Low dimensional tori

Novosibirsk

June 5, 2015

General remarks.

We deal with the Hamiltonian system

$$
\dot{\mathbf{q}}=\partial_{p} H(\mathbf{p}, \mathbf{q}), \quad \dot{\mathbf{p}}=-\partial_{q} H(\mathbf{p}, \mathbf{q})
$$

where the Hamiltonian

$$
\begin{equation*}
H(\boldsymbol{p}, \boldsymbol{q})=H_{0}(\boldsymbol{p})+\varepsilon H_{1}(\boldsymbol{p}, \boldsymbol{q}) . \tag{1}
\end{equation*}
$$

Functions H_{0} and H_{1} are analytic on $D \times \mathbb{T}^{n}$, where D is a neighborhood of zero in \mathbb{R}^{n} and \mathbb{T}^{n} is n-dimensional torus. H_{1} is an analytic 2π-periodic function in \boldsymbol{q}.

Integrable case. Invariant torus.

Let

$$
\varepsilon=0 \text { and hence } H=H_{0}(\mathbf{p})
$$

Then $\dot{\mathbf{p}} \equiv 0$ and for every $\mathbf{p}_{0} \in D$, the system has a solution

$$
\mathbf{p}=\mathbf{p}_{0}, \quad \mathbf{q}=\omega t, \quad t \in \mathbb{R},
$$

where the frequency vector

$$
\boldsymbol{\omega}=\nabla_{p} H_{0}\left(\mathbf{p}_{0}\right) .
$$

In particular, $\left\{\mathbf{p}_{0}\right\} \times \mathbb{T}^{n}$ is the invariant tori of our hamiltonian system

The system

$$
\begin{equation*}
\dot{\mathbf{q}}=\partial_{p} H_{0}+\varepsilon \partial_{p} H_{1}, \quad \dot{\mathbf{p}}=-\partial_{q} H_{0}-\varepsilon \partial_{q} H_{1} \tag{2}
\end{equation*}
$$

has n-dimensional invariant tori if there is a canonical transform

$$
\mathbf{q}=\boldsymbol{\xi}+\mathbf{u}(\boldsymbol{\xi}, \boldsymbol{\eta}), \quad \mathbf{p}=\mathbf{v}(\boldsymbol{\xi}, \boldsymbol{\eta}), \boldsymbol{\xi} \in \mathbb{T}^{n}, \boldsymbol{\eta} \in \mathbb{R}^{n}
$$

which takes (2) to

$$
\begin{gather*}
\dot{\boldsymbol{\xi}}=\omega+O(\boldsymbol{\eta}), \quad \dot{\boldsymbol{\eta}}=O(\boldsymbol{\eta}) \tag{3}\\
\boldsymbol{\xi}=\omega t, \quad \boldsymbol{\eta}=0 \\
\mathbf{q}=\omega t+\mathbf{u}(\omega t, 0), \quad \mathbf{p}=\mathbf{v}(\omega t, 0)
\end{gather*}
$$

Kolmogorov's theorem.

Theorem (Kolmogorov 1954, Arnold 1963)Let H_{i} are analytic in $D \times \mathbb{T}^{n}$. Let $\omega=\nabla_{p} H_{0}(0)$ satisfy the Diophantine condition

$$
\begin{equation*}
\boldsymbol{\omega} \cdot \boldsymbol{m}>c|\boldsymbol{m}|^{-\tau} \text { for all } \boldsymbol{m} \in \mathbb{Z}^{n} \backslash\{0\} \tag{4}
\end{equation*}
$$

and

$$
\operatorname{det}\left\{\frac{\partial^{2} H_{0}}{\partial p_{i} p_{j}}\right\} \neq 0
$$

Then for all sufficiently small ε system (2) has n-dimensional invariant tori.

Our task is to prove the Kolmogorov theorem for the resonant case. We consider the case on invariant tori of dimension $n-1$ and assume that

$$
\nabla_{p} H_{0}(0)=(\boldsymbol{\omega}, 0), \quad \boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{n-1}\right)
$$

where

$$
\begin{equation*}
\boldsymbol{\omega} \cdot \boldsymbol{m}>c|\boldsymbol{m}|^{-\tau} \text { for all } \boldsymbol{m} \in \mathbb{Z}^{n-1} \backslash\{0\} \tag{5}
\end{equation*}
$$

The problem is to formulate conditions, which being imposed only on H_{0}, provide the existence at least one ($n-1$)-dimensional invariant tori of the perturbed system for all analytic H_{1} and all small ε

Notation

Let

$$
\boldsymbol{p}=\left(\boldsymbol{y}, z_{2}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}, \quad \boldsymbol{q}=\left(\boldsymbol{x}, z_{1}\right) \in \mathbb{T}^{n-1} \times \mathbb{T}
$$

Thus we get

$$
\begin{gather*}
H=H_{0}\left(\mathbf{y}, z_{2}\right)+\varepsilon H_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
\nabla_{\boldsymbol{y}} H_{0}(0)=\omega \in \mathbb{R}^{n-1}, \quad H_{0, z_{2}}^{\prime}(0)=0 \tag{6}
\end{gather*}
$$

Notation

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\nabla_{\boldsymbol{y}} H, \quad \dot{\boldsymbol{y}}=-\nabla_{\boldsymbol{x}} H, \quad \dot{\boldsymbol{z}}=\mathbf{J} \nabla_{\mathbf{z}} \mathrm{H}, \tag{7}
\end{equation*}
$$

where $\mathbf{J}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \boldsymbol{z}=\left(z_{1}, z_{2}\right)$.

