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Ensembles of Control Systems

Consider an ensemble (a parameterized family) of control systems

dxθ
dθ

= fθ(xθ,u). (1)

The state xθ of each system belongs to a finite-dim. manifold M.
A family θ 7→ fθ of vector fields on M is parameterized by
θ ∈ Θ - a compact subset of Rd .

For Θ being a singleton one ends up with a single control system, for
which controllability property or its lack is an important feature.

The same property appears to be important for ensembles of control
systems and is called ensemble controllability
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Ensemble Controllability: brief review

The interest in ensemble controllability appeared in 2000’s in relation
to the study of control of quantum ensembles, by using single
controlling field. One wishes to steer approximately a system with
’dispersion in parameters’ to a desired target.
Examples:

NMR experiments, in which the spins of an ensemble may have
dispersion in frequencies (Larmor dispersion).
dispersion in the strength of the applied rf-field.
dispersion in orientations of the spins etc .

These studies have been pioneered by N. Khaneja and J.-S. Li (2005
and later on).
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Ensemble Controllability: brief review ctd.

In the above cited examples the dynamics is evolving on a Lie group.
Example

Ṁ(t , ε, ω) = (ωΩz + εuΩy + εvΩx ) M(t , ε, ω),

M ∈ SO(3), Ωx ,y ,z ∈ so(3), ε ∈ [1− δ, 1 + δ], ω ∈ [−b,b],

Ωz =

 0 −1 0
1 0 0
0 0 0

,

 Ωy =

 0 0 1
0 0 0
−1 0 0

 ,Ωx =

 0 0 0
0 0 −1
0 1 0

 .

Therefore some Lie algebraic tools, such as Campbell-Hausdorff
formula and Lie series appear naturally.
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Ensemble Controllability: brief review ctd.

Main idea of N. Khaneja and J.-S. Li: "generating higher order Lie
brackets by use of the control vector fields which carry higher order
powers of the dispersion parameters to investigating ensemble
controllability".

Beauchard, Coron & Rouchon considered (2010) Bloch equations
with dispersed Larmor frequency. They invoked finer analytic
methods for obtaining finer results on ensemble controllability.

They also advocated a possibility to apply the methods to the study
of infinite-dimensional systems, which involve operators with
continuous spectra.
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Ensemble Controllability: brief review ctd.

It is worth mentioning large amount of publications (starting at least
from 1980’s) regarding design of "robust control for the systems with
uncertainties".
The methods involved in those publications are mainly "direct", based
on estimates of the "funnels of trajectories", Lyapunov functions etc.
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Ensemble - Control System in Infinite Dimensions

We may rewrite the ensemble of control systems as a dynamic
equation for the function xθ(t) (with the initial condition added):

∂txθ(t) = fθ(xθ(t),u(t)), xθ(0) = α(θ). (1′)

The equation describes the controlled dynamics in the "state space"
of functions y(θ), which is infinite- dimensional, whenever Θ is an
infinite set.

The equation is Lp-approximately controllable in time-T , if for any
target function ω(θ) and ∀ε > 0 there exists a control u(·), such that
for the corresponding solution of (1’) there holds

‖xθ(T )− ω(θ)‖Lp < ε.

Below p = 2
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Particular cases

In this presentation we mainly consider the case where the
parameter (the ’dispersion’) only enters the r.-h. side of the
control system ẋθ = fθ(xθ,u), while the initial point α and the
target ω are fixed. We seek for a control which "compensates for
dispersion of the parameter".
The opposite case, where the parameter enters just the initial
and target data, results in a interesting control system in the
space of parameterized surfaces or curves.
Finally one can consider a controllability problem on the group
DiffM of diffeomorphisms.

Exact controllability by means of an infinite-dimensional class of
controls has been established recently by A.Agrachev and
M.Caponigro. If one considers controls with values in
finite-dimensional space the property of approximate
controllability is yet to be investigated.
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Lie Algebraic Methods for Control in Infinite
Dimension

Recently some successful attempts have been made to extend
the differential geometric/Lie algebraic approach to control
theory onto the area of NON LINEAR infinite-dimensional
control systems and controlled non linear PDE.
Nagano theorem, valid in finite dimensions, shows that two
control systems are equivalent if they satisfy the same Lie
relations.
Identification of the complete set of Lie relations is in general not
possible, but often a finite subset suffices for establishing
controllability also in infinite-dimensional case.
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Following this way of reasoning Lie algebraic controllability criteria
have been established recently for some nonlinear PDE such as

Navier-Stokes and Euler equations of fluid motion, Burgers equation,
linear and cubic Schrödinger equation

cf. A.Agrachev, AS, S.Rodrigues, A.Shirikyan, V. & H. Nersesyan,
U.Boscain, M.Sigalotti, T.Chambrion and others.

