KAM for Derivative Nonlinear Schrödinger Equation with Periodic Boundary Conditions

Jianjun Liu

Sichuan University, Chengdu, P R China

St.Petersburg, June 3-8, 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- Introduction to infinite dimensional KAM theory
- 3 Previous results of unbound KAM theory
- 4 Some ideas on the proof

イロト イポト イヨト イヨト

Equation and result

Consider derivative nonlinear Schrödinger equation with periodic boundary conditions

$$\mathbf{i}u_t + u_{xx} + \mathbf{i} \Big(f(x, u, \bar{u}) \Big)_x = 0, \quad x \in \mathbb{T},$$
(1.1)

where f is an analytic function of the form

$$f(x, u, \bar{u}) = |u|^2 u + f_{\geq 4}(x, u, \bar{u}), \qquad (1.2)$$

here $f_{\geq 4}$ denotes the higher order terms.

イロト イ押ト イヨト イヨト

Equation and result on to infinite dimensional KAM theory evious results of unbound KAM theory

Equation and result

Moreover, we require that (1.1) can be written into the Hamiltonian form

$$\frac{\partial u}{\partial t} = -\frac{d}{dx}\frac{\partial H}{\partial \bar{u}},\tag{1.3}$$

$$H = -\mathbf{i} \int_{\mathbb{T}} u_x \bar{u} dx + \frac{1}{2} \int_{\mathbb{T}} |u|^4 dx + \int_{\mathbb{T}} g_{\geq 5}(x, u, \bar{u}) dx.$$
(1.4)

Main result

The above equation possesses plenty of smooth quasi-periodic solutions of small amplitude.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction to infinite dimensional KAM theory

Consider an infinite dimensional Hamiltonian

$$H = N + P = \sum_{1 \le v \le n} \omega_v(\xi) y_v + \frac{1}{2} \sum_{j \ge 1} \Omega_j(\xi) (u_j^2 + v_j^2) + P(x, y, u, v; \xi)$$

on a phase space

$$\mathcal{P}^{a,p} = \mathbb{T}^n \times \mathbb{R}^n \times \ell^{a,p} \times \ell^{a,p} \ni (x, y, u, v),$$

where $\ell^{a,p}$ is the Hilbert space of all real sequences $w = (w_1, w_2, \cdots)$ with

$$||w||_{a,p}^2 = \sum_{j\geq 1} e^{2aj} j^{2p} |w_j|^2 < \infty.$$

伺い イヨト イヨト

Introduction to infinite dimensional KAM theory

When $P \equiv 0$, the system is integrable and its equations of motion are

$$\dot{x}_{\nu} = \omega_{\nu}(\xi), \quad \dot{y}_{\nu} = 0, \quad \dot{u}_{j} = -\Omega_{j}(\xi)v_{j}, \quad \dot{v}_{j} = \Omega_{j}(\xi)u_{j}.$$

Hence, for each $\xi \in \Pi$, there is an invariant torus $\mathcal{T}_0 = \mathbb{T}^n \times \{0\} \times \{0\} \times \{0\}$. This is a lower dimensional torus with tangential frequencies $(\omega_v)_{1 \le v \le n}$ and normal frequencies $(\Omega_j)_{j \ge 1}$. The aim is to prove the persistence of invariant tori for most of the parameters $\xi \in \Pi$.

(1日) (1日) (1日)

Introduction to infinite dimensional KAM theory

Roughly,

$$\Omega_j = j^d + \cdots, \qquad d \ge 1, \tag{2.1}$$

and the Hamiltonian vector field $X_P := (P_y, -P_x, -P_v, P_u)$ defines a real analytic map

$$\mathcal{P}^{a,p} \to \mathcal{P}^{a,q}, \qquad \text{let } \delta = p - q.$$
 (2.2)

Classification of infinite dimensional KAM theory: when $\delta \le 0$, *P* is called bounded perturbation, and corresponds to bounded KAM theory; when $\delta > 0$, *P* is called unbounded perturbation, and corresponds to unbounded KAM theory.

(日)

Introduction to infinite dimensional KAM theory

Examples of bounded case:

(NLW)
$$u_{tt} - u_{xx} + mu + f(u) = 0,$$
 (2.3)
 $d = 1, \quad \delta = -1;$
(NLS) $\mathbf{i}u_t - u_{xx} + mu + f(|u|^2)u = 0,$ (2.4)
 $d = 2, \quad \delta = 0.$

🗇 🕨 🖉 🕨 🖉 🖻

Introduction to infinite dimensional KAM theory

Examples of unbounded case:

(

(KdV)
$$u_t + u_{xxx} + 6uu_x + \text{perturbation} = 0,$$
 (2.5)
 $d = 3, \quad \delta = 1;$
(DNLS) $\mathbf{i}u_t + u_{xx} + f(x, u, \bar{u}, u_x, \bar{u}_x) = 0,$ (2.6)
 $d = 2, \quad \delta = 1;$

▶ < 토 ▶ < 토 ▶</p>

Previous results of unbound KAM theory

- Kuksin, ZAMP 1997, Analysis of Hamiltonian PDEs 2000 Kuksin's Lemma, $0 < \delta < d - 1$ Persistence of the finite-gap solutions of KdV equation (2.5)
- Kappeler-Pöschel, KdV&KAM 2003
- Bambusi-Graffi, CMP 2001