Definition.

System (7) has a reducible ($n-1$)-dimensional invariant torus with frequency vector ω, if there exists a canonical transformation

$$
\begin{gathered}
\boldsymbol{\vartheta}:(\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta}) \rightarrow(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), \quad \boldsymbol{\xi} \in \mathbb{T}^{n-1}, \boldsymbol{\eta} \in \mathbb{R}^{n-1}, \boldsymbol{\zeta} \in \mathbb{R}^{2} \\
\boldsymbol{x}=\boldsymbol{\xi}+\boldsymbol{u}(\boldsymbol{\xi}), \quad \boldsymbol{y}=\boldsymbol{v}(\boldsymbol{\xi})+O(|\boldsymbol{\eta}|,|\boldsymbol{\zeta}|), \quad \boldsymbol{z}=\boldsymbol{w}(\boldsymbol{\xi})+O(|\boldsymbol{\zeta}|,|\boldsymbol{\eta}|),
\end{gathered}
$$

such that

$$
H \circ \boldsymbol{\vartheta}=\omega \cdot \boldsymbol{\eta}+\frac{1}{2} \Omega \zeta \cdot \boldsymbol{\zeta}+O\left(|\boldsymbol{\eta}|^{2},|\zeta|^{3},|\boldsymbol{\eta} \| \zeta|^{2}\right) .
$$

An invariant torus is weak-hyperbolic, if eigenvalues of the symmetric matrix Ω has different signs.

$$
\Omega=\operatorname{diag}(-k, 1)
$$

Every hyperbolic invariant torus is reducible (Bolotin, Trechev, 2000)

If $\varepsilon=0$, then $\boldsymbol{u}=\boldsymbol{v}=0, \boldsymbol{w}=(\alpha, 0)$, and a normal form is a degenerate one
$H_{0}\left(\boldsymbol{\eta}, \zeta_{2}\right)=\boldsymbol{\omega} \cdot \boldsymbol{\eta}+\frac{1}{2} \zeta_{2}^{2}+\boldsymbol{T}_{0} \cdot \boldsymbol{\eta} \zeta_{2}+\frac{1}{2} \mathbf{S}_{0} \boldsymbol{\eta} \cdot \boldsymbol{\eta}+\boldsymbol{O}\left(|\boldsymbol{\eta}|^{2},|\boldsymbol{\eta}|\left|\zeta_{2}\right|,\left|\zeta_{2}\right|^{2}\right)$,
where $\mathbf{S}_{0}=H_{0, y y}^{\prime \prime}(0), \boldsymbol{T}_{0}=H_{0, y z_{2}}^{\prime \prime}(0)$. For $\varepsilon>0$ the system has the solution

$$
\xi=\omega t, \zeta=0, \eta=0 .
$$

The transversal dynamics is defined by

$$
\dot{\zeta}=\nabla^{\perp}(\Omega \zeta \cdot \zeta)+O\left(\zeta^{2}\right), \quad \Omega=\operatorname{diag}\{0,1\} .
$$

There are many results concerning a persistence of lower dimensional tori. The first result for elliptic tori was formulated by Melnikov. Elliptic invariant tori were treated by Moser, Kuksin, Eliasson, Poschel. A hyperbolic case was investigated by Graff, Zehnder, You, Li . The persistence of low dimensional tori in reversible systems was studied by Sevryuk. These results can't be applied in a degenerate case, i.e. neither hyperbolic nor elliptic case. The persistence of hyperbolic ($n-1$)-dimensional tori was proved by Treschev in the resonance case under non-degeneracy restriction on the perturbation H_{1}.

Remarks

For the subject we refer to the monograph by .

- V I. Arnold, V. V. Kozlov, and A. I. Neishtadt.
- Broer, H.W., Huitema, G.B., and Sevryuk, M.B.
- S.B. Kuksin
- L. Nirenberg,
- J. Poschel.

Almost all results are related to the Hamiltonian

$$
H=\boldsymbol{\omega} \cdot \mathbf{y}+\frac{1}{2} \Omega \mathbf{z} \cdot \mathbf{z}+O\left(\mathbf{y}^{2}\right)+\varepsilon H_{1}(\mathbf{y}, \mathbf{z}, \mathbf{x})
$$

or

$$
H=\omega \cdot \mathbf{y}+\varepsilon \frac{1}{2} \Omega \mathbf{z} \cdot \mathbf{z}+O\left(\mathbf{y}^{2}\right)+\varepsilon^{2} H_{1}(\mathbf{y}, \mathbf{z}, \mathbf{x})
$$

These conditions are more restrictive than the conditions of the Kolmogorov theorem.

In the papers by Cheng and You (1996, 1999, 2005) Corsi L., Feola R., Gentile G. (2013) for the low dimensional tori were studied without restrictions on the perturbations.

