KAM for gravity capillary water waves

Riccardo Montalto University of Zürich

June 5, 2015

Water waves:

Euler's equations for an irrotational, incompressible fluid, ∞ depth, with gravity and capillarity.

Unknowns:

- Free surface $\mathcal{S}(t) := \{(x,y) \in \mathbb{T} \times \mathbb{R} : y = \eta(t,x)\}$
- Velocity potential $\Phi(t, x, y)$ on the domain $\Omega(t) := \{(x, y) \in \mathbb{T} \times \mathbb{R} : y < \eta(t, x)\}$

$$\begin{cases} \partial_t \Phi + \frac{1}{2} |\nabla \Phi|^2 + g \eta = \kappa \partial_x \left(\frac{\eta_x}{\sqrt{1 + \eta_x^2}} \right) & \text{on } \mathcal{S}(t) \\ \Delta \Phi = 0 & \text{in } \Omega(t) \\ \nabla \Phi \to 0 & \text{as } y \to -\infty \\ \partial_t \eta = \partial_y \Phi - \partial_x \eta \cdot \partial_x \Phi & \text{on } \mathcal{S}(t) \\ u = \nabla \Phi = \text{velocity field, } \operatorname{rot} u = 0 \text{ (irrotational),} \\ \operatorname{div} u = \Delta \Phi = 0 \text{ (uncompressible)} \\ g = \operatorname{gravity, } \kappa = \operatorname{surface tension coefficient} \end{cases}$$

Zakharov-Craig-Sulem formulation

$$\begin{cases} \partial_{t} \eta = G(\eta) \psi = \nabla_{\psi} H(\eta, \psi) \\ \partial_{t} \psi = -g \eta - \frac{\psi_{x}^{2}}{2} + \frac{(G(\eta) \psi + \eta_{x} \psi_{x})^{2}}{2(1 + \eta_{x}^{2})} + \frac{\kappa \eta_{xx}}{(1 + \eta_{x}^{2})^{3/2}} = -\nabla_{\eta} H(\eta, \psi) \end{cases}$$

Hamiltonian: $kinetic\ energy + potential\ energy + area\ surface\ int.$

$$H(\eta, \psi) := \frac{1}{2} (\psi, G(\eta) \psi)_{L^{2}(\mathbb{T}_{x})} + \int_{\mathbb{T}} g \frac{\eta^{2}}{2} + \kappa \sqrt{1 + \eta_{x}^{2}} dx$$

$$G(\eta) \psi(x) := \sqrt{1 + \eta_{x}^{2}} \partial_{n} \Phi|_{y = \eta(x)} = \{ \Phi_{y} - \eta_{x} \Phi_{x} \}_{|y = \eta(x)}$$

Reversible solutions

$$H(\eta, \psi) = H(\eta, -\psi),$$

$$\{(\eta, \psi) : \eta = \text{even}(t) \text{even}(x), \quad \psi = \text{odd}(t) \text{even}(x)\}$$

Theorem (KAM for capillary-gravity water waves. Berti, M.)

For every choice of the tangential sites $S \subset \mathbb{N} \setminus \{0\}$, there exists $\bar{s} > \frac{|S|+1}{2}$, $\varepsilon_0 \in (0,1)$ such that: for all $\xi_j \in (0,\varepsilon_0)$, $j \in S$, \exists a Cantor like set $\mathcal{G} \subset [\kappa_1,\kappa_2]$ with asymptotically full measure as $\xi \to 0$, i.e. $\lim_{\xi \to 0} |\mathcal{G}| = (\kappa_2 - \kappa_1)$, such that, for any surface tension coefficient $\kappa \in \mathcal{G}$, the Capillary-Gravity water waves equations have a reversible, quasi-periodic standing wave solution $(\eta,\psi) \in H^{\bar{s}}$, even in x, of the form

$$\eta(t,x) = \sum_{j \in S} \sqrt{\xi_j} \cos(\omega_j t) \cos(jx) + o(\sqrt{\xi})$$
$$\psi(t,x) = -\sum_{j \in S} \sqrt{\xi_j} j^{-1} \omega_j \sin(\omega_j t) \cos(jx) + o(\sqrt{\xi})$$

with frequency vector $\omega = (\omega_i)_{i \in S} \in \mathbb{R}^S$ satisfying

$$\omega_j
ightarrow \sqrt{j(1+\kappa j^2)}$$
 as $\xi
ightarrow 0$, $orall j \in S$

The solutions are linearly stable.

