . , n. (3)

ω = (ω1, . . . , ωn) is the velocity of the mechanical system (ω ∈ g),
m = (m1, . . . ,mn) is the momentum (m ∈ g∗),
mp =

∑
Ipqωq, where ‖Ipq‖ = I is the inertia tensor,

ck
ij are the structure constants of g.

H =
1

2
(Iω, ω) =

1

2
(I−1m,m), the kinetic energy.
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(3) ⇐⇒ ṁk = {mk,H}, 1 6 k 6 n.

{ , } is the Lie–Poisson bracket:

{mi,mj} =
∑

cp
ijmp.

The Jacobi identity:

{{mi,mj},mk}+ {{mj,mk},mi}+ {{mk,mi},mj} = 0.
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Homogeneous systems with quadratic integrals

F =
1

2
(Ax, x), H =

1

2
(Bx, x)

F is positive definite,

det(B − λA) = 0, λ1, . . . , λn ∈ R.

Theorem 1. If λi 6= λj for i 6= j, then after some linear
transformation the system (2) takes the following form:

ẋk =
∑
i<j

ck
ij(λi − λj)xixj, (4)

where cj
ki = ci

jk = ck
ij = −cj

ik = −ci
kj = −ck

ji.
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In fact, Theorem 1 goes back to Vito Volterra
(Sopra una classe di equazioni dinamiche // Atti della Reale
Accademia delle Scienze di Torino. 1898. V. 33. P. 451–475).

ẋk =
∑

ck
ij

∂(H,F )

∂(xi, xj)
.

Theorem 2. The system (4) has the Hamiltonian form

ẋk = {xk,H},

where { , } is a Lie–Poisson quasi-bracket:

{xi, xj} =
∑

ck
ijxk.

F is a Casimir function: {xj, F} = 0 for j = 1, . . . , n.

Theorem 3. If λi 6= λj for i 6= j, then the phase flow of quadratic
system (2) preserves the volume form

dx1 ∧ · · · ∧ dxn.
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Theorem 3 is not valid if λi = λj for some i 6= j.

Example (n = 3).
ẋ1 = x2(αx1 + βx2 + γx3), ẋ2 = −x1(αx1 + βx2 + γx3), ẋ3 = 0

F =
1

2
(x2

1 + x2
2 + x2

3), H =
1

2
(x2

1 + x2
2);

λ1 = λ2 = 1, λ3 = 0.

div 6≡ 0 if α2 + β2 6= 0
π = {x : αx1 + βx2 + γx3 = 0}

The density of an invariant
measure has singularities:
ρ = |αx1 + βx2 + γx3|−1.
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Case n = 3

According to Theorem 1

ẋ1 = µ(λ2−λ3)x2x3, ẋ2 = µ(λ3−λ1)x3x1, ẋ3 = µ(λ1−λ2)x1x2,

where µ = c123 = −c213 = c312.

If µ 6= 0, then after substitution xk 7→ −xk/µ we obtain the famous
Euler equation from rigid body dynamics.
The Lie–Poisson ‘quasi-bracket’ is the real bracket on the Lie group
SO(3).
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Kowalewski method
Let xk =

ck

t
(k = 1, . . . , n) be a solution of (2).

Then
∑
ak

ijcicj = −ck (1 6 k 6 n).

Let (c1, . . . , cn) = c be a non-zero solution (c ∈ Cn).

Set vk =
∑
ak

ijxixj, and K =
∥∥∥∥ ∂vi

∂xj

(c) + δij

∥∥∥∥.
K is the Kowalewski matrix; eigenvalues ρ1, . . . , ρn of K are called
the Kowalewski exponents: det(K − ρE) = 0.

Theorem 4. Kowalewski exponents contain the numbers

−1, 2, 2,

and
ρ1 + ρ2 + · · ·+ ρn = n.

Example (n = 3). ρ1 = −1, ρ2 = 2, ρ3 = 2,
∑
ρi = 3.
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Case n = 4

ẋ1 = µ2(λ3 − λ4)x3x4 + µ3(λ2 − λ4)x2x4 + µ4(λ2 − λ3)x2x3,

ẋ2 = µ1(λ3 − λ4)x3x4 + µ3(λ4 − λ1)x4x1 + µ4(λ3 − λ1)x3x1,

ẋ3 = µ1(λ4 − λ2)x4x2 + µ2(λ4 − λ1)x4x1 + µ4(λ1 − λ2)x1x2,

ẋ4 = µ1(λ2 − λ3)x2x3 + µ2(λ1 − λ3)x1x3 + µ3(λ1 − λ2)x1x2.