Conditions.

We assume that

$$
\begin{gather*}
H=H_{0}\left(\mathbf{y}, z_{2}\right)+\varepsilon H_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
\nabla_{\mathbf{y}} H_{0}(0,0)=\omega, \\
\partial_{z_{2}} H_{0}(0,0)=0, \quad \partial_{z_{2}}^{2} H_{0}(0,0)=1, \tag{9}
\end{gather*}
$$

Conditions.

Recall $H_{0}=H_{0}\left(\mathbf{y}, z_{2}\right)$. Set

$$
\begin{aligned}
& \mathbf{S}_{0}=H_{0, y \boldsymbol{y}}^{\prime \prime}(0,0) \\
& \boldsymbol{t}_{0}=H_{0, y z_{2}}^{\prime \prime}(0,0)
\end{aligned}
$$

and

$$
\begin{equation*}
\mathbf{K}_{0}=\mathbf{S}_{0}-\boldsymbol{t}_{0} \otimes \boldsymbol{t}_{0} \tag{10}
\end{equation*}
$$

assume that

$$
\begin{equation*}
\operatorname{det} \mathbf{K}_{0} \neq 0 \tag{11}
\end{equation*}
$$

Remark

$$
D^{2} H_{0}(0,0)[\boldsymbol{p}, \boldsymbol{p}]=\mathbf{K}_{0} \mathbf{y} \cdot \mathbf{y}+Y^{2}, \quad Y=z_{2}-\left(\mathbf{t}_{0} \cdot \mathbf{y}\right)
$$

Conditions.

Denote by \Re_{ϱ} the strip

$$
\left\{\xi: \operatorname{Re} \xi \in \mathbb{R}^{n-1},\left|\operatorname{Im} \xi_{j}\right| \leq \varrho, \quad 1 \leq j \leq n-1\right\} \subset \mathbb{C}^{n-1}
$$

We denote by B_{ϱ}^{n} the complex neighborhood

$$
\begin{equation*}
B_{\varrho}^{n}=\left\{\boldsymbol{p} \in \mathbb{C}^{n}:|\operatorname{Re} \boldsymbol{p}| \leq \varrho \in D,\left|\operatorname{lm} p_{j}\right| \leq \varrho, \quad 1 \leq j \leq n\right\} \subset \mathbb{C}^{n} \tag{12}
\end{equation*}
$$

Conditions.

We assume that
H. 1 There is $\varrho>0$ with the properties. The function $H_{0}\left(\boldsymbol{y}, z_{2}\right)$ is analytic in the complex ball $\left(\mathbf{y}, z_{2}\right) \in B_{3 \varrho}^{n}$; the perturbation $H_{1}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is analytic on the cartesian product of the complex strip $\left(\mathbf{x}, z_{1}\right) \in \Re_{3 \varrho}$ and the ball $\left(\mathbf{y}, z_{2}\right) \in B_{3 \varrho}^{n}$. In particular, H_{1} is 2π-periodic in \boldsymbol{x} and z_{1}. Moreover, there is $c>0$ such that

$$
\begin{equation*}
\sup _{\left.\boldsymbol{y}, z_{2}\right) \in B_{3 \rho}^{\eta}}\left|H_{0}\left(\boldsymbol{y}, z_{2}\right)\right|+\sup _{\left(\boldsymbol{y}, z_{2}\right) \in B_{3 \rho}^{\rho},\left(\boldsymbol{x}, z_{1}\right) \in \Re_{3 \rho}}\left|H_{1}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right| \leq c, \tag{13}
\end{equation*}
$$

H. 2 The frequency vector $\bar{\omega}=(\omega, 0)$ satisfies the diophantine condition

$$
\begin{equation*}
\left|\left(\boldsymbol{\omega}^{\top} \cdot \boldsymbol{s}\right)^{-1}\right| \leq c_{0}|\boldsymbol{s}|^{-n} \text { for all } \boldsymbol{s} \in \mathbb{Z}^{n-1} \backslash\{0\} . \tag{14}
\end{equation*}
$$

Theorem

Let Conditions (H.1) - (H.2) be satisfied. Furthermore, assume that

$$
\begin{equation*}
\mathbf{K}_{0} \boldsymbol{\eta} \cdot \boldsymbol{\eta}<0 \quad \text { for all } \boldsymbol{\eta} \in \mathbb{R}^{\boldsymbol{n}-1} \backslash\{0\} . \tag{15}
\end{equation*}
$$

Then there is $\varepsilon_{0}>0$ such that for all $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$, Hamiltonian system (7) has an invariant ($n-1$)-dimensional weakly hyperbolic torus.

Given: H
Unknowns: The canonical transform $\boldsymbol{\vartheta}, \alpha$, and k.

Modified Hamiltonian.

J. Moser: Convergent series expansions for quasi periodic motions, Mathematische Annalen, 169, 136-176 (1967).

$$
\begin{equation*}
H_{\text {mod }}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=H(\mathbf{x}, \mathbf{y}, \mathbf{z})+m z_{1}+\frac{1}{2} M z_{1}^{2} . \tag{16}
\end{equation*}
$$

where $m, M \in \mathbb{R}^{1}$ are new parameters.
$H, \varepsilon, \alpha \in \mathbb{T}^{1}, k \in[0,1]$ - are given
ϑ, m, and M are unknowns.

