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Consider a Hamiltonian system on M with non-smooth Hamiltonian H

He ™M\ S)NCo (M)

Here M is a symplectic C'°°-manifold and S is a stratified submanifold.

Int S = 0.
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Consider a Hamiltonian system on M with non-smooth Hamiltonian H

He ™M\ S)NCo (M)

Here M is a symplectic C'°°-manifold and S is a stratified submanifold.

Int S = 0.

Let ¢ : T*M — T'M denote the isomorphism induced by symplectic form.

Solutions are defined in the following way. Trajectory z(t) € AC is a
solution if for a.e. t

@(t) € ( conv{all limits of dH (y) while y — 2(t)} )

This definition is obviously coincide with classical one if x(t) ¢ S.
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Consider the following simple example with non-smooth potential

1
H=-p*—
5P~ lal

q=rp
p = signq

There is no uniqueness in the origin. Two trajectories arrive in the origin
and two trajectories leave it in finite time.
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Consider an optimal control problem for ¢ € M

q=flgu)  q0)=q  U(a(T)) — inf

Here u = u(t) is a control which takes values in a set U C R* and
l: M — R is a terminal functional.

Pontryagin’s maximum principle for p € T M gives

H(p,q) = max (p, flq,u))

Any optimal trajectory q(t) has a lift (q(t), p(t)) to a trajectory of the
Hamiltonian system with Hamiltonian H.
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Some basic properties of non-smooth Hamiltonian systems.

@ Solution exists for every initial conditions (by the Filippov theorem).

@ Generally there is no uniqueness of solutions intersecting the
manifold of discontinuity S.

@ Usually there exists trajectories lying in S. These trajectories are
called singular.
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Some basic properties of non-smooth Hamiltonian systems.

@ Solution exists for every initial conditions (by the Filippov theorem).

@ Generally there is no uniqueness of solutions intersecting the
manifold of discontinuity S.

@ Usually there exists trajectories lying in S. These trajectories are
called singular.

Consider simplest case when S is a hypersurface (locally).

@ Singular trajectories on a hypersurface are smooth and form a
symplectic submanifold of codimension 2A. The number h is called
order of singular trajectories.

@ Uniqueness of the solution does not usually hold in points of singular
trajectories.

@ Uniqueness does hold in other points of the hypersurface S.
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Fuller's example

1

f/ ¢?(t)dt — min
2Jo

j=u lu] <1

Denote ¢; = ¢, g2 = ¢. Pontryagin’s maximum principle gives

1
H(p,q) = —§Qf +p'q + [p?

Here p! = p? = ¢1 = q1 = v = 0 is a singular trajectory of second order.

In this case conjugation theorem says that if a trajectory x(t) hits the
origin in finite time ty > 0 i.e.

x(t) #0 for t <ty and x(tp) =0

then its velocity is not partially continuous:

3 lim (1)

t—to—0
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Absence of uniqueness in the fuller problem: there are two-dimensional
integral (Lagrangian) manifolds A+ and M.

@ M consists of trajectories which hits the origin in finite (positive)
time.

@ M~ consists of trajectories starting from the origin.

Let z(¢) belongs to M and z(0) = 0. Then there exists
t1 <ty <...<0, tx — 0 such that

1, te (tar,tont1);
u(t) =
®) { —1, t€ (taksr,tan)-

This phenomenon is called chattering.
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Consider general non-smooth Hamiltonian structure near a hypersurface.
Assume z¢ € S and S is a hypersurface. In the neighbourhood of z(

H(z) = Fy(z) + Fi(x) on the one side of S;
T = Fy(z) — Fi(x) on the other side of S.

Here Fy, Fy € C*°(M), and S = {z : Fi(z) = 0}.

We are interested in Poisson brackets of Iy, F; evaluated at xg:

{Fi, Fj}(x0), {Fi{Fj, F}}(zo),
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Theorem (Kupka, Zelikin-Borisov)

Suppose all brackets up to 5th order vanish in xo except
{F1, (ad Fo)* F1 } () < 0
Then if

(ad F0)4H1

{Fl, (adF0)3F1} < [_1; 1]

then there exists integral 2-dimensional manifolds M (), and M~ (zg)
such that

e Trajectories in M ™ (zq) hit zg in finite time with chattering.

e Same picture in M~ (zq) with backwards time.
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Suppose that S divides M into finite number of open domains Q1,...Q:
(M =J;) and denote H; = H|q,.