The core of the approach used is method of Lie extensions -
enriching the control system by nice or compatible Lie brackets of the
control vector fields and avoiding bad Lie brackets or obstructions.

We wish to develop Lie algebraic methods for studying ensemble
controllability.
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Elementary Case: Controlling Finite Ensembles

If the parameter set Θ being finite then often the fact of exact
controllability can be established in pretty the same way as its
counterpart for a single system.

Definition. Finite ensemble

dxθ
dt

= fθ(xθ, ū(t)), θ ∈ {1, . . . ,N}

is exactly controllable if for any two n-tuples (αθ), (ωθ)} there exists
T > 0 and a single θ-independent control ū(t), which steers in time T
θ-th system of the ensemble from αθ to ωθ.
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Controllability property for control-linear ensembles is
generic

For a single control-linear system

dx
dt

= f (x)u(t) + g(x)v(t), r ≥ 2

controllability property follows from bracket generating condition for
the couple of vector fields (f ,g) (Rashevsky-Chow theorem).

C.Lobry has established that the bracket generating property is
generic - it holds for each couple (f ,g) from an opens and dense in
CN -metric subset of Vect(M)× Vect(M).
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This fact can be extended in a rather straightforward way onto finite
control-linear ensembles.

Proposition. Consider a finite ensemble of control-linear systems on
a connected C∞ manifold M

ẋθ = fθ(xθ)u(t) + gθ(xθ)v(t), xθ ∈ M, θ ∈ {1, . . . ,N},

driven by common bi-dimensional control (u(t), v(t)). Then the
controllability property holds for a generic 2N-tuple of vector fields
f1, . . . , fN ,g1, . . . ,gN . �

An interesting fact is the possibility to control a finite ensemble of
pairwise distinct points xθ by a single control for a single generic
system

ẋθ = f (xθ)u(t) + g(xθ)v(t), xθ ∈ M, θ ∈ {1, . . . ,N},

The controllability property holds for a generic couple f ,g of vector
fields.
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ẋθ = fθ(xθ)u(t) + gθ(xθ)v(t), xθ ∈ M, θ ∈ {1, . . . ,N},

driven by common bi-dimensional control (u(t), v(t)). Then the
controllability property holds for a generic 2N-tuple of vector fields
f1, . . . , fN ,g1, . . . ,gN . �

An interesting fact is the possibility to control a finite ensemble of
pairwise distinct points xθ by a single control for a single generic
system
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Controlling finite ensemble of rigid bodies by a single
control

Consider control of attitude motion - angular velocity & orientation -
of an asymmetric rigid body by a single controlled torque applied
along a generic direction.

It is described by (forced) Euler system

Q̇ = QĴK , K̇ = K × JK + Lu

and is known to be controllable for generic J,L. The proof can be
accomplished by verification of some Lie bracket generating
condition.

We are able to prove similar result for a finite ensemble of controlled
rigid bodies, described by Euler equations

K̇ θ = K θ × JθK θ + Lu, θ = 1, . . . ,N, u ∈ U, int conv(U) 3 0.

with the scalar control torque u(t) applied along one and the same
direction L.
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Proposition.

For each nonzero L a finite ensemble of rigid bodies, characterized
by inertia tensors J1, . . . , JN is (exactly) controllable by means of
common control signal u(·), applied via the torque along L, for a
generic N-tuple of inertia tensors ((I1,L1), . . . , (IN ,LN)), lying
outside proper algebraic variety. �
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Note on the Complexity of the Ensemble Control

As we have shown, controllability of an ensemble of N systems
can often be established by Lie algebraic methods, but the
number and the order of the Lie brackets, involved into the
corresponding Lie rank condition, increases with the growth of N
and tends to infinity as N →∞.
In fact the dimension of the cartesian product of N state spaces
tends to infinity with N.
According to ’geometric control wisdom’ this means that the
’complexity’ of the control strategy which realizes exact
controllability of an ensemble of N systems also grows with N.
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Continual ensembles: discretization of the parameter
set

We saw that in many cases one can establish controllability of any
finite ensemble.