Modified problem

For given $\alpha \in \mathbb{T}^{1}$ and $k \in[0,1]$ to find m, M and a canonical transform

$$
\begin{gathered}
\boldsymbol{\vartheta}:(\xi, \boldsymbol{\eta}, \boldsymbol{\zeta}) \rightarrow(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), \quad \boldsymbol{\xi} \in \mathbb{T}^{n-1}, \boldsymbol{\eta} \in \mathbb{R}^{n-1}, \boldsymbol{\zeta} \in \mathbb{R}^{2} \\
\boldsymbol{x}=\boldsymbol{\xi}+\boldsymbol{u}(\xi), \quad \boldsymbol{y}=\boldsymbol{v}(\boldsymbol{\xi})+O(|\boldsymbol{\eta}|,|\boldsymbol{\zeta}|), \quad \boldsymbol{z}=\boldsymbol{w}(\boldsymbol{\xi})+O(|\boldsymbol{\zeta}|,|\boldsymbol{\eta}|),
\end{gathered}
$$

which puts H in the normal form

$$
\begin{aligned}
& H \circ \boldsymbol{\vartheta}=\boldsymbol{\omega} \cdot \boldsymbol{\eta}+\frac{1}{2} \Omega \boldsymbol{\Omega} \cdot \boldsymbol{\zeta}+\boldsymbol{O}\left(|\boldsymbol{\eta}|^{2},|\boldsymbol{\zeta}|^{3},|\boldsymbol{\eta} \| \boldsymbol{\zeta}|^{2}\right) . \\
& \Omega=\operatorname{diag}(-k, 1), \quad(2 \pi)^{1-n} \int_{\mathbb{T}^{n-1}} w_{1} d \boldsymbol{\xi}=\alpha .
\end{aligned}
$$

Modified problem. $\varepsilon=0$

$$
\begin{gathered}
\mathbf{x}=\boldsymbol{\xi}, \mathbf{y}=\boldsymbol{\eta}, \mathbf{z}=\alpha \mathbf{e}_{1}+\boldsymbol{\zeta}, \\
m=\alpha k, M=-k .
\end{gathered}
$$

Canonical transform

Let $\left(\boldsymbol{x}, z_{1}\right) \in \mathbb{T}^{n-1} \times \mathbb{R}^{1},\left(\boldsymbol{y}, z_{2}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}^{1}$ be the angle-action variables. Let us consider an analytical transform

$$
\begin{gather*}
\boldsymbol{\vartheta}:(\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta}) \rightarrow(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), \\
\boldsymbol{x}=\boldsymbol{\xi}+\boldsymbol{u}(\boldsymbol{\xi}), \\
\boldsymbol{y}=\boldsymbol{v}(\boldsymbol{\xi})+\mathbf{V}(\boldsymbol{\xi}) \boldsymbol{\eta}+\boldsymbol{\Lambda}(\boldsymbol{\xi}) \boldsymbol{\zeta}+\frac{1}{2} \mathbf{R}(\boldsymbol{\xi}) \boldsymbol{\zeta} \boldsymbol{\zeta}, \tag{17}\\
\boldsymbol{z}=\boldsymbol{w}(\boldsymbol{\xi})+\mathbf{W}(\boldsymbol{\xi}) \boldsymbol{\zeta} .
\end{gather*}
$$

Here \mathbf{R} is a vector valued quadratic form:

$$
\mathbf{R}(\xi) \zeta \zeta=\left(\mathbf{R}_{i} \zeta \cdot \zeta\right)^{\top}, \quad \mathbf{R}_{i}(\xi)=\mathbf{R}_{i}(\xi)^{\top} .
$$

Functions $\boldsymbol{u}, \boldsymbol{v}$, and matrices $\mathbf{V}, \mathbf{W}, \mathbf{R}_{i}, \boldsymbol{\Lambda}$ are analytic functions of $\xi \in \mathbb{T}^{n-1}$.

Canonical transform

ϑ is canonical if and only if

$$
\begin{gather*}
\mathbf{V}=\left(\mathbf{I}+\mathbf{u}^{\prime}\right)^{-\top} \tag{18a}\\
\operatorname{det} \mathbf{W}=\mathbf{1} \tag{18b}\\
\mathbf{\Lambda}=-\mathbf{V}\left(\mathbf{w}^{\prime}\right)^{\top} \mathbf{J} \mathbf{W} \tag{18c}\\
\mathbf{R}_{i}=-V_{i k} \frac{\partial}{\partial \xi_{k}}\left(\mathbf{W}^{\top}\right) \mathbf{J} \mathbf{W} \tag{18d}\\
d\left(\xi_{k}+u_{k}\right) \wedge d v_{k}+d w_{1} \wedge d w_{2}=0 \tag{18e}
\end{gather*}
$$