Ideas of the proof

- **1** Degenerate KAM Theory for PDEs: (Bambusi, Berti, Magistrelli) Use the surface tension parameter κ to verify the non-resonance conditions
- Nash-Moser implicit function iterative scheme
- Spectral analysis of the linearized equation at any approximate solution. This requires
 - Theory of Pseudo differential operators and Fourier integral operators (the linearized equation is a Pseudo PDE)
 - KAM reducibility scheme

Analysis of the linearized operator

WW equation

$$\begin{cases} \partial_t \eta - G(\eta)\psi = 0 \\ \partial_t \psi + g\eta + \frac{\psi_x^2}{2} - \frac{\left(G(\eta)\psi + \eta_x \psi_x\right)^2}{2(1 + \eta_x^2)} - \frac{\kappa \eta_{xx}}{(1 + \eta_x^2)^{3/2}} = 0 \end{cases}$$

Linearization on $u = \varepsilon(\eta, \psi)$ in the direction $h = (\widehat{\eta}, \widehat{\psi})$

$$\mathcal{L}h := \begin{pmatrix} \omega \cdot \partial_{\varphi} + \partial_{x}V + G(\eta)B & -G(\eta) \\ 1 + BV_{x} + BG(\eta)B - \kappa \partial_{x}c\partial_{x} & \omega \cdot \partial_{\varphi} + V\partial_{x} - BG(\eta) \end{pmatrix} \begin{pmatrix} \widehat{\eta} \\ \widehat{\psi} \end{pmatrix}$$

$$||c-1||_{H^s}, ||V||_{H^s}, ||B||_{H^s} = O(\varepsilon)$$

Conjugacy of \mathcal{L} to constant coefficients

The conjugacy procedure is splitted in two parts:

1 ∂_x -reduction in decreasing symbols

$$\mathcal{L}_1 := \Phi^{-1} \mathcal{L} \Phi = \omega \cdot \partial_{\varphi} + \mathcal{D} + \mathcal{R}_0$$

- $\mathcal{D} := \operatorname{diag}_{i} \mu_{i}, \ \mu_{i} := \lambda_{3} \sqrt{j(1+\kappa j^{2})} + \lambda_{1} \sqrt{j}, \ \lambda_{3} 1, \lambda_{1} = O(\varepsilon),$
- $\mathcal{R}_0(\varphi): H_x^s \to H_x^s$, $\partial_{\varphi}^{\beta} \mathcal{R}_0(\varphi): H_x^s \to H_x^s$, for some $\beta = \beta(\nu) > 0$

Use changes of variables, Egorov Theorem (FIO), pseudo-differential operators

2 ε -reduction, reducibility scheme

$$\mathcal{L}_{\nu} := \Phi_{\nu}^{-1} \mathcal{L}_{1} \Phi_{\nu} = \omega \cdot \partial_{\varphi} + \mathcal{D} + r^{(\nu)} + \mathcal{R}_{\nu}$$

- $\mathcal{R}_{\nu} = \mathcal{R}_{\nu}(\varphi) = O(\mathcal{R}_{0}^{2^{\nu}}) = O(\varepsilon^{2^{\nu}})$
- $r^{(\nu)} = \operatorname{diag}_{i \in \mathbb{Z}}(r_i^{(\nu)}), \operatorname{sup}_i |r_i^{(\nu)}| = O(\varepsilon),$

KAM-type scheme, now transformations of $H_x^s \to H_x^s$

Preliminary steps (Alazard-Baldi 2014, periodic case)

We introduce the good unknown of Alhinac

$$\mathcal{Z}:(\widehat{\eta},\widehat{\psi})\mapsto(\widehat{\eta},\widehat{\psi}-B\widehat{\eta})$$

and the linearized operator simplifies as

$$\mathcal{L}_0 = \mathcal{Z}^{-1} \mathcal{L} \mathcal{Z} = \begin{pmatrix} \omega \cdot \partial_{\varphi} + \partial_x V & -G(\eta) \\ \mathsf{a} - \kappa \partial_x \mathsf{c} \partial_x & \omega \cdot \partial_{\varphi} + V \partial_x \end{pmatrix}$$

Since $G(\eta) = |D| + \mathcal{R}_G(\eta)$, $\mathcal{R}_G(\eta) \in OPS^{-\infty}$, we get

$$\mathcal{L}_0 = \begin{pmatrix} \omega \cdot \partial_\varphi + \partial_x V & -|D| \\ a - \kappa \partial_x c \partial_x & \omega \cdot \partial_\varphi + V \partial_x \end{pmatrix} + \text{smoothing terms}$$