(5)

Here µ1, µ2, µ3, µ4 are ck
ij (with signs).
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Theorem 5.
1◦. The system (5) admits an additional linear integral

G = µ1x1 − µ2x2 + µ3x3 − µ4x4.

2◦. The system (5) admits the representation

ẋj =
∂(xj, G, F,H)

∂(x1, x2, x3, x4)
, 1 6 j 6 4.

3◦. The bracket {xi, xj} =
∑
ck

ijxk is the Lie–Poisson bracket of the
Lie algebra R⊕ so(3) with the Casimir functions G and F .
4◦. Solutions of (5) are elliptic functions of time t.

The existence of an additional linear integral is predicted by
Theorem 4: for n = 4 the Kowalewski exponents are −1, 2, 2, and 1.
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Case n = 5

In general, for n = 5 the quadratic equations are not
Euler–Poincaré equations on any Lie algebra g, dim g = 5.
But if

c̃1 = c123c
1
45 − c

1
24c

1
35 + c125c

1
34 = 0,

c̃2 = c123c
2
45 − c

1
24c

2
35 + c125c

2
34 = 0,

c̃3 = c123c
3
45 − c

1
34c

2
35 + c135c

2
34 = 0,

c̃4 = c124c
3
45 − c

1
34c

2
45 + c145c

2
34 = 0,

c̃5 = c125c
3
45 − c

1
35c

2
45 + c145c

2
35 = 0,

then there are two linear Casimir functions

G1 = −c345x1 + c145x3 − c135x4 + c134x5,

G2 = −c345x2 + c245x3 − c235x4 + c234x5.

The quadratic equations are integrable Euler–Poincaré equations on
the Lie algebra R2 ⊕ so(3).
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Let
N = (c̃1x1 + c̃2x2 + c̃3x3 + c̃4x4 + c̃5x5)−1

and
{x̃i, xj} = N{xi, xj} = N

∑′′
ck

ijxk.

The bracket { ,̃ } satisfies the Jacobi identity.
Therefore, the equations are presented in conformally Hamiltonian
form

ẋk = N−1{x̃k,H}, 1 6 k 6 n.

After the change of time

dτ = N dt

we obtain the Hamiltonian equations.
In general case for n = 5 the quadratic equations are not integrable.
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Case n = 6

In general, for n = 6 there is no reducing factor N .

Example. G = E(3), dimG = 6. The Euler–Poincaré equations
on g are the well-known Kirchhoff equations (describing the motion
of the rigid body in ideal fluid). They admit one more Casimir
function, but in general case they are not integrable.
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The case, when Casimir function
is not positive definite

First integrals

F =
1

2
(x2

1 + · · ·+ x2
p− x

2
p+1− · · · − x

2
n), H =

1

2
(λ1x

2
1 + · · ·+ λnx

2
n).

Theorem 6. If λi 6= λj for i < j 6 p and p < i < j, and
λi + λj 6= 0 for i 6 p < j, then after a linear transformation the
quadratic system takes the following form:

ẋk =
∑

i<j6p

ck
ij(λi − λj)xixj +

∑
i6p<j

ck
ij(λi + λj)xixj

+
∑

p<i<j

ck
ij(λi − λj)xixj for k 6 p,

ẋk = −
∑

i<j6p

ck
ij(λi − λj)xixj +

∑
i6p<j

ck
ij(λi + λj)xixj

−
∑

p<i<j

ck
ij(λi − λj)xixj for k > p.
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Example (from a letter of S. Kowalewski to G. Mittag-Leffler,
1884).

ẏ1 = y1(−y1 + y2 + y3), ẏ2 = y2(−y2 + y3 + y1),

ẏ3 = y3(−y3 + y1 + y2).

2F = y1y3 + y2y3 − 2y1y2, 2H = y2y3 − y1y2.

λ1 = 1, λ2 = 0, λ3 = −
1

2
.

In ‘canonical’ coordinates

ẋ1 = −
µ

2
x2x3, ẋ2 = −

µ

2
x3x1, ẋ3 = −µx1x2.

x1 7→
√

2x1

µ
, x2 7→

√
2x2

µ
, x3 7→ −

2x3

µ
.

ẋ1 = x2x3, ẋ2 = x3x1, ẋ3 = x1x2

(M. Petrera and Y. Suris, 2015).
These equations are the Euler–Poincaré equations on so(1, 2).
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