Moreover, there exist $\beta \in \mathbb{R}^{n-1}$ and 2π-periodic scalar function $\varphi_{0}(\xi)$ such that

$$
\begin{equation*}
\mathbf{v}=\beta+\mathbf{V}\left(\nabla \varphi_{0}-w_{2} \nabla w_{1}\right) \tag{18f}
\end{equation*}
$$

Canonical transform

Canonical transforms (17)-(18) forms the subgroup \mathfrak{G} of the group of canonical diffeomorphisms of $\mathbb{T}^{n-1} \times \mathbb{R}^{2} \times \mathbb{R}^{n-1}$. This group can be regarded as a nonlinear manifold in the linear space of all mappings ϑ in the form (17).
The vector

$$
\varphi=\left(\boldsymbol{\beta}, \varphi_{0}, \mathbf{u}, \mathbf{w}, W_{11}, W_{12}, W_{21}\right)
$$

can be regarded as the local coordinates on this manifold.

Banach spaces

Let $\varrho>0$ bi given by Condition (H.1). For every $\sigma \in[0,1]$ and any integer $d \geq 0$ denote by $\mathcal{A}_{\sigma, d}$ the Banach space of all functions

$$
\mathbf{u}: \Re_{\sigma \varrho} \rightarrow \mathbb{C}, \quad \Re_{\sigma \varrho}=\left\{\boldsymbol{\xi}: \operatorname{Re} \boldsymbol{\xi} \in \mathbb{T}^{n-1}, \quad|\operatorname{Im} \boldsymbol{\xi}| \leq \sigma \varrho\right\},
$$

with the finite norm

$$
\begin{equation*}
\|u\|_{\sigma, d}=\max _{0 \leq|k| \leq d} \sup _{\xi \in \Re_{\sigma e}}\left|\partial^{k} u(\xi)\right| . \tag{19}
\end{equation*}
$$

Banach spaces

For every $s \in \mathbb{R}$, we denote by H_{s} the Hilbert space which consists of all distributions u on the tori \mathbb{T}^{n-1} such that

$$
\begin{equation*}
|u|_{s}=\left(\sum_{m \in \mathbb{Z}^{n-1}}\left(1+|m|^{2}\right)^{s}|\hat{u}(m)|^{2}\right)^{1 / 2}, \tag{20}
\end{equation*}
$$

where \hat{u} is the Fourier transform of u.

Modified problem. Result

$$
\begin{array}{r}
\left\|\partial_{\alpha}^{r} \mathbf{u}\right\|_{\sigma / 2, d}+\left\|\partial_{\alpha}^{r} \mathbf{v}\right\|_{\sigma / 2, d} \leq c(r)|\varepsilon|, \\
\left\|\partial_{\alpha}^{r}\left(\mathbf{w}-\alpha \mathbf{e}_{1}\right)\right\|_{\sigma / 2, d} \leq c(r)|\varepsilon|, \tag{21}\\
\left|\partial_{\alpha}^{r}(m+\alpha M)\right|+\left|\partial_{\alpha}^{r}(M+k)\right| \leq c(r)|\varepsilon|,
\end{array}
$$

and

$$
\begin{array}{r}
\left\|\partial_{k} \mathbf{u}\right\|_{\sigma / 2, d}+\left\|\partial_{k} \mathbf{u}\right\|_{\sigma / 2, d} \leq c|\varepsilon|, \\
\left\|\partial_{k}\left(\mathbf{w}-\alpha \mathbf{e}_{1}\right)\right\|_{\sigma / 2, d} \leq c|\varepsilon|, \tag{22}\\
\left|\partial_{k}(m+\alpha M)\right|+\left|\partial_{k}(M+k)\right| \leq c|\varepsilon|,
\end{array}
$$

$$
m(\alpha, k)=0 \quad M(\alpha, k)=0
$$

Variational principle

Consider the action functional

$$
\begin{equation*}
\Psi(\alpha, k)=\int_{\mathbb{T}^{n-1}}\left((\boldsymbol{\omega}+\partial \boldsymbol{u}) \cdot \boldsymbol{v}-\frac{1}{2} \mathbf{J} \partial \boldsymbol{w} \cdot \boldsymbol{w}-H(\xi+\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})\right) d \boldsymbol{\xi} \tag{23}
\end{equation*}
$$

where

$$
\boldsymbol{w}=\boldsymbol{u}(\alpha, k ; \boldsymbol{\xi}), \quad \boldsymbol{v}=\boldsymbol{v}(\alpha, k ; \boldsymbol{\xi}), \quad \boldsymbol{w}=\boldsymbol{w}(\alpha, k ; \boldsymbol{\xi})
$$

$\Psi(\alpha, k)$ is periodic in α, and smooth in α, k. In other words ψ is a smooth function on the cylinder $\mathbb{T}^{1} \times[0,1]$.