It seems natural, when dealing with an ensemble, parameterized by
a continuum compact Θ, to ’discretize’ Θ by taking a finite ε-net
Nε = {θ1, . . . , θN} ⊂ Θ.

Arranging a control uε(t) which drives the finite ensemble of systems
∂tx(t , θj) = fθj (x(t , θj),u(t)), θj ∈ Nε exactly to the target, one may
hope, that for sufficiently small ε > 0 the whole ensemble,
parameterized by all θ ∈ Θ will be driven to the target approximately.
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... and its drawbacks

But MIND THE PREVIOUS SLIDE: the complexity of the control uε(t)
grows as ε→ 0 and Nε →∞. For θ, which ε-close to θj the control uε
may drive the corresponding system far from the target.

The better we approximate Θ, the more complex are the controls,
which arrange controllability, and larger are the deviations between
the trajectories with ε-close initial points.

The Discretization Idea Seems To Fail.
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Ensemble as infinite-dimensional systems

Leaving the idea of discretization out we come back to viewing
ensemble as a system in infinite-dimensional space of functions,
defined on the parameter set Θ.
We will seek for an infinite-dimensional variant of the method of Lie
extensions and of Lie rank controllability criteria.

The classical geometric control Lie algebraic methods deal with the
vector fields, which are sections of the tangent bundle TM.

We will consider instead fiber bundles over the base M with
infinite-dimensional fibers L2(Θ,TxM) over each x ∈ M.
Instead of vector fields, we consider sections of the new fiber bundle.
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Geometric control for ensembles

We introduce kind of Lie structure for the sections
X : M → L2(Θ,TM) of the ’fiber bundle’ by taking Lie brackets of the
vector fields on M for each θ ∈ Θ. We can iterate the Lie brackets
and seek for an analogue of Lie rank condition.

Therefore, when approaching controllability of an ensemble we
employ the iterated Lie brackets (Taylor expansions) in x ∈ M, and
functional expansions (e.g. Fourier series) in θ.

Note that if Θ is finite then the fiber is just a Carthesian product of a
finite number of copies of TxM and we come back to the above
described approach to finite ensembles.

We invoke large but finite number of iterated Lie brackets, and aim at
approximate controllability.

In infinite dimension the notions of rank, dimension and linear
independence need additional care.
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Technical Assumptions

Assumption 1 (Uniform analyticity in x) Let MC

The function f θ(x), x ∈ M can be extended for each θ ∈ Θ to an
analytic function f θ(z), z ∈ Bρ(x), where Bρ(x) is ρ-neighborhood of
x in complexification of M.

Assumption 2 (Uniform L2 boundedness in θ)
For each zVρ(M) the map θ → f θ(x) is measurable and each
compact A ⊂ Bρ(R) there is a function mA(θ) square integrable on Θ,
such that

sup
z∈A
‖f θ(z)‖ ≤ mA(θ).
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Frames in Hilbert space

We still do it in practical computations Fourier series in θ are handy,
in formulations of criteria the notion of frame in Hilbert space allows
to avoid choosing a specific basis and spares indices.

Definition. Elements as, s = 1, . . . of a Hilbert space H form a frame
in H if:

∃M,N > 0 : ∀h ∈ H : M‖h‖2 ≤
∞∑

s=1

|〈h,as〉|2 ≤ N‖h‖2;

M,N are called a lower and an upper frame bounds.

Proposition
Let (as)∞s=1 be a frame with the frame operator
F : h→

∑∞
s=1〈h,as〉as. Then

∀h ∈ H : h =
∞∑

s=1

〈h,F−1as〉as

and the series converges (unconditionally) for all h ∈ H.
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Frames in Hilbert spaces ctd.

We cite few results, which demonstrate, that frames are
overcomplete versions of Riesz bases in H.
A sequence {as}∞s=1 is called a Riesz basis, if:

it is a basis, i.e. each h ∈ H is uniquely representable as a sum
of an unconditionally converging series h =

∑∞
s=1 αsas;

0 < infs ‖as‖ ≤ sups ‖as‖ <∞.

