Steklov Mathematical Institute of RAS

Valery V. Kozlov

Homogeneous systems with quadratic integrals, Lie–Poisson quasi-brackets, and Kowalewski method (joint with Ivan Bizyaev)

Linear systems

$$\dot{x} = Ax, \qquad x \in \mathbb{R}^n.$$
 (1)

Proposition. If this linear system admits as a first integral a nondegenerate quadratic form

$$H=rac{1}{2}(Bx,x),\qquad \det B
eq 0,$$

then $\operatorname{div}(Ax) = \operatorname{tr} A = 0$. Therefore, the phase flow of (1) preserves the standard measure in $\mathbb{R}^n = \{x\}$.

Proof. H is a first integral of (1) if and only if

$$BA + AB = 0.$$

Hence, $A = -B^{-1}AB$, and $\operatorname{tr} A = -\operatorname{tr}(B^{-1}AB) = -\operatorname{tr} A$. Then $\operatorname{tr} A = 0$.

The following result is not so obvious. If the operator A is also degenerate (det $A \neq 0$), then the linear system (1) is a Hamiltonian system (with respect of some symplectic structure), and H is the Hamiltonian function. In particular, n is even.

You can easily find this symplectic structure yourselves.

If det $A \neq 0$, and H is a positive definite form, then the system (1) admits n/2 independent quadratic first integrals.

Quadratic systems

$$\dot{x}_k = \sum_{i,j} a^k_{ij} x_i x_j, \qquad a^k_{ij} = ext{const}, \quad 1 \leqslant k \leqslant n.$$

This system is invariant under the action of the group of homotheties $x\mapsto \alpha x, t\mapsto t/\alpha; \ \alpha\in\mathbb{R}\setminus\{0\}.$

Example. The Euler–Poincaré equations on the Lie algebra g:

$$\dot{m}_k = \sum c^i_{jk} m_i \omega_j, \qquad k = 1, \dots, n.$$
 (3)

$$\begin{split} &\omega = (\omega_1, \ldots, \omega_n) \text{ is the velocity of the mechanical system } (\omega \in g), \\ &m = (m_1, \ldots, m_n) \text{ is the momentum } (m \in g^*), \\ &m_p = \sum I_{pq} \omega_q, \text{ where } \|I_{pq}\| = I \text{ is the inertia tensor}, \\ &c_{ij}^k \text{ are the structure constants of } g. \\ &H = \frac{1}{2} (I\omega, \omega) = \frac{1}{2} (I^{-1}m, m), \text{ the kinetic energy.} \end{split}$$

$$(3) \quad \Longleftrightarrow \quad \dot{m}_k = \{m_k, H\}, \ \ 1 \leqslant k \leqslant n.$$

 $\{\ ,\ \}$ is the Lie–Poisson bracket:

$$\{m_i,m_j\}=\sum c_{ij}^pm_p.$$

The Jacobi identity:

 $\{\{m_i,m_j\},m_k\}+\{\{m_j,m_k\},m_i\}+\{\{m_k,m_i\},m_j\}=0.$

Homogeneous systems with quadratic integrals

$$F=rac{1}{2}(Ax,x), \qquad H=rac{1}{2}(Bx,x)$$

F is positive definite,

$$\det(B-\lambda A)=0,\qquad\lambda_1,\ldots,\lambda_n\in\mathbb{R}.$$

Theorem 1. If $\lambda_i \neq \lambda_j$ for $i \neq j$, then after some linear transformation the system (2) takes the following form:

$$\dot{x}_k = \sum_{i < j} c_{ij}^k (\lambda_i - \lambda_j) x_i x_j, \tag{4}$$

where $c_{ki}^{j} = c_{jk}^{i} = c_{ij}^{k} = -c_{ik}^{j} = -c_{kj}^{i} = -c_{kj}^{k}$.

In fact, Theorem 1 goes back to Vito Volterra (Sopra una classe di equazioni dinamiche // Atti della Reale Accademia delle Scienze di Torino. 1898. V. 33. P. 451–475).

$$\dot{x}_k = \sum c_{ij}^k rac{\partial(H,F)}{\partial(x_i,x_j)} \, .$$

Theorem 2. The system (4) has the Hamiltonian form

$$\dot{x}_k = \{x_k, H\},$$

where $\{ \ , \ \}$ is a Lie–Poisson quasi-bracket:

$$\{x_i, x_j\} = \sum c_{ij}^k x_k.$$

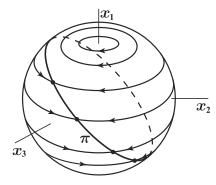
F is a Casimir function: $\{x_j, F\} = 0$ for j = 1, ..., n.

Theorem 3. If $\lambda_i \neq \lambda_j$ for $i \neq j$, then the phase flow of quadratic system (2) preserves the volume form

 $dx_1 \wedge \cdots \wedge dx_n$.

Theorem 3 is not valid if $\lambda_i = \lambda_j$ for some $i \neq j$.