Changes of variables

To reduce to constant coefficients the highest order $c(\varphi, x)\partial_{xx}$ we perform

change of variables

$$h(\varphi, x) \mapsto h(\varphi, x + \beta(\varphi, x))$$

Quasi-periodic reparametrization of time

$$h(\varphi, x) \mapsto h(\varphi + \omega \alpha(\varphi), x)$$

and then

$$\mathcal{L}_1 = \begin{pmatrix} \omega \cdot \partial_\varphi + \mathsf{a}_1 \partial_x & -\lambda_3 |D| \\ \lambda_3 (1 - \kappa \partial_{\mathsf{x} \mathsf{x}}) + \mathsf{a}_2 \partial_x & \omega \cdot \partial_\varphi + \mathsf{a}_1 \partial_x \end{pmatrix} + \mathit{O}(\varepsilon |D|^0) \,,$$

$$\lambda_3 \in \mathbb{R}$$
, $\lambda_3 = 1 + O(\varepsilon)$, $||a_1||_{H^s}$, $||a_2||_{H^s} = O(\varepsilon)$.

Symmetrization of the highest order

In \mathcal{L}_1 symmetrize

$$\mathcal{L}_1 = \begin{pmatrix} \dots & -\lambda_3 |D| + \dots \\ \lambda_3 (1 - \kappa \partial_{xx}) + \dots & \dots \end{pmatrix}$$

$$\mathcal{S} = egin{pmatrix} 1 & 0 \ 0 & \Lambda \end{pmatrix} \,, \quad \Lambda := \langle D
angle^{-rac{1}{2}} (1 - \kappa \partial_\mathsf{xx})^{rac{1}{2}}$$

then

$$\mathcal{L}_{2} = \begin{pmatrix} \omega \cdot \partial_{\varphi} + \mathsf{a}_{1} \partial_{x} & -\lambda_{3} \mathcal{T}(D) + \mathsf{a}_{3} \mathcal{H} |D|^{\frac{1}{2}} \\ \lambda_{3} \mathcal{T}(D) + \mathsf{a}_{4} \mathcal{H} |D|^{\frac{1}{2}} & \omega \cdot \partial_{\varphi} + \mathsf{a}_{1} \partial_{x} \end{pmatrix} + O(\varepsilon |D|^{0})$$

$$T(D):=\sqrt{|D|(1-\kappa\partial_{xx})},\ \|a_3\|_{H^s}, \|a_4\|_{H^s}=O(\varepsilon),\ \mathcal{H}$$
 (Hilbert transform)

New steps: Decoupling of h, \bar{h}

We write \mathcal{L}_1 as an operator acting on the variables $z=\widehat{\eta}+\mathrm{i}\widehat{\psi}$ and then

$$\begin{split} \mathcal{L}_1[h,\bar{h}] &= \omega \cdot \partial_\varphi h + \mathrm{i} \lambda_3 T(D) h + a_1 \partial_x h + \mathrm{i} a_0 \mathcal{H} |D|^{\frac{1}{2}} h + \mathcal{R}_0 h + \mathcal{Q}_0 \bar{h} \,, \\ \text{where } a_1(\varphi,x), a_0(\varphi,x) \in \mathit{H}^s, \, \mathcal{R}_0 \in \mathit{OPS}^0, \, \mathcal{Q}_0 \in \mathit{OPS}^{\frac{1}{2}}. \end{split}$$

Goal

Conjugate to

$$\mathcal{L}_{N}[h,\bar{h}] = \omega \cdot \partial_{\varphi} h + i\lambda_{3} T(D)h + a_{1}\partial_{x} h + a_{0}\mathcal{H}|D|^{\frac{1}{2}}h + \mathcal{R}_{N}h + \mathcal{Q}_{N}\bar{h},$$

$$\mathcal{R}_N \in \mathit{OPS}^0$$
, $\mathcal{Q}_N \in \mathit{OPS}^{-N}$ $(\mathcal{Q}_N \simeq |D|^{-N})$

Decoupling

By induction: At the n-th step we have

$$\begin{split} \mathcal{L}_n[h,\bar{h}] &= \omega \cdot \partial_\varphi h + \mathrm{i} \lambda_3 \, T(D) h + a_1 \partial_x h + \mathrm{i} a_0 \mathcal{H} |D|^{\frac{1}{2}} h + \mathcal{R}_n h + \mathcal{Q}_n \bar{h} \,, \\ \text{where } \mathcal{R}_n \in \mathit{OPS}^0 \text{ and } \mathcal{Q}_n \in \mathit{OPS}^{-n}. \text{ We look for} \\ &\Phi_n h = h + \Psi_n \bar{h} \,, \quad \Psi_n = \mathrm{Op} \big(\psi_n(x,\xi) \big) \in \mathit{OPS}^{-n-\frac{3}{2}} \end{split}$$

