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The equation

NLS with small external potential V

i∂tψ = −∆ψ − β′(|ψ|2)ψ + εV (x)ψ , x ∈ R3 ,

V Schwartz class

β focusing nonlinearity, β ∈ C∞(R,R)∣∣∣β(k)(u)
∣∣∣ ≤ Ck 〈u〉1+p−k

, β′(0) = 0 p < 2/3 ,

Under this assumptions: global unique solution for initial data in H1
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Case ε = 0

Look for moving solitary waves:

ψ(x , t) = eiγ(t)eip(t)·(x−q(t))/m(t)ηm(t)(x − q(t))

where ηm is the ground state of NLS with mass m, and p, q ∈ R3, γ ∈ R
time-dependent parameter which fulfill

ṗ = 0

q̇ = p
m

ṁ = 0

γ̇ = E(m) + |p|2
4m

(1)

first two equations are hamiltonian equations of free mechanical
particle

Solitary wave is traveling through space with a constant velocity!
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Case ε 6= 0

Solitary wave is not a solution anymore.
But if the initial data is close to solitary wave

‖ψ(0)− eiγeip·(x−q)/mηm(· − q)‖H1 < ε

then ψ(x , t) stays close to solitary wave with time-dependent parameter
p(t), q(t), γ(t),m(t) which fulfill

ṗ = −ε∇V eff (q) +O(ε2)

q̇ = p
m +O(ε2)

ṁ = O(ε2)

γ̇ = E(m) + |p|2
4m − εV

eff (q) +O(ε2)

(2)

with V eff (q) =
∫
R3 V (x + q) η2

m dx
first two equations are hamiltonian equations of mechanical particle interacting
with external field

Hεmech(p, q) =
|p|2

2m
+ εV eff (q)

Solitary waves moves ”like a mechanical particle in an external potential”

for which interval of time is the argument rigorous?
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Previous results

Fröhlich-Gustafson-Jonsson-Sigal ’04, ’06, Holmer-Zworski ’08:

dist
(

(p(t), q(t)), (pmech(t), qmech(t))
)
� 1 for times |t| ≤ T ε−3/2

Question: can we do better? Answer: NO!

true motions of the soliton are actually different from the
mechanical ones and the difference becomes macroscopic after a
quite short time scale
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New point of view

Not surprising! in classical mechanics motions starting nearby get far
away after quite short time scales.

to control the dynamics for longer times, control only on some
relevant quantities: actions or energy of subsystem

in our case: system is composed by two subsystems evolving on
different time-scales:

HNLS = Hε
mech(p, q) + Hfield (φ) + high order coupling

New Question: is it possible to control

|Hε
mech(p(t), q(t))− Hε

mech(p0, q0)| � 1

for longer times?
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Assumptions

existence of a smooth family of ground states m 7→ ηm, ∀m ∈ I
Linearization: ψ = ηm + χ and linearize for ε = 0:

χ̇ = L0χ

where, with χ = (Reχ, Imχ)

L0 :=

(
0 −L−
L+ 0

)
,

L+ = −∆ + E − β′(η2
m)

L− = −∆ + E − β′(η2
m)− 2β′′(η2

m)η2
m

We assume
1 σd(L0) = {0}, σc(L0) =

⋃
±±i[E ,±∞)

2 Ker(L+) = span(ηm) , Ker(L−) = span(∂xj ηm)j=1,...,3, 0 has
multiplicity 8

3 ±iE are not resonances, i.e. L0χ = iEχ has no solution with
〈x〉−δ χ ∈ L2, ∀δ > 1/2
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Theorem (Bambusi, M.)

Fix arbitrary r ∈ N. Then ∃εr s.t. for 0 ≤ ε < εr , it holds the following:
let ψ0 ∈ H1 s.t. there exist (m̄, ᾱ, p̄, q̄) with

‖ψ0 − eiᾱηm̄(p̄, q̄)‖H1 ≤ K1ε
1/2

Hε
mech(p̄, q̄) < K2ε ,

(3)

then, for |t| ≤ T0ε
−r , the solution ψ(t) exists in H1 and admits the

decomposition

ψ(t) := eiα(t)ηm(p(t),q(t)) + φ(t) , (4)

with a constant m and smooth functions p(t),q(t), α(t) s.t.

