
Shallow Water wave . . .

Birkhoff norm form

KAM Theorem

Application to BBM . . .

Final remark

Home Page

Title Page

JJ II

J I

Page 1 of 36

Go Back

Full Screen

Close

Quit

A KAM theorem for some quasi-linear
PDEs

Xiaoping Yuan

(Joint work with Kangkang Zhang)

Fudan University, Shanghai

Euler International Mathematical Institute, St. Petersburg

June 5, 2015

http://www.fudan.edu.cn


Home Page

Title Page

JJ II

J I

Page 2 of 36

Go Back

Full Screen

Close

Quit

Shallow Water wave . . .

Birkhoff norm form

KAM Theorem

Application to BBM . . .

Final remark

http://www.fudan.edu.cn


Home Page

Title Page

JJ II

J I

Page 3 of 36

Go Back

Full Screen

Close

Quit

1 Shallow Water wave Equations

• (KdV-mKdV)

ut + αuux + βukux + γuxxx = 0, k = 1 or k = 2

• (Burgers)

ut − νuxx + uux = 0

• (Camassa-Holm)

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx

http://www.fudan.edu.cn
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• (Benjamin-Bona-Mahony, BBM)

ut − uxxt + ux + uux = 0

• (Hirota-Satsuma, HS)

ut − uxxt + ux − 4uut − 2ux∂
−1
x ut = 0

In this talk, we will focus on the last two equations.

http://www.fudan.edu.cn
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1.1. BBM equation

Consider the BBM equation

ut − uxxt + ux + uux = 0, u(t, 0) = u(t, T ). (1)

This equation can be written as a Hamiltonian system

ut = J∇uH(u) (2)

with

J = −(1− ∂xx)−1∂x (3)

H(u) =
1

2

∫ T

0

u2dx+
1

6

∫ T

0

u3dx, (4)

and

u ∈ Hs
0 = {u ∈ Hs(T : R) :

∫ T

0

udx = 0}.

http://www.fudan.edu.cn
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Define Z̄ = Z \ {0}. Set τ = 2π
T . Introduce the expansion

u =
∑
j∈Z̄

qjφj, φj =
1√
T
eiτj·x, (5)

then

q ∈ `s := {‖q‖2
s =

∑
j∈Z

|qj|2j2s <∞}, q̄j = q−j,

and (2) is changed into

iq̇j =
τj

1 + τ 2j2
qj +

τj

1 + τ 2j2

1

2
√
T

∑
l+m=j

qlqm, (6)

It is a Hamiltonian system:

q̇j = −i
τj

1 + τ 2j2

∂H

∂q−j
, (7)

with the symplectic structure∑
j

−i
τj

1 + τ 2j2
d qj ∧ d q−j (8)

H(q) = Λ +R =
∑
j≥1

|qj|2 +
1

6
√
T

∑
k+l+m=0

qkqlqm. (9)

http://www.fudan.edu.cn
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• the frequencies

λj =
τj

1 + τ 2j2
= O(j−1)→ 0, j →∞,

• The perturbation is quasi-linear:

Λ̃−1XR : `s → `s. (10)

where

Λ̃ = diag (λj : j ∈ Z̄) (11)

http://www.fudan.edu.cn
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1.2. H-S equation

Consider the H-S equation:

ut − uxxt + ux − 4uut − 2ux∂
−1
x ut = 0, u(t, 0) = u(t, 1) (12)

and

u ∈ Hs
0 = {u ∈ Hs(T : R) :

∫ 1

0

udx = 0} (13)

Remark: the dependence of the nonlinearity on ut causes difficulty.