In the conjugation we get

$$\mathcal{L}_{n+1}[h,\bar{h}] = \omega \cdot \partial_{\varphi} h + \mathrm{i} \lambda_3 T(D) h + a_1 \partial_{\mathsf{X}} h + \mathrm{i} a_0 \mathcal{H} |D|^{\frac{1}{2}} h + \mathcal{R}_{n+1} h + \mathcal{Q}_{n+1} \bar{h}$$
 and

 $\mathcal{R}_{n+1} \in OPS^0$, $\mathcal{Q}_{n+1} = i\lambda_3(T(D)\Psi_n + \Psi_nT(D)) + \mathcal{Q}_n + O(|D|^{-n-1})$

Then, using that

$$T(D)\Psi_n + \Psi_n T(D) = 2\mathrm{Op}\Big(T(\xi)\psi_n(x,\xi)\Big) + O(|D|^{-n-1})$$
, to solve

$$\mathrm{i} \lambda_3 \Big(\mathit{T}(\mathit{D}) \Psi_n + \Psi_n \mathit{T}(\mathit{D}) \Big) + \mathcal{Q}_n = \mathit{O}(|\mathit{D}|^{-n-1}) \,.$$

it is enough to choose

$$\psi_n(x,\xi) = \frac{q_n(x,\xi)}{\mathrm{i}\lambda_3 T(\xi)}$$

and then

$$\mathcal{L}_{n+1}[h,\bar{h}] = \omega \cdot \partial_{\varphi} h + i T(D) h + a_1 \partial_{\chi} h + i a_0 \mathcal{H} |D|^{\frac{1}{2}} h + \mathcal{R}_{n+1} h + \mathcal{Q}_{n+1} \bar{h},$$

$$\mathcal{Q}_{n+1} \simeq \varepsilon |D|^{-n-1}.$$

New steps: Egorov method

• GOAL: ELIMINATION OF $O(\partial_x)$. Now we deal with

$$\mathcal{L}_{N}[h,\bar{h}] = \omega \cdot \partial_{\varphi} h + P_{0}(\varphi,x,D)h + \mathcal{Q}_{N}\bar{h},$$

where

$$P_0(\varphi, x, D) := \mathrm{i} \lambda_3 T(D) + a_1(\varphi, x) \partial_x + \dots, \quad \mathcal{Q}_N = O(|D|^{-N}).$$

We conjugate the operator \mathcal{L} by means of the map $\Phi(\varphi, t)$, which is the flow of the Pseudo PDE

$$\partial_t u = \mathrm{i} a(\varphi, x) |D|^{\frac{1}{2}} u.$$

Egorov method: diagonal terms

The operator $P(\varphi, t) = \Phi(\varphi, t) \circ P_0 \circ \Phi(\varphi, t)^{-1}$ obeys to

Heisenberg equation

$$\partial_t P(\varphi, t) = [ia|D|^{\frac{1}{2}}, P(\varphi, t)]$$

The equation can be solved in decreasing symbols finding

$$P = \operatorname{Op}(p) \in OPS^{\frac{3}{2}}, \quad p \sim \sigma_0 + \sigma_1 + \dots, \quad \sigma_k \in S^{\frac{3}{2} - \frac{k}{2}}.$$

It turns out that

$$p = \mathrm{i}\lambda_3 T(\xi) + \mathrm{i}\Big(a_1(x) - \frac{3}{4}\lambda_3(\partial_x a)(x)\Big)\xi + O(|\xi|^{\frac{1}{2}}).$$

To remove the order $O(\partial_x)$ it is enough to look for a(x) so that

$$a_1(x) - \frac{3}{4}\lambda_3(\partial_x a)(x) = 0.$$

Egorov method: off-diagonal terms

The off diagonal term $\mathcal{Q}(\varphi,t)=\Phi(\varphi,t)\circ\mathcal{Q}_{\textit{N}}\circ\overline{\Phi}(\varphi,t)^{-1}$ obeys to

$$\partial_t \mathcal{Q}(\varphi,t) = \mathrm{i} \Big(\mathsf{a} |D|^{\frac{1}{2}} \circ \mathcal{Q}(\varphi,t) + \mathcal{Q}(\varphi,t) \circ \mathsf{a} |D|^{\frac{1}{2}} \Big)$$

which has a solution

$$\mathcal{Q}(\varphi,t) = \operatorname{Op}(e^{2\mathrm{i}a(x)|\xi|^{\frac{1}{2}}}v(t,\varphi,x,\xi)), \quad v \in S^{-N}.$$