Jacobi vector fields

$$
\text { Let } \tau=\alpha, k \text {. }
$$

$$
\begin{gather*}
\chi^{(\tau)}=\mathbf{V}^{\top} \partial_{\tau} \mathbf{u} \tag{24a}\\
\boldsymbol{\lambda}^{(\tau)}=\mathbf{W}^{-1} \partial_{\tau} \mathbf{w}-\chi_{i}^{(\tau)} \mathbf{W}^{-1} \frac{\partial}{\partial \xi_{i}} \mathbf{w} \tag{24b}\\
\boldsymbol{\mu}^{(\tau)}=\mathbf{V}^{-1}\left(\partial_{\tau} \mathbf{v}+\chi_{i}^{(\tau)} \frac{\partial}{\partial \xi_{i}} \mathbf{v}-\boldsymbol{\Lambda} \boldsymbol{\lambda}^{(\tau)}\right) \tag{24c}
\end{gather*}
$$

The vector fields $\chi^{(\tau)}, \boldsymbol{\lambda}^{(\tau)}$, and $\boldsymbol{\mu}^{(\tau)}$ can be regarded as the Jacobi vector fields for the invariant tori problem. We also set

$$
\begin{equation*}
p^{(\tau)}=\partial_{\tau} m+\alpha \partial_{\tau} M \tag{25}
\end{equation*}
$$

$$
\begin{array}{r}
\left(\boldsymbol{\mu}^{(\alpha)}, \boldsymbol{\lambda}^{(\alpha)}, \boldsymbol{\chi}^{(\alpha)}, p^{(\alpha)}\right)=\left(\boldsymbol{\mu}^{(1)}, \boldsymbol{\lambda}^{(1)}, \boldsymbol{\chi}^{(1)}, p^{(1)}\right) \\
+\partial_{\alpha} M\left(\boldsymbol{\mu}^{(2)}, \boldsymbol{\lambda}^{(2)}, \boldsymbol{\chi}^{(2)}, p^{(2)}\right) \\
\left(\boldsymbol{\mu}^{(k)}, \boldsymbol{\lambda}^{(k)}, \boldsymbol{\chi}^{(k)}, \boldsymbol{p}^{(k)}\right)=\partial_{k} M\left(\mu^{(2)}, \boldsymbol{\lambda}^{(2)}, \boldsymbol{\chi}^{(2)}, p^{(2)}\right),
\end{array}
$$

$$
\begin{gathered}
\bar{w}=(2 \pi)^{1-n} \int_{\mathbb{T}^{n-1}} w d \boldsymbol{\xi}, \quad w^{*}=w-\bar{w} \\
\boldsymbol{\partial}=\sum \omega_{i} \frac{\partial}{\partial \xi_{i}}
\end{gathered}
$$

Equations

$$
\begin{gather*}
\boldsymbol{\partial} \boldsymbol{\mu}^{(1)}=-p^{(1)} \nabla w_{1}, \tag{27a}\\
\mathbf{J} \boldsymbol{\partial} \boldsymbol{\lambda}^{(1)}+\boldsymbol{\Omega} \boldsymbol{\lambda}^{(1)}+\mathbf{T} \boldsymbol{\mu}^{(1)}+\boldsymbol{p}^{(1)} \mathbf{W}^{\top} \mathbf{e}_{1}=0, \tag{27b}\\
-\boldsymbol{\partial} \boldsymbol{\chi}^{(1)}+\mathbf{S} \boldsymbol{\mu}^{(1)}+\mathbf{T}^{\top} \boldsymbol{\lambda}^{(1)}=0 \tag{27c}\\
\overline{\left\{\boldsymbol{W} \boldsymbol{\lambda}^{(1)} \cdot \mathbf{e}_{1}\right\}}+\overline{\left\{\boldsymbol{\chi}^{(1)} \cdot \nabla \boldsymbol{w}_{1}\right\}}=1, \tag{27d}\\
\overline{\left\{\mathbf{V}^{-\top} \boldsymbol{\chi}^{(1)}\right\}}=0, \tag{27e}
\end{gather*}
$$

Equations

$$
\begin{gather*}
\boldsymbol{\partial} \boldsymbol{\mu}^{(2)}=-p^{(2)} \nabla w_{1}-\frac{1}{2} \nabla\left(w_{1}^{*}\right)^{2}, \tag{28a}\\
\mathbf{J} \boldsymbol{\partial} \boldsymbol{\lambda}^{(2)}+\boldsymbol{\Omega} \boldsymbol{\lambda}^{(2)}+\mathbf{T} \boldsymbol{\mu}^{(2)}+p^{(2)} \mathbf{W}^{\top} \boldsymbol{e}_{1}=-w_{1}^{*} \mathbf{W}^{\top} \mathbf{e}_{1}, \\
-\boldsymbol{\partial} \boldsymbol{\chi}^{(2)}+\mathbf{S} \boldsymbol{\mu}^{(2)}+\mathbf{T}^{\top} \boldsymbol{\lambda}^{(2)}=0 \tag{28c}\\
\overline{\left\{\boldsymbol{W} \boldsymbol{\lambda}^{(2)} \cdot \mathbf{e}_{1}\right\}}+\overline{\left\{\boldsymbol{\chi}^{(2)} \cdot \nabla w_{1}\right\}}=0 \tag{28d}\\
\left\{\mathbf{V}^{-\top} \boldsymbol{\chi}^{(2)}\right\} \tag{28e}\\
=0
\end{gather*}
$$