Introduce the expansion,

u =
∑

j∈Z\{0}

qjφj, φj(x) = ei2πjx, (14)

and q ∈ `s, q−j = q̄j. Eq (12) is changed into

q̇ = −iAq +B(q)q̇, (15)

http://www.fudan.edu.cn
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A = diag(
2πj

1 + 4π2j2
: j ∈ Z̄), (16)

B(q) = (Bjl(q))j,l∈Z̄ = (
2(j + l)

(1 + 4π2j2)l
qj−l)j,l∈Z̄ (17)

Lemma 1. For any s > 0, B(q) defines a bounded operator from `s+1 to `s+1

with the norm

‖B(q)‖s+1,s+1 = O(‖q‖s). (18)

Consider (12) on a small neighborhood of the origin , then

iq̇ = Aq +BAq +B2Aq + · · · := Λ +R. (19)

Remark: Taking −i
∑

j≥1(2πj)
−1qj ∧ q−j as the symplectic structure, we can

verify Aq+BAq+B2Aq is hamiltonian and give its explicit Hamiltonian func-

tion. We need to verify that the higher order · · · is also hamiltonian, but its

explicit expression is not necessary for KAM theory.

For the H-S equation, we also get that λj → 0.

http://www.fudan.edu.cn
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Summary:

• Both BBM equation and H-S equation are hamiltonian system

• the frequencies λj has a finite limit point:

λj = O(j−1)→ 0, as j →∞,

• The perturbation is Quasi-linear:

Λ̃−1XR : `s → `s. (20)

where

Λ̃ = diag (λj : j ∈ Z̄) (21)

http://www.fudan.edu.cn
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Comparison with the perturbed KdV equation:

ut = −uxxx + f = 0, f = 6uux + ... (22)

where the frequencies

λj ∼ j3 →∞, j →∞

• When f = f(x, u, ux), existence of KAM tori due to Kuksin (2000).

• When f = f(x, u, ux, uxx), existence of KAM tori can be obtained by Liu-Y

method (2010,2011).

• When f = f(x, u, ux, uxx, uxxx), existence of KAM tori due to Baldi-Berti-

Montalto (2013),(2014). Quasi-Linear case!

• Procesi and her collaborators, Quasi-linear NLS (2015) with λj = j2

• Berti and his collaborators, Water wave eqn. (quasi-linear with λj =√
j(1 + κj2)

• KdV is integrable in Liouville’s sense, by Kappeler-Makarov(2001). pro-

vide a chance to show more results, e.g., Nekhoroshev estimate.

http://www.fudan.edu.cn
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Key point in KAM is that the number of small divisors must be finite:

≤ K ≈ 2m

at the m-th Newton iteration. For this difficulty, the most complicated case is

known as the second Melnikov’s condition:

〈k, ω〉+ λi − λj (23)

For the KdV,

|λi − λj| ∼ |i3 − j3| ∼ |i− j||i2 + j2|. (24)

At the m-th step, we get |k| ≤ K ∼ 2m, then when i or j is bigger than CK,

(23) is not small, thus we only need to exclude resonances just for

(k, i, j) : |k| ≤ K, i, j ≤ CK, (25)

and the number of (k, i, j) can be controlled by Cm. here I dropped the effect of

the unbounded (quasi-linear) perturbation.

http://www.fudan.edu.cn
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When λj → 0, e.g.,

λj =
1

j
,

the second Melnikov condition is

〈k, ω〉+
1

i
− 1

j

No growth in i or j!

As in KdV, BBM equation and H-S equation do not contain parameters, hence

we need to do Birkhoff normal form to extract parameters.

http://www.fudan.edu.cn
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2 Birkhoff norm form

2.1. BBM equation

For convenience, we set qj = γj q̃j with γj =
√

τ |j|
1+τ2j2 and the symplectic struc-

ture changes into −i
∑

j≥1 σjdqj ∧ dq−j. Here σj = sgn(j), in the following,

we still use q for simplicity and q ∈ `s−1/2. The corresponding Hamiltonian

function is

H(q) = Λ +R =
∑
j≥1

τj

1 + τ 2j2
|qj|2 +

1

6
√
T

∑
k+l+m=0

γkγlγmqkqlqm. (26)