Example
$$(n = 3)$$
.
 $\dot{x}_1 = x_2(\alpha x_1 + \beta x_2 + \gamma x_3), \quad \dot{x}_2 = -x_1(\alpha x_1 + \beta x_2 + \gamma x_3), \quad \dot{x}_3 = 0$
 $F = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2), \quad H = \frac{1}{2}(x_1^2 + x_2^2);$
 $\lambda_1 = \lambda_2 = 1, \quad \lambda_3 = 0.$



div
$$\neq 0$$
 if $\alpha^2 + \beta^2 \neq 0$
 $\pi = \{x : \alpha x_1 + \beta x_2 + \gamma x_3 = 0\}$

The density of an invariant measure has singularities: $\rho = |\alpha x_1 + \beta x_2 + \gamma x_3|^{-1}.$

According to Theorem 1

$$\dot{x}_1 = \mu(\lambda_2 - \lambda_3)x_2x_3, \quad \dot{x}_2 = \mu(\lambda_3 - \lambda_1)x_3x_1, \quad \dot{x}_3 = \mu(\lambda_1 - \lambda_2)x_1x_2,$$

where $\mu = c_{23}^1 = -c_{13}^2 = c_{12}^3.$

If $\mu \neq 0$, then after substitution $x_k \mapsto -x_k/\mu$ we obtain the famous Euler equation from rigid body dynamics.

The Lie–Poisson 'quasi-bracket' is the real bracket on the Lie group SO(3).

Kowalewski method

Let $x_k = \frac{c_k}{t}$ (k = 1, ..., n) be a solution of (2). Then $\sum a_{ij}^k c_i c_j = -c_k$ $(1 \le k \le n)$. Let $(c_1, ..., c_n) = c$ be a non-zero solution $(c \in \mathbb{C}^n)$. Set $v_k = \sum a_{ij}^k x_i x_j$, and $K = \left\| \frac{\partial v_i}{\partial x_j}(c) + \delta_{ij} \right\|$. K is the Kowalewski matrix; eigenvalues ρ_1, \ldots, ρ_n of K are called

the Kowalewski exponents: $det(K - \rho E) = 0$.

Theorem 4. Kowalewski exponents contain the numbers

$$-1, 2, 2,$$

and

$$\rho_1 + \rho_2 + \dots + \rho_n = n.$$

Example (n = 3). $\rho_1 = -1$, $\rho_2 = 2$, $\rho_3 = 2$, $\sum \rho_i = 3$.

$$\begin{aligned} \dot{x}_{1} &= \mu_{2}(\lambda_{3} - \lambda_{4})x_{3}x_{4} + \mu_{3}(\lambda_{2} - \lambda_{4})x_{2}x_{4} + \mu_{4}(\lambda_{2} - \lambda_{3})x_{2}x_{3}, \\ \dot{x}_{2} &= \mu_{1}(\lambda_{3} - \lambda_{4})x_{3}x_{4} + \mu_{3}(\lambda_{4} - \lambda_{1})x_{4}x_{1} + \mu_{4}(\lambda_{3} - \lambda_{1})x_{3}x_{1}, \\ \dot{x}_{3} &= \mu_{1}(\lambda_{4} - \lambda_{2})x_{4}x_{2} + \mu_{2}(\lambda_{4} - \lambda_{1})x_{4}x_{1} + \mu_{4}(\lambda_{1} - \lambda_{2})x_{1}x_{2}, \\ \dot{x}_{4} &= \mu_{1}(\lambda_{2} - \lambda_{3})x_{2}x_{3} + \mu_{2}(\lambda_{1} - \lambda_{3})x_{1}x_{3} + \mu_{3}(\lambda_{1} - \lambda_{2})x_{1}x_{2}. \end{aligned}$$
(5)

Here μ_1 , μ_2 , μ_3 , μ_4 are c_{ij}^k (with signs).

Theorem 5.

 1° . The system (5) admits an additional linear integral

$$G=\mu_1 x_1 - \mu_2 x_2 + \mu_3 x_3 - \mu_4 x_4 x_4$$

 2° . The system (5) admits the representation

$$\dot{x}_j = rac{\partial(x_j,G,F,H)}{\partial(x_1,x_2,x_3,x_4)}\,, \qquad 1\leqslant j\leqslant 4.$$

3°. The bracket $\{x_i, x_j\} = \sum c_{ij}^k x_k$ is the Lie-Poisson bracket of the Lie algebra $\mathbb{R} \oplus so(3)$ with the Casimir functions G and F. 4°. Solutions of (5) are elliptic functions of time t.

The existence of an additional linear integral is predicted by Theorem 4: for n = 4 the Kowalewski exponents are -1, 2, 2, and 1.