|Hε
mech(p(t),q(t))− Hε

mech(p(0),q(0))| ≤ C1ε
3/2 , |t| ≤ T0

εr
. (5)

Furthermore, for the same times one has

‖φ(t)‖H1 ≤ C1ε
1/2 .
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Main steps

1) Canonical variables (Darboux theorem )

2) Birkhoff normal form (continuous spectrum)

3) dispersive estimates (Strichartz)
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Framework

Phase space:

Hs,k , scale of Hilbert spaces, ‖ψ‖Hs,k = ‖ 〈x〉s (∆− 1)k/2ψ‖L2

〈ψ1;ψ2〉 = 2Re
∫
ψ1ψ̄2

ω(ψ1, ψ2) := 〈Eψ1;ψ2〉, with E = i, J = E−1 Poisson tensor

Symmetries:

Aj := i∂xj , j = 1, 2, 3, A4 = 1,

eqj JAjψ ≡ ψ(· − qjej )

Soliton manifold: T :=
⋃
q,p

eqj JAj ηp , where ηp := e
i

pk xk

p4 ηp4

restriction ω|T = dp ∧ dq

Natural decomposition:

L2 ≡ Tηp L2 ' TηpT ⊕ T∠
ηp
T

with T∠
ηp
T :=

{
U : ω(U; X ) = 0 , ∀X ∈ TηpT

}
Let Πp : L2 → T∠

ηp
T the projector on the symplectic orthogonal
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Step 1: Adapted coordinates and Darboux theorem

Coordinate system: Fix p0 := (0, 0, 0,m) and Vs,k := Πp0 Hs,k . Define

F : J × R4 × V1,0 → H1,0, (p, q, φ) 7→ eqj JAj (ηp + Πpφ)

Problems:

p, q, φ are not canonical
F not smooth, only continuous. Indeed

R4 × H1 3 (q, φ) 7→ eqj JAjφ ∈ H1 only continuous

Darboux theorem

There exists a map of the form

D(p′, q′, φ′) =
(

p′ − N + P, q′ + Q, Πp0 eαj JAj (φ′ + S)
)
,

with the following properties

1. S : J × R4 × V−∞ → V∞ is smooth.

2. P,Q, αj : J × R4 × V−∞ → R4 are smooth.

3. Nj := 1
2

〈
Ajφ
′, φ′

〉
4. p′, q′, φ′ are canonical.
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Step 2: The Hamiltonian in Darboux coordinates and normal form

Scaling of variables: µ := ε1/4, p 7→ µ2p, φ 7→ µφ

Hamiltonian in Darboux coordinates: Let D be the Darboux map. Then

H ◦ F ◦ D = µ2h + HL + HR

with

h =
p2

2m
+ V eff (q), HL =

1

2
〈EL0φ, φ〉 , HR = µ3 (HR0 + HR1 + HR2 + HR3)

and
HR1 = 〈S(µ, p, q,N), φ〉 , S smoothing

Birkhoff normal form: eliminate terms linear in φ up to order r in µ.

Lie transform: time 1 flow Φχr of χr = µr
〈
χ(r)(N, p, q), φ

〉
Homological equation: L0χ

(r) = Ψ, L0 with continuous spectrum

Problem: hamiltonian vector field of χr is not smooth, but its flow is well
defined and it has the same structure as before! The structure of the
hamiltonian is preserved
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Step 3: Analysis of the normal form

We have H ◦ T r+2 in normal form. Equation for φ:

φ̇ = L0φ+ µ3w j (t)JAjφ+ µ3Wφ+ J∇φHR3 + µr+2S (6)

linear equation has variable coefficients and unbounded operators

Aim: Nonlinear stability for φ!

Strichartz stable under some unbounded small perturbations:

‖φ‖
L2

t [0,T ]W
1,6
x

+ ‖φ‖L∞t [0,T ]H1
x
≤ Kµ , ∀|t| ≤ Tµ−r

Using this, one proves that

|HL(φ(t))− HL(φ(0))| ≤ µ4 ∀|t| ≤ Tµ−r

using conservation of energy

|h(p(t), q(t))− h(p(0), q(0))| ≤ µ4 ∀|t| ≤ Tµ−r
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Thanks for your attention!
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