Let J = {1 ≤ j1 < j2 < · · · < jn = N : jt ∈ N for 1 ≤ t ≤ n}. Set

(qj)j≥1 = (q̃, q̂), and q̃ = (qj1, · · · , qjt), q̂ = (qj)j∈N\J .

http://www.fudan.edu.cn
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Theorem 1. There exists a real analytic symplectic coordinate transformation

defined on the neighborhood of the origin of `s−1
2

which transform the Hamil-

tonian H defined by(26) into its Birkhoff normal form up to order four. More

precisely,

H ◦ Φ = Λ + Ḡ+ Ĝ+ R̃, (27)

where

Ḡ =
∑
k,l≥1

Ḡkl|qk|2|ql|2 (28)

with

Ḡkl =

{
− 1
T

τ2kl
[τ2(k2+kl+l2)+3][τ2(k2−kl+l2)+3], k 6= l,

1
12T

1
τ2k2+1, otherwise,

(29)

and

|Ĝ| = O(‖q̂‖3
s−1

2
), ‖XR̃‖s+1

2
= O(‖q‖4

s−1
2
) (30)

http://www.fudan.edu.cn
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2.2. H-S equation

Set qj = γj q̃j with γj =
√

2π|j|
1+4π2j2 and the symplectic structure changes into

−i
∑

j≥1 σjdqj∧dq−j. Use q for simplicity in the following. Let J = {1 ≤ j1 <

j2 < · · · < jn = N : jt ∈ N for 1 ≤ t ≤ n} and (qj)j≥1 = (q̃, q̂)

Theorem 2. There exists a real analytic symplectic coordinate transformation

defined on the neighborhood of the origin of `s−1
2

which transform the Hamil-

tonian vector of (12) into its Birkhoff normal form up to order three. More

precisely, the new Hamiltonian vector field is

iσj q̇j =
2π|j|

1 + 4π2j2
qj + Q̄3

j + Q̂3
j + Q̃j (31)

where

Q̄3
j =

∑
k≥1

Q̄3
jk|qk|2qj (32)

http://www.fudan.edu.cn
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with

Q̄3
jk =

{
4·2π|j|·2πk(4π2j2·4π2k2+3(4π2k2+4π2j2)+5)

(1+4π2j2)2(1+4π2k2)2 , k 6= |j|,
4(2πj)4+18(2πj)2+6

(1+4π2j2)3 , otherwise,
(33)

and

|Q̂j| = O(‖q̂‖2
s−1

2
), ‖Q̃‖s+1

2
= O(‖q‖4

s−1
2
) (34)

Set λj =
τj

1+τ2j2 (for H-S equation, τ = 2π). Both the Birkhoff normal form

theorems are based on the following three lemmas.

Lemma 1. Assume τ is some transcendental number. Let N 3 m ≥ 1. Then for

any fixed 1 ≤ j1 < j2 < · · · < jm and r1, r2, · · · rm ∈ Z̄ with r1j1+· · ·+rmjm =

0, we have

r1λj1 + r2λj2 + · · ·+ rmλjm 6= 0. (35)

http://www.fudan.edu.cn
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Set ∆ = {(k, l,m, n) : k+l+m+n = 0, k+l, k+m, k+n 6= 0}. For 0 ≤ i ≤ 2,

set ∆i = {(k, l,m, n) ∈ ∆ : there exist i elements of {|k|, |l|, |m|, |n|} not in J}
and denotes the other cases by ∆3.

Lemma 2. (BBM) Assume 1
τ > 2N

√
n, then for any (k, l,m, n) ∈ ∆0∪∆1∪∆2,

we have

|λk + λl + λm + λn| ≥ C(τ, n,N). (36)

Lemma 3. (H-S) Assume τ = 2π, then for any (k, l,m, n) ∈ ∆0 ∪∆1 ∪∆2, we

have

|λk + λl + λm + λn| ≥ C(n,N). (37)

http://www.fudan.edu.cn
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3 KAM Theorem
Denote by Pp = Tn × Rn × `p × `p 3 (x, y, z, z̄) and T0 = Tn × {0, 0, 0}. For

s, r > 0, introduce the complex T0 neighborhoods in Pp :

D(s, r) = |Imx| < s, |y| < r2, ‖z‖p + ‖z̄‖p < r.