In general, for n = 5 the quadratic equations are not Euler–Poincaré equations on any Lie algebra g, dim g = 5. But if

$$\begin{split} \tilde{c}_1 &= c_{23}^1 c_{45}^1 - c_{24}^1 c_{35}^1 + c_{25}^1 c_{34}^1 = 0, \\ \tilde{c}_2 &= c_{23}^1 c_{45}^2 - c_{24}^1 c_{35}^2 + c_{25}^1 c_{34}^2 = 0, \\ \tilde{c}_3 &= c_{23}^1 c_{45}^3 - c_{34}^1 c_{35}^2 + c_{35}^1 c_{34}^2 = 0, \\ \tilde{c}_4 &= c_{24}^1 c_{45}^3 - c_{34}^1 c_{45}^2 + c_{45}^1 c_{34}^2 = 0, \\ \tilde{c}_5 &= c_{25}^1 c_{45}^3 - c_{35}^1 c_{45}^2 + c_{45}^1 c_{35}^2 = 0, \end{split}$$

then there are two linear Casimir functions

$$\begin{split} G_1 &= -c_{45}^3 x_1 + c_{45}^1 x_3 - c_{35}^1 x_4 + c_{34}^1 x_5, \\ G_2 &= -c_{45}^3 x_2 + c_{45}^2 x_3 - c_{35}^2 x_4 + c_{34}^2 x_5. \end{split}$$

The quadratic equations are integrable Euler–Poincaré equations on the Lie algebra $\mathbb{R}^2 \oplus so(3)$.

Let

$$N = (\tilde{c}_1 x_1 + \tilde{c}_2 x_2 + \tilde{c}_3 x_3 + \tilde{c}_4 x_4 + \tilde{c}_5 x_5)^{-1}$$

and

$$\widetilde{\{x_i,x_j\}} = N\{x_i,x_j\} = N\sum'' c_{ij}^k x_k.$$

The bracket $\{\tilde{\,,\,}\}$ satisfies the Jacobi identity.

Therefore, the equations are presented in conformally Hamiltonian form

$$\dot{x}_k = N^{-1} \{ \widetilde{x_k, H} \}, \qquad 1 \leqslant k \leqslant n.$$

After the change of time

$$d au = N \, dt$$

we obtain the Hamiltonian equations.

In general case for n = 5 the quadratic equations are not integrable.

In general, for n = 6 there is no reducing factor N.

Example. G = E(3), dim G = 6. The Euler-Poincaré equations on g are the well-known Kirchhoff equations (describing the motion of the rigid body in ideal fluid). They admit one more Casimir function, but in general case they are not integrable.

The case, when Casimir function is not positive definite

First integrals

$$F = rac{1}{2}(x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_n^2), \quad H = rac{1}{2}(\lambda_1 x_1^2 + \dots + \lambda_n x_n^2).$$

Theorem 6. If $\lambda_i \neq \lambda_j$ for $i < j \leq p$ and p < i < j, and $\lambda_i + \lambda_j \neq 0$ for $i \leq p < j$, then after a linear transformation the quadratic system takes the following form:

$$egin{aligned} \dot{x}_k &= \sum\limits_{i < j \leqslant p} c^k_{ij} (\lambda_i - \lambda_j) x_i x_j + \sum\limits_{i \leqslant p < j} c^k_{ij} (\lambda_i + \lambda_j) x_i x_j \ &+ \sum\limits_{p < i < j} c^k_{ij} (\lambda_i - \lambda_j) x_i x_j \ & ext{ for } k \leqslant p, \ \dot{x}_k &= - \sum\limits_{i < j \leqslant p} c^k_{ij} (\lambda_i - \lambda_j) x_i x_j + \sum\limits_{i \leqslant p < j} c^k_{ij} (\lambda_i + \lambda_j) x_i x_j \ &- \sum\limits_{p < i < j} c^k_{ij} (\lambda_i - \lambda_j) x_i x_j \ & ext{ for } k > p. \end{aligned}$$

Example (from a letter of S. Kowalewski to G. Mittag-Leffler, 1884).

$$egin{aligned} \dot{y}_1 &= y_1(-y_1+y_2+y_3), \quad \dot{y}_2 &= y_2(-y_2+y_3+y_1), \ \dot{y}_3 &= y_3(-y_3+y_1+y_2). \ 2F &= y_1y_3+y_2y_3-2y_1y_2, \qquad 2H &= y_2y_3-y_1y_2. \ \lambda_1 &= 1, \quad \lambda_2 &= 0, \quad \lambda_3 &= -rac{1}{2}\,. \end{aligned}$$

In 'canonical' coordinates

$$egin{array}{lll} \dot{x}_1 = -rac{\mu}{2} x_2 x_3, & \dot{x}_2 = -rac{\mu}{2} x_3 x_1, & \dot{x}_3 = -\mu x_1 x_2 \ x_1 \mapsto rac{\sqrt{2} \, x_1}{\mu}, & x_2 \mapsto rac{\sqrt{2} \, x_2}{\mu}, & x_3 \mapsto -rac{2 x_3}{\mu} \, . \ \dot{x}_1 = x_2 x_3, & \dot{x}_2 = x_3 x_1, & \dot{x}_3 = x_1 x_2 \end{array}$$

(M. Petrera and Y. Suris, 2015).

These equations are the Euler–Poincaré equations on so(1, 2).