Consider an open set U C M such that ¢/ contains some parts of only
three hypersurfaces S;; C S, (4,5 = 1,2, 3) which divides the domains €;
and Qj.

Let S;; be joined by the stratum Si23 = S12 () S23 () S31 of
codimension 2.

Here

H= maX{Hl,HQ, H3}

and

Q; = {z: Hi(x) > max{H;(z), Hy(z)}}.



We have a model example from optimal control point of view

o0
/ lq|* dt — min
0

g=u uelU

Here ¢,u € R?, U is a triangle, and 0 € Int U

DA
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Similar to the Fuller example we receive

H(pvq) = 1max <_;<611afh>+<p1aQ2>+<P2;U>>

uelU

1
—§<q1,q1> +{p" @) + glgg(pQ,U)

Consequently, we see for the model problem that S;; is the set of points
where p? is perpendicular to the face (ij) of triangle U and

S123 = {¢ = 0}
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The point zg € S123, Hi(xo) = Ha(xo) = Hs(xg), is called strange if
the following conditions are fulfilled. Denote

Fo=H, + Hs + Hg;

Fy = Hy — Hj, Iy = H3 — Hy, I3 = H; — H».

(i) The commutators of the functions F; of the fourth order or less
vanish at the point o (except Fy(zp)). Their differentials are
linearly independent at z( (taking into account the conditions of
anti-commutativity and the Jacobi conditions).
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(i) Then the symmetrical bilinear form

Bij = (adF;)(adF)* Fjlay, 1,5 = 1,2,3

has the rank 2. It is non-positive definite, and proportional to the
bilinear form

-1 1/2 1/2
B=X| 1/2 -1 1/2 A> 0.
12 1/2 -1

All other commutators of the functions F; of the fifth order
(independent from the mentioned above) vanish at .
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The set of trajectories reaching a strange point is described by the
following theorem

Theorem (Zelikin, Hildebrand, L.)

Consider a strange point zy of the Hamiltonian system with the
piece-wise smooth Hamiltonian H .

Then in any sufficiently small neighbourhood of the point x( there exists
a set 2 such that
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For any y € E there exists a unique trajectory X (¢,y) in an interval
t € [0;T(y)], and it reaches xq in the finite time T (y):
X(T(y), y) = Zo-
Moreover, X (t,y) € Z for t € [0, T(y)) and X (¢,y) has the countable
number of successive intersections with S
O<ti<ta<...<tp<...<T(y)

Moreover lim t = T'(y).
k— o0
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Denote by f: ZNS — =N .S — the mapping that transfer points

y € 2N .S into points of the following intersection of the trajectory

X (t,y) with S, that is f(y) = X (t1,y). The right-side topological
Markov chain Zlf on the graph T', that does not depends on zy and H, is
a quotient of the dynamical system f:

=ns->=ns

q:‘]" q>1"

+_ +
2 > 2p

®r is a continuous surjective mapping. The pre-image @El(a) of each
point o € Ef: is homeomorphic to an open two-dimensional disc D2, and
the diameter of f¥(®r'(0)) tends to 0 as k — +oo.
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If dFy(z0) = 0 then the Hausdorff and box dimensions do not
depend on zy and H. The following inequality is valid

3,204762 < dimpy = < dimp= < 3,407495
The topological entropy of the Bernoulli shift on [ equal

hiop (1) = logy 7

where 7 is the positive solution of 7 —r — 1 = 0:

ST V69 s[1 /69
r=A\ls+-—+
218 2 18

The similar picture with the inversion of the time current takes place
for trajectories passing from the strange point point zg.
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t
r
| t
In the picture above is shown a prototype of graph T'.

To construct I' one should take 24 vertices A;;, B;;, Ci; and D;; where
i # 7, and i,5 € {1,2} and then connect them by the following rule

depending on “r" or “t".
@ There is an arrow from A;; — By, iff j =k and | # i (A12 = Bag).

@ There is an arrow from A;; — Ciy iff j =k and [ =i (A12 — Ca1).

Introduction
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Note

The theorem starts working for Hamiltonian systems with 16 degrees of
freedom.

Nonetheless this phenomenon is observed in system with 4 degrees of
freedom.

Note

The set W C Syo3 of all strange points of S123 generate a sub-manifold
of the codimension codim W = 76 in Sy23 in general situation.

Note

The definition of the strange point follows immediately the structural
stability.
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