For W = (X, Y, U, V ) ∈ Pp, define ‖W‖r,p̄ = |X|+ 1
r2 |Y |+

1
r‖U‖p̄ + 1

r‖V ‖p̄.
Consider an infinite dimensional Hamiltonian in the parameter dependent nor-

mal form

N = 〈ω(ξ), y〉+
∑
j∈Zd

Ωj(ξ)zj z̄j+〈Bzz(x; ξ)z, z〉+〈Bzz̄(x; ξ)z, z̄〉+〈B z̄z̄(x; ξ)z̄, z̄〉,

(38)

which has the invariant torus T0. We prove the persistence of the torus under

small perturbation P. The following assumptions are required.

http://www.fudan.edu.cn


Home Page

Title Page

JJ II

J I

Page 20 of 36

Go Back

Full Screen

Close

Quit

(A) Assume that ω(ξ),Ω(ξ) andBuv(ξ) are continuously differentiable in ξ ∈ Π

in the sense of Whitney;

(B) the map ξ → ω(ξ) is a homeomorphism between Π and its image. Moreover,

there exists c1 > 0 such that supξ∈Π |∂
j
ξω(ξ)| ≤ c1, j = 0, 1;

(C)there exists constants c2, c3, c4, c5 > 0 and a constant κ > 0 such that (Ωj)
] ≤

c2|j|c3 and

c4|j|−κ ≤ |Ωj| ≤ c5|j|−κ. (39)

Set Ω̂ = diag (∂wtΩj − 1
ωt

Ωj : j ∈ Zd) for some 1 ≤ t ≤ n with ωt 6= 0, we

assume that Ω̂ is a positive operator in `2.

(D) (quasi-linear)

Set Λ = diag (Ωj; j ∈ Zd)

Λ−1XP : D(s, r) ⊂ Pp → Pp; (40)

http://www.fudan.edu.cn
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(E)Buv is a bounded operator from `p to `p+κ, and the operator norm has the

estimates

sup
ξ∈Π
‖Buv(x; ξ)‖p,p+κ, sup

ξ∈Π
‖∂ξBuv(x; ξ)‖p,p+κ � 1; (41)

(F) the perturbation P and B satisfy the real condition. That is,

P (x, y, z, z̄; ξ) = P (x, y, z, z̄; ξ) (42)

for real (x, y) and for real x,

Bzz(x, ξ) = B z̄z̄(x, ξ), Bzz̄(x, ξ) = (Bzz̄(x, ξ))T . (43)

http://www.fudan.edu.cn
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Theorem 3. Suppose H = N + P satisfies assumption (A)-(F) and

ε := |XP |r,p+κ;D(s,r)×Π + α|∂ξXP |r,p+κ;D(s,r)×Π (44)

for some 0 < α < 1, then there exist some constant γ = γ(p, κ, d, n) > 1 and

η = η(n, s, r) sufficiently small such that for

ε < αγη, (45)

there exists a subset Πα ⊂ Π with

Meas Πα ≥ (Meas Π)(1−O(α)),

and for every ξ ∈ Πα, there exist a family of torus embedding Φ : Tn×Πα → Pp

and a map ω∗ : Πα → Rn such that Φ restricted to Tn×{ξ} ia an embedding of

a torus with frequencies ω∗(ξ).

http://www.fudan.edu.cn
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Proof. Decompose the perturbation

P = R0 +R1 +R2 +O(|y|2 + |y|‖z‖+ ‖z‖3),

we need to find the symplectic transformation to eliminate lower order terms.