Lemma
A frame (as)∞s=1 is a Riesz basis in H if any one of the following
conditions hold:

the frame is exact, i.e. ceases to be a frame when any of its
elements is removed;
the frame is minimal, i.e. ∀j ∈ N : aj 6∈ span{ak}k 6=j ;
the frame is ω-independent sequence, i.e. whenever

∑∞
s=1 αsas

converges and equal 0, then αs = 0, ∀s.
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Frames in Hilbert spaces ctd.

We use in the presentation a corollary of this proposition.

Corollary (approximative properties of frames)

For a frame (as)∞s=1 there exists a constant C such that for each
h ∈ H and each δ > 0 there exists a finite linear combination∑

s∈S αsas such that∥∥∥∥∥h −
∑
s∈S

αsas

∥∥∥∥∥
H

< δ,

(∑
s∈S

|αs|2
)1/2

< C‖h‖.
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Toy Model of Control-Linear Ensemble

We will look for an approach to ensemble controllability, using
following model in R3 with 2 inputs:

ẋ = u, ẏ = v , ∂tzθ(t) = f θ(x)v , θ ∈ Θ,

x(0) = y(0) = z(θ,0) = 0,

This is an ensemble of control-linear systems with the right-hand
sides, spanned by the vector fields

X =
∂

∂x
, Y θ =

∂

∂y
+ f θ(x)

∂

∂zθ
.

We set the following time T approximate ensemble controllability
problem: given a target function ẑ(p) ∈ L∞(Θ) and ε > 0 find
θ-independent controls u(·), v(·) ∈ L∞[0,T ], such that:

x(T ) = y(T ) = 0,
∫

Θ
‖zθ(T )− ẑ(θ)‖2dθ ≤ ε.

for the trajectory, driven by u(·), v(·).
Note that we ask for exact controllability in x , y .
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Lie algebraic frame condition and controllability
criterion

Take Taylor expansion of f θ(x) in x (recall that f is analytic) at 0:

f θ(x) =
∞∑

m=1

fm(θ)xm, fm(θ) =
1

m!

∂mf θ

∂xm

∣∣∣∣
x=0

.

Lie algebraic frame condition
Functions fm(θ) = 1

m!
∂mf θ
∂xm

∣∣∣
x=0

, m = 1, . . . form a frame in L2(Θ).

We coin it Lie algebraic condition as far as fm(θ) are zθ-components
of the iterated Lie brackets 1

m! ((adX )mYθ), evaluated at x = 0.

Controllability Criterion
Let uniform analyticity and boundedness assumptions hold.
Toy ensemble is time-T approximately controllable for each T > 0
if the Lie algebraic frame condition is satisfied,
and only if span{fm(θ), m = 1, . . .} = L2(Θ).
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Example.

Consider controlled ensemble

ẋ = u, ẏ = v ,

ż = f θ(x)v , f θ(x) =
1− x cos θ

1− 2x cos θ + x2 , θ ∈ [0, π], |x | < 1.

It is known, that

1− x cos θ
1− 2x cos θ + x2 =

∞∑
m=0

xm cos mθ.

Obviously {
√

1
π ,
√

2
π cos mθ,m = 1, . . .} form an orthonormal basis in

L2[0, π] and hence Lie algebraic frame condition is satisfied.
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Control design

Fix T = 1.

For this simple model the ’output’ zθ(T ) can be computed explicitly:

zθ(1) =

∫ 1

0
f θ(U(t))dV (t) =

∫ 1

0
f θ(U(t))v(t)dt , (∗)

where U(t) =
∫ t

0 u(s)ds, V (t) =
∫ t

0 v(s)ds.
We impose U(1) = V (1) = 0 and wish to construct functions
U(t), v(t) such that zθ(1) in (*) would approximate in L2(Θ) the target
function ẑ(θ).

We proceed by a variant of moment’s method.
Choosing function U(t) of small magnitude we get:

f θ(U(t)) =
∞∑

m=1

fm(θ)(U(t))m,

zθ(1) =
∞∑

m=1

fm(θ)

∫ 1

0
(U(t))mv(t)dt .
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Control design ctd.