Here the matrices \mathbf{S} and \mathbf{T} are defined by

$$
\begin{array}{r}
\mathbf{S}=\mathbf{V}^{\top} \frac{\partial^{2} H}{\partial \mathbf{y}^{2}}(\boldsymbol{\xi}+\mathbf{u}, \mathbf{v}, \mathbf{w}) \mathbf{V} \\
\mathbf{T}=\mathbf{W}^{\top} \frac{\partial^{2} H}{\partial \mathbf{z} \partial \mathbf{y}}(\boldsymbol{\xi}+\mathbf{u}, \mathbf{v}, \mathbf{w}) \mathbf{V}+\boldsymbol{\Lambda}^{\top} \frac{\partial^{2} H}{\partial \mathbf{y}^{2}}(\boldsymbol{\xi}+\mathbf{u}, \mathbf{v}, \mathbf{w}) \mathbf{V} \\
\left\|\mathbf{S}-\mathbf{S}_{0}\right\|_{\sigma / 2, d-1}+\left\|\mathbf{T}-\mathbf{T}_{0}\right\|_{\sigma / 2, d-1} \leq c|\varepsilon| \tag{30}
\end{array}
$$

where the constant matrices $\mathbf{S}_{0}, \mathbf{T}_{0}$ are given by

$$
\begin{equation*}
\mathbf{S}_{0}=\frac{\partial^{2} H_{0}}{\partial \mathbf{y}^{2}}(0,0), \quad \mathbf{T}_{0}=\frac{\partial^{2} H_{0}}{\partial \mathbf{z} \partial \mathbf{y}}(0,0) \tag{31}
\end{equation*}
$$

Estimates of Jacobi vector fields

Theorem

There exists $\varepsilon_{0}>0$ with the following property. For every $|\varepsilon| \leq \varepsilon_{0}$, problem (28) has a unique analytic solution $\left(\boldsymbol{\mu}^{(2)}, \boldsymbol{\lambda}^{(2)}, \boldsymbol{\chi}^{(2)}\right) \in \mathcal{A}_{\sigma / 4,0}, p^{(2)} \in \mathbb{C}$. This solution admits the estimate

$$
\begin{gathered}
\left\|\boldsymbol{\mu}^{(2)}\right\|_{\sigma / 4,0}+\left\|\boldsymbol{\lambda}^{(2)}\right\|_{\sigma / 4,0}+\left\|\chi^{(2)}\right\|_{\sigma / 4,0}+\left|p^{(2)}\right| \leq c\left\|w_{1}^{*}\right\|_{\sigma / 2,0} \leq \underset{(\varepsilon|\varepsilon|}{c \mid} \\
\left|\boldsymbol{\mu}^{(2)}\right|_{0} \leq c \varepsilon_{0}\left|w_{1}^{*}\right|_{-1}, \quad\left|\lambda_{2}^{(2)}\right|_{0}+|k|\left|\lambda_{1}^{(2)}\right|_{0} \geq c^{-1}\left|w_{1}^{*}\right|_{-1}
\end{gathered}
$$

Here the strictly positive constant c is independent of α, k, and ε.

Estimates of Jacobi vector fields

$$
\begin{gather*}
\mathbf{T}^{\top}=\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right] \\
\left\|\mathbf{t}_{1}\right\|_{\sigma / 2, d-1}+\left\|\mathbf{t}_{2}-\mathbf{t}_{0}\right\|_{\sigma / 2, d-1} \leq c|\varepsilon| . \tag{34}\\
\overline{\mathbf{t}_{1}}=\frac{1}{(2 \pi)^{n-1}} \int_{\mathbb{T}^{n-1}} \mathbf{t}_{1} d \xi .
\end{gather*}
$$

Introduce the constant vector

$$
\begin{equation*}
\mu_{0}=\mathbf{K}_{0}^{-1} \overline{\mathbf{t}_{1}} . \tag{35}
\end{equation*}
$$

Estimates of Jacobi vector fields

Theorem

There exists $\varepsilon_{0}>0$ with the following property. For every $|\varepsilon| \leq \varepsilon_{0}$, problem (27) has a unique analytic solution
$\left(\boldsymbol{\mu}^{(1)}, \boldsymbol{\lambda}^{(1)}, \chi^{(1)}\right) \in \mathcal{A}_{\sigma / 4,0}, p^{(1)} \in \mathbb{C}$. This solution admits the estimate

$$
\begin{equation*}
\left\|\boldsymbol{\mu}^{(1)}\right\|_{\sigma / 4,0}+\left\|\boldsymbol{\lambda}^{(1)}\right\|_{\sigma / 4,0}+\left\|\chi^{(1)}\right\|_{\sigma / 4,0}+\left|p^{(1)}\right| \leq c . \tag{36}
\end{equation*}
$$

If $k=0$, then this solution has the decomposition

$$
\begin{equation*}
\boldsymbol{\mu}^{(1)}=-\boldsymbol{\mu}_{0}+\boldsymbol{\mu}_{\varepsilon}, \quad \boldsymbol{\lambda}^{(1)}=\mathcal{C} \mathbf{e}_{1}-\left(\boldsymbol{\mu}_{0} \cdot \mathbf{t}_{0}\right) \mathbf{e}_{2}+\boldsymbol{\lambda}_{\varepsilon} \tag{37}
\end{equation*}
$$