We have $\mathcal{Q}(arphi,t)\in S_{rac{1}{2},rac{1}{2}}^{-\emph{N}}$, then

$$\partial_\varphi^\beta \mathcal{Q} \simeq \operatorname{Op}(\partial_\varphi^\beta (e^{2ia(\varphi,x)|\xi|^{\frac{1}{2}}})v) \simeq |\xi|^{\frac{\beta}{2}-N}\,,$$

thus $\partial_{\varphi}^{\beta} \mathcal{Q}(\varphi, t) : H_{x}^{s} \to H_{x}^{s}$, if $N \sim \beta/2$.

Further steps:

Now we deal with

$$\mathcal{L} = \omega \cdot \partial_{\varphi} + i\lambda_3 T(D) + O(|D|)^{\frac{1}{2}}$$

• The term $O(|D|^{\frac{1}{2}})$ We conjugate by means of a pseudo-differential operator $c(x,D)\in OPS^0$ of order 0, then

$$\mathcal{L} = \omega \cdot \partial_{\varphi} + \mathrm{i} \lambda_3 T(D) + \mathrm{i} \lambda_1 |D|^{\frac{1}{2}} + \mathcal{R}_0, \qquad \mathcal{R}_0 \sim \varepsilon |D|^0.$$

 Superquadratic KAM reducibility scheme. Il order Melnikov conditions to complete the diagonalization by perturbative arguments.

Reducibility

ITERATIVE SCHEME:

$$\mathcal{L}_{
u} = \omega \cdot \partial_{\varphi} + \mathcal{D}_{
u} + \mathcal{R}_{
u} , \quad \mathcal{D}_{
u} := \operatorname{diag}_{j} \mu_{j}^{
u}$$
 $\mu_{j}^{
u} = \lambda_{3} \sqrt{|j|(1 + \kappa j^{2})} + \lambda_{1}|j|^{\frac{1}{2}} + r_{j}^{
u} , \quad \sup_{j} |r_{j}^{
u}| = O(\varepsilon)$

and \mathcal{R}_{ν} satisfies tame estimates

$$\|\mathcal{R}_{\nu}h\|_{s} \leq M_{\nu}(s)\|h\|_{s_{0}} + M_{\nu}(s_{0})\|h\|_{s}, \quad \forall s \geq s_{0},$$

$$\|(\partial_{\omega}^{\beta}\mathcal{R})h\|_{s} \leq K_{\nu}(s,\beta)\|h\|_{s_{0}} + K_{\nu}(s_{0},\beta)\|h\|_{s}, \quad \forall s \geq s_{0},$$

Imposing the second order Melnikov conditions

$$|\omega \cdot \ell + \mu_{j'}^{\nu} - \mu_{j'}^{\nu}| \geq rac{\gamma |j^{rac{3}{2}} - j'^{rac{3}{2}}|}{|\ell|^{ au}}, \quad orall (\ell, j, j')
eq (0, j, j), \quad |\ell| \leq N_{
u}$$

$$|\omega \cdot \ell + \mu_j^{\nu} + \mu_{j'}^{\nu}| \geq \frac{\gamma |j^{\frac{3}{2}} + j'^{\frac{3}{2}}|}{|\ell|^{\tau}}, \quad \forall (\ell, j, j') \quad |\ell| \leq N_{\nu}$$

 $(N_{
u}=N_0^{\chi^{
u}},\chi\in(1,2))$, we find $\Phi_{
u}=\mathrm{Id}+\Psi_{
u}$ such that

$$\mathcal{L}_{\nu+1} = \omega \cdot \partial_{\varphi} + \mathcal{D}_{\nu+1} + \mathcal{R}_{\nu+1}$$

and $\mathcal{R}_{\nu+1}$, $\partial_{\varphi}^{\beta}\mathcal{R}_{\nu+1}$ satisfy tame estimates with tame constants

$$M_{\nu+1}(s) \lesssim N_{\nu}^{-\beta} K_{\nu}(s,\beta) + N_{\nu}^{C} \gamma^{-1} M_{\nu}(s) M_{\nu}(s_0),$$

$$K_{\nu+1}(s,\beta) \lesssim N_{\nu}^{C} K_{\nu}(s,\beta)$$

CONVERGENCE provided $M_0(s_0)\gamma^{-1} \ll 1$

Thanks for the attention!