A class of time dependent Schrödinger equation

$$\mathbf{i}\partial_t \psi(x,t) = \left(-\frac{d^2}{dx^2} + Q(x) + \epsilon V(x,\omega t)\right)\psi(x,t)$$
$$Q(x) \sim |x|^{\alpha}, |V(x,\phi)| \sim |x|^{\beta}, \beta < \frac{\alpha - 2}{2}$$

・ 伊 ト ・ ヨ ト ・ ヨ ト

Previous results of unbound KAM theory

• L.-Yuan, CPAM 2010, CMP 2011

Solve homological equations, $0 < \delta = d - 1$ Quantum Duffing oscillator

$$\mathbf{i}\partial_t\psi(x,t) = \Big(-\frac{d^2}{dx^2} + x^4 + \epsilon x V(\omega t)\Big)\psi(x,t)$$

DNLS

$$\mathbf{i}u_t + u_{xx} - V * u + \mathbf{i}f(u, \bar{u})u_x = 0, x \in [0, \pi]$$

Perturbed Benjamin-Ono equation

$$u_t + \mathcal{H}u_{xx} - uu_x + \text{ perturbation } = 0, x \in \mathbb{T}$$

• Zhang-Gao-Yuan, Nonlinearity 2011 DNLS (reversible system)

$$\mathbf{i}u_t + u_{xx} + |u_x|^2 u = 0, x \in [0, \pi]$$

4 B b 4 B b

Previous results of unbound KAM theory

 Baldi-Berti-Montalto, Math. Ann 2014, C. R. Math. Acad. Sci. Paris 2014

 $u_t + u_{xxx} + 6uu_x + quasi-linear or fully nonlinear perturbation = 0$

• Feola-Procesi

$$\mathbf{i}u_t + u_{xx} + \epsilon f(\omega t, x, u, u_x, u_{xx}) = 0$$

伺き くほき くほき

Previous results of unbound KAM theory

Naturally, we consider DNLS with periodic boundary conditions (1.1). However, the multiplicity $\Omega_j^{\sharp} = 2$ and thus the previous estimates for homological equations seem to be invalid.

• L.-Yuan, JDE 2014

$$\mathbf{i}u_t + u_{xx} + \mathbf{i} \left(f(|u|^2)u \right)_x = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{T}$$

the nonlinear $\mathbf{i}(f(|u|^2)u)_x$ does not contain the space variable x explicitly, so that momentum is conserved; consequently, passing to Fourier coefficients, the corresponding Hamiltonian consists of monomials $q_{n_1}\bar{q}_{n_2}q_{n_3}\bar{q}_{n_4}\cdots q_{n_{2r-1}}\bar{q}_{n_{2r}}$ with

$$n_1 - n_2 + n_3 - n_4 + \dots + n_{2r-1} - n_{2r} = 0.$$

A (10) A (10)

Some ideas on the proof

Passing to Fourier coefficients, (1.1) can be rewritten as

$$\dot{q}_j = -\mathbf{i}\sigma_j \frac{\partial H}{\partial \bar{q}_j}, \quad \sigma_j = \begin{cases} 1, \ j \ge 1\\ -1, \ j \le -1 \end{cases}$$

with the Hamiltonian

$$H = \Lambda + G + K,$$

where

$$\Lambda = \sum_{j \neq 0} \sigma_j j^2 |q_j|^2,$$

$$G = \frac{1}{4\pi} \sum_{\substack{j, k, l, m \neq 0 \\ j - k + l - m = 0}} \sqrt{|jklm|} q_j \bar{q}_k q_l \bar{q}_m,$$

$$|K| = O(||q||^5).$$

Some ideas on the proof

Eliminating 4 order non-resonant terms, we thus get a Birkhoff normal form up to order four

 $H = \Lambda + B + R,$

where

$$B = \frac{1}{4\pi} \sum_{j \neq 0} j^2 |q_j|^4 + \frac{1}{2\pi} \sum_{j,l,j-l \neq 0} |jl| |q_j|^2 |q_l|^2,$$
$$|R| = O(||q||^5).$$

イロト イポト イヨト イヨト

Some ideas on the proof

For a given index set $J = \{j_1 < j_2 < \cdots < j_n\} \subset \overline{\mathbb{Z}} = \mathbb{Z} \setminus \{0\}$, introduce new symplectic coordinates (x, y, z, \overline{z}) by setting

$$\begin{cases} q_{jb} = \sqrt{\xi_b + y_b} e^{-\mathbf{i}x_b}, \quad \bar{q}_{jb} = \sqrt{\xi_b + y_b} e^{\mathbf{i}x_b}, \quad b = 1, \cdots, n, \\ q_j = z_j, \quad \bar{q}_j = \bar{z}_j, \quad j \in \mathbb{Z}_* = \bar{\mathbb{Z}} \setminus J, \end{cases}$$

where $\xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n_+$. Then

$$H = \sum_{1 \le b \le n} \sigma_{j_b} \omega_b y_b + \sum_{j \in \mathbb{Z}_*} \sigma_j \Omega_j z_j \overline{z}_j + \cdots,$$

where

$$\Omega_j = j^2 + \frac{j}{\pi} \sum_{1 \le b \le n} |j_b| \xi_b.$$

 $\Omega_j - \Omega_{-j}$ large!

伺き くほき くほとう

Thank You!

Jianjun Liu KAM for Derivative Nonlinear Schrödinger Equation with Periodic Bou

イロト イポト イヨト イヨト