Here

$$
\begin{equation*}
|\mathcal{C}-1| \leq c|\varepsilon|, \quad\left\|\boldsymbol{\mu}_{\varepsilon}\right\|_{\sigma / 4,0}+\left\|\boldsymbol{\lambda}_{\varepsilon}\right\|_{\sigma / 4,0} \leq c\left|\varepsilon \| \boldsymbol{\mu}_{0}\right| . \tag{38}
\end{equation*}
$$

Quadratic form

$$
\begin{equation*}
L_{i j}=\int_{\mathbb{T} n-1}\left(\mathbf{S} \boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}-\left(\mathbf{J} \partial \boldsymbol{\lambda}_{i}+\boldsymbol{\Omega} \boldsymbol{\lambda}_{i}\right) \cdot \boldsymbol{\lambda}_{j}\right) d \xi . \tag{39}
\end{equation*}
$$

Quadratic form. Estimates

Theorem

There exists $\varepsilon_{0}>0$ with the following property. For every $|\varepsilon| \leq \varepsilon_{0}$, the elements of the quadratic form L satisfy the inequalities

$$
\begin{array}{r}
\left|L_{12}\right| \leq c|\varepsilon|, \quad\left|L_{11}\right| \leq c, \\
c^{-1}\left|w_{1}^{*}\right|_{-1}^{2} \leq\left|L_{22}\right| \leq c\left\|w_{1}^{*}\right\|_{\sigma / 2,0}^{2} \leq c|\varepsilon|^{2} \tag{40}
\end{array}
$$

If $k=0$, then

$$
\begin{equation*}
\left|L_{11}-(2 \pi)^{n-1} \mathbf{K}_{0} \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{0}\right| \leq c|\varepsilon|\left|\boldsymbol{\mu}_{0}\right|^{2}, \quad\left|L_{12}\right| \leq c|\varepsilon|\left|\boldsymbol{\mu}_{0}\right| . \tag{41}
\end{equation*}
$$

Here the strictly positive constant c is independent of α, k, and ε, the vector μ_{0} is given by (35).

Main formulae

Theorem

$$
\begin{gather*}
\partial_{\alpha} \Psi(\alpha, k)=(2 \pi)^{n-1}(m+\alpha M)+\varsigma_{1} M, \tag{42}\\
\partial_{k} \Psi(\alpha, k)=M \partial_{k} M L_{22}, \tag{43}\\
\partial_{\alpha}^{2} \Psi(\alpha, k)=(2 \pi)^{n-1} M+\varsigma_{2} M+L_{11}+2 L_{12} \partial_{\alpha} M+L_{22}\left(\partial_{\alpha} M\right)^{2} . \tag{44}
\end{gather*}
$$

Here

$$
\begin{equation*}
\left|s_{i}\right|+\left|\partial_{\alpha} s_{i}\right| \leq c|\varepsilon|^{2} . \tag{45}
\end{equation*}
$$

Main formulae

Let $k=0$. Then the third derivative of Ψ admits the estimate

$$
\begin{equation*}
\left|\partial_{\alpha}^{3} \Psi(\alpha, 0)-(2 \pi)^{n-1} \partial_{\alpha} M\right| \leq c|\varepsilon|\left(|M|+\left|\mu_{0}\right|+\left|\partial_{\alpha} M\right|\right) \tag{46}
\end{equation*}
$$

Critical points

$$
\partial_{k} \Psi(\alpha, k) \geq 0 \text { for } k \geq 1 / 2 \text { and }|\varepsilon| \leq \varepsilon_{0} .
$$

Critical points

Let

$$
\Psi\left(\alpha_{0}, k_{0}\right)=\min _{\mathbb{T}^{1} \times[0,1]} \Psi(\alpha, k)
$$

we have $0 \leq k_{0}<1$. If $k_{0}>0$, then $M\left(\alpha_{0}, k_{0}\right)=m\left(\alpha_{0}, k_{0}\right)=0$. If $k_{0}=0$ then

$$
\begin{gathered}
M\left(\alpha_{0}, 0\right) \leq 0 \\
0 \leq M(1+O(\varepsilon))+L_{11}+2 L_{12} M_{\alpha}+L_{22} M_{\alpha}^{2}
\end{gathered}
$$

Main observation:

$$
\mathbf{K}_{0} \leq 0 \Rightarrow L_{11} \leq 0
$$

This yields

$$
|M| \leq|\varepsilon|\left|M_{\alpha}\right|^{2}
$$

Method.

$$
\begin{gathered}
\partial_{\alpha}^{2} \Psi\left(\alpha_{0}, 0\right) \leq c\left|\varepsilon \| \partial_{\alpha} M\right|^{2} \\
\left|\partial_{\alpha}^{3} \Psi\left(\alpha_{0}, 0\right)-2(2 \pi)^{n-1} \partial_{\alpha} M\left(\alpha_{0}, 0\right)\right| \leq c|\varepsilon|\left|\partial_{\alpha} M\left(\alpha_{0}, 0\right)\right|,
\end{gathered}
$$