We seek v(t) as a linear combination: v(t) =
∑R

r=1 yr vr (t), (R to be
specified later), the magnitude of v will be large.
Now

zθ(1) =
∞∑

m=1

fm(θ)
R∑

r=1

γmr yr , γmr =

∫ 1

0
(U(t))m vr (t)dt , Γ = (γmr ).

Our goal is to choose R,U(t), vr (t) so that infinite linear system

∞∑
m=1

(
R∑

r=1

γmr yr

)
fm(θ) =

∞∑
m=1

αmfm(θ)⇔ Γy = A

would be approximately solvable w.r.t. y .
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Controllability of a Control-Linear Ensemble.
Rashevsky-Chow-type theorem

Consider an ensemble of control-linear systems

∂txθ(t) = f θ1 (xθ)u1(t) + · · ·+ f θr (xθ)ur (t). (∗∗)

For the sake of brevity we restrict our attention to the case where the
initial point x̃ and the target x̂ are fixed (θ-independent).

Definition.
Ensemble (**) is time-T approximately steerable from x̃ to x̂ , if for
each ε > 0 there exists a θ-independent control u(·), which steers in
time T ensemble (**) from x̃ to x(T , θ), so that:∫

Θ
(dist(xθ(T ), x̂))2 dθ < ε2.
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Lie algebraic frame condition and controllability
criterion

Sufficient criterion for ensemble controllability will be again
formulated formulated in terms of
Lie algebraic frame condition,

∀z ∈ Vρ(R) the evaluations at z of the iterated Lie brackets

X θ
α(z) = [f θα1

(z), [f θα2
(z), [. . . , f θαN

(z)] . . .]](z), θ ∈ Θ,

form a frame in the Hilbert space L2(Θ,TxM), and the frame bounds
can be chosen uniform for all z from a compact subset.
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Rashevsky-Chow-type theorem for control-linear
ensembles

Theorem
Let uniform analyticity and uniform boundedness assumptions as
well as Lie algebraic frame condition be satisfied for ensemble (**).
Then for each couple (x̃ , x̂) and T > 0 (**) is time-T approximately
steerable from x̃ to x̂ .

Remark. For Θ being finite (|Θ| = N), the Hilbert space L2(Θ,TxM) is
finite-dimensional, isomorphic to TyMN , and the Lie algebraic frame
condition is equivalent to the bracket generating condition on MN .
Then stronger result on exact ensemble controllability holds.
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Steering by means of extended control

Proposition

Under the assumptions of the Theorem there exist δ,C > 0 and a
finite set of multi-indices A = {(α1, . . . , αN)}, such that the extended
ensemble

d
dt

xθ(t) =
∑
α∈A

X θ
α(x)vα(t), (2)

where X θ
α are the iterated Lie brackets from Lie algebraic frame

condition, can be approximately steered from 0 to x̂ in time δ by an
extended control (vα(t)), α ∈ A:

‖xθ(δ)− x̂‖L2(Θ) < Cδ2. (3)

Andrey Sarychev (Univ. of Florence, Italy) Ensemble Controllability June 7, 2015 33 / 34



Steering by means of small-dimensional control. Lie
extensions

Once the possibility to steer ensemble (**) by a high-dimensional
extended control is established, we will show that the same goal can
be achieved by means of lower-dimensional control. This is done via
so-called Lie extensions.
The following result shows, that the control-linear ensemble

d
dt

xθ(t) = X θu(t) + Y θv(t), (4)

and the extended ensemble
d
dt

xθ(t) = X θue(t) + Y θve(t) + [X θ,Y θ]we(t). (5)

have ’almost the same steering capacities’.

Proposition

If extended ensemble (5) can be steered from x̃ to x̂ approximately in
time T , then the same holds for ensemble (4).

If the statement is true the proof of Theorem ?? can be easily
completed. Proposition 5 demonstrates that an ensemble, extended
by a number of iterated Lie brackets of controlled vector fields, can
be steered from x̃ to x̂ approximately. Proposition 6 shows that the
same result can be achieved with a diminished (by 1) dimension of
controls. Proceeding by (inverse) induction we prove, that the
ensemble (??) can be steered approximately from x̃ to x̂ .
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