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I. Introduction

1. Billiard

Phase space: cylinder Z = {σ, ϑ}.

Billiard map b : Z → Z,

(σ1, ϑ1) 7→ (σ2, ϑ2).

Invariant measure: sinϑ dϑdσ.

2. Motivations. An important class of discrete Hamiltonian

(Lagrangian) systems. Billiard and geodesic flow. Spectrum of the

Laplace operator on a 2D domain.

Billiard maps form in the space of symplectic maps a meager set: the number of billiard

maps is as big as the number of functions of ONE real variable (curvature as a function

of the arclength), while the number of symplectic maps is as big as the number of

functions of TWO real variables (generating function) ⇒ rigidity in various problems of

billiard dynamics.



2. Several classical problems.

(a) Integrability.

Conjecture. If a billiard is integrable (as a dynamical system), then

any smooth piece of the boundary curve is a line segment or a piece of

a conic section.

Bolotin 1990: a proof under the condition that the piece can be

continued regularly to the complex space.

(b) Density of the set of periodic points.

(c) Conjecture (Ivrii 1980). Suppose that the billiard curve is

piecewise smooth. Then the measure of the set of periodic points on

the phase cylinder Z = {σ, ϑ} vanishes.

A proof for periodic orbits of period 3: Rychlik 1989; period 4:

Glutsyuk and Kudryashov 2012; period > 5 no result.



II. The problem.

1. Symmetric billiard.

f(x) =
1

2
(a0 + a2x

2 + a4x
4 + . . .),

a0 = −1, sx : Z → Z, the symmetry in x.

b ◦ sx = sx ◦ b ⇒ “projection” of the map

b to the quotient space Z/sx is well-defined. We denote it again b.

2. The billiard trajectory coinciding with the line segment

{x = 0, y ∈ [−1/2, 1/2]} generates two periodic points of period 2.

In the quotient system we obtain a fixed point O.



In the linear approximation near O b is a rotation or hyperbolic

rotation (except degenerate cases). Rotation ⇔ a2 ∈ (0, 2). Consider

this case.

Question. Is it possible to choose f so that b is locally conjugated to

the rotation of a plane by the angle α?

Several versions:

(a) The series f =
∑

a2jx
2j is formal.

(b) Radius of convergence is positive.

(c) Hyperbolic rotation ρ.



The same problem in higher dimension

A domain in R
n+1 = {x1, . . . , xn, y} symmetric w.r.t. {y = 0}

(important) and w.r.t. {x1 = 0}, . . . , {xn = 0} (convenient).

Period-2 “vertical” orbit = fixed point in the quotient (w.r.t. the first

symmetry) system.

Question. Is it possible to choose f so that b is locally conjugated to

a linear symplectic map on R
2n?

Versions:

(a) The Taylor series for f is formal.

(b) Radius of convergence is positive.



III. Main equation, 2D

1. Locally near 0 ∈ R
2 for some h : R2 → Z (the conjugacy map)

b ◦ h = h ◦ ρ, (1)

where ρ : R2 → R
2 is the rotation by the angle α.

2. (Gauge symmetry). Let s : R2 → R
2 commute with ρ: s ◦ ρ = ρ ◦ s.

Then for any solution (b, h) of (1) the pair (b, h ◦ s) is also a solution.

Hence each solution (b, h) generates a family of gauge equivalent

solutions (b, h ◦ s).

Natural “canonic” gauge = symplectic h.

3. A more explicit form for (1) is needed.

Coordinates (σ, ϑ) are not convenient . . .



We assume that b is a map of the form

(σ1, σ2) 7→ (σ2, σ3). Then

∂

∂σ2

(

l(σ1, σ2) + l(σ2, σ3)
)

= 0.

Conjugacy h has two components:

h = (χ̂, χ), χ̂(0, 0) = χ(0, 0) = 0.

4. Easy computation: χ̂ = χ ◦