Notice that λj ∼ j−κ, we can not control the number of the small divisor:

〈k, ω〉+ λi − λj,

thus, instead of eliminating the second order terms , we put it into the normal

form, then we need to solve the linearized equation with variable coefficients

i∂ωF z + (Ω +Bzz(x) + · · · )F z = Rz, (46)

thus we needs to investigate the inverse of a big matrix of the form

Λ̂ = diag (〈k, ω〉+ Ωj : |k| ≤ K, j ∈ Zd) + B̂(k − l) : |k|, |l| ≤ K) (47)

http://www.fudan.edu.cn
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By excluding some parameters, we get

|〈k, ω〉| ≥ α

Kn+1
, 0 6= |k| ≤ K, (48)

then

|〈k, ω〉+ Ωj| ≥
α

2Kn+1
(49)

as long as |Ωj| ≤ c|j|−κ ≤ α
2Kn+1 , that is |j| ≥ M = (K

c(n)

α )
1
κ . Write the matrix

above as (
Λ̂1 0

0 Λ̂1

)
+

(
B̂11 B̂12

B̂21 B̂22

)
(50)

It is enough to control the inverse of Λ̂1 + B̂11.

http://www.fudan.edu.cn
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Lemma 4. (key lemma) There exists a subset Π+ ⊂ Π with Meas (Π \ Π+) =

O( αK ) such that

‖(Λ̂1 + B̂11)
−1‖p+κ,p+κ ≺ (

1

α
)c1(n)Kc2(n) (51)

http://www.fudan.edu.cn
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Linear Stability: For the perturbed KdV, the linearized equation along the KAm

tori can be reduced to
√
−1q̇j = λ̃jqj, j ∈ Z̄.

The KAM tori is linear stable in Sobolev spaceHs
0 (or `s).

Lemma 5. For BBM and H-S, the linearized equation along the KAm tori can

be reduced to
√
−1q̇ = A(t)q

whereA is real and self-adjoint for any t. The obtained KAM tori is linear stable

in L2 space.

Proof. Since the linearized equation has L2 energy conservation.

http://www.fudan.edu.cn


Home Page

Title Page

JJ II

J I

Page 27 of 36

Go Back

Full Screen

Close

Quit

4 Application to BBM equation and H-S
equation

4.1. Application to BBM equation

Theorem 4. Consider the BBM equation (1) on the ε-neighborhood of the origin

ofHs
0 written in the Hamiltonian form

ut = −(1− ∂xx)−1∂x∇uH(u), (52)

where the Hamiltonian H is defined by (4). For any given integer n ∈ N and

each index set J = {1 ≤ j1 < j2 < · · · < jn = N} ⊂ N, Suppose τ = 2π
T

be some transcendental number with 1
τ > 2N

√
n, then there exists an ε0 > 0

depending only on J, τ and s such that for ε < ε0, the equation has many KAM

tori (quasi-periodic solutions) with frequency vector close to ( τj1
1+τ2j21

, · · · τjn
1+τ2j2n

).

http://www.fudan.edu.cn
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• Introduce symplectic polar and real coordinates (x, y, z, z̄) by setting{
qjt =

√
ξt + yte

−ixt, q−jt =
√
ξt + yte

ixt, 1 ≤ t ≤ n,

qj = zj, q−j = z̄j, j ∈ N \ J,
(53)

to (27), we get H̃ = N +P with a symplectic structure
∑

1≤t≤n dyt ∧ dxt−
i
∑

j 6∈J dzj ∧ dz̄j, where

N =
∑

1≤t≤n
ω0
t (ξ)yt +

∑
j 6∈J

Ω0
j(ξ)zj z̄j (54)

The frequency was defined as follows.

ω = λn + Uξ, Ω = λ∞ + Tξ, (55)

where

λn = (λjt : 1 ≤ t ≤ n), λ∞ = {λj : j 6∈ J}, (56)

and U and T are matrix.

• Check assumption (A) to (F) as well as the smallness condition (45), we can

finish the proof of the above theorem.

http://www.fudan.edu.cn
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Remark.

We choose τ = 2π
T to be some transcendental number in order to ensure that

the above theorem holds true for arbitrary n and J = {j1 < j2 < · · · < jn}.
Otherwise, one need to prove the theorem under some extra conditions of n and

J .

http://www.fudan.edu.cn
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4.2. Application to H-S equation

Theorem 5. Consider the BBM equation (12) on the ε-neighborhood of the

origin of Hs
0 with the vector field defined by (19). For any given integer n ∈ N

and the index set J = {1, 2, · · · , n} then there exists an ε0 > 0 depending only

on n and s such that for ε < ε0, the equation has many quasi-periodic solutions

with frequency vector close to ( 2πj
1+4π2j2)1≤j≤n.

http://www.fudan.edu.cn
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The proof of Theorem 5 can be obtained by introducing symplectic polar and

real coordinates and checking (A) to (F) and the smallness condition (45). All

the assumptions are easily to check except assumption (C). We have the follow-

ing lemma.

Lemma 5. (H-S) For any fixed 1 ≤ t ≤ n, ∂wtΩj − 1
ωt

Ωj is not equal to zero

with the sign keeping the same for every j ≥ n+ 1.

Proof of Lemma 5.

After we introduce symplectic polar and real coordinates, we get

ω = λn + Uξ, Ω = λ∞ + Tξ, (57)

where

λn = (λt : 1 ≤ t ≤ n), λ∞ = {λj : j ≥ n+ 1}, (58)

http://www.fudan.edu.cn
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and

Ukl =

{
4·2πk·2πl(4π2k2·4π2l2+3(4π2k2+4π2l2)+5)

(1+4π2k2)2(1+4π2l2)2 , k 6= l,
4(2πk)4+18(2πk)2+6

(1+4π2k2)3 , otherwise,
(59)

Tjl =
4 · 2πj · 2πl(4π2j2 · 4π2l2 + 3(4π2l2 + 4π2j2) + 5)

(1 + 4π2j2)2(1 + 4π2l2)2
. (60)

We have

∂wtΩj −
1

ωt
Ωj =

1

ω2
t

(λ∞ − TU−1λn). (61)

Let Λ = diag( 2πj
1+4π2j2 : j ≥ n+ 1), T = ΛT̃ , and U = ΛŨ , we can obtain

Ũkl =

{
u(l) + 1

4π2k2v(l), k 6= l,

u(k) + 1
4π2k2v(k)− s(k), otherwise

(62)

T̃jl = u(l) +
1

4π2j2
v(l). (63)
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Set w(m) =
∑

1≤i≤n Ũ
−1
mi , hence we can check that

(
2πj

1 + 4π2j2
)−1(λ∞ − TU−1λn)j

= 1− (T̃ Ũ−11n)j

= (1−
∑

1≤m≤n
u(m)w(m))− 1

4π2j2

∑
1≤m≤n

v(m)w(m). (64)

By some calculations, we get for every j ≥ n+ 1,

(
2πj

1 + 4π2j2
)−1(λ∞ − TU−1λn)j = (a+ b

1

4π2j2
)c (65)

where

a > 0, b > 0, a− b

1 + 4π2n2
> 0, c 6= 0,

and thus the sign keep the same.
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5 Final remark
The KAM theorem with λj → 0 should be valid for higher spatial dimensional

version of BBM and H-S, e.g. BBM:

ut −4xut + ux + u · ux = 0, x ∈ Td, d > 1

In this case, new difficulty comes from normal form.

The KAM theorem with λj →∞ should be valid for higher spatial dimensional

version of PDEs remains open!

http://www.fudan.edu.cn


Home Page

Title Page

JJ II

J I

Page 36 of 36

Go Back

Full Screen

Close

Quit

THANK YOU

http://www.fudan.edu.cn

	Shallow Water wave Equations
	BBM  equation
	H-S  equation

	Birkhoff norm form
	BBM equation
	H-S equation

	KAM Theorem
	Application to BBM equation and H-S equation
	Application to BBM equation
	Application to H-S equation

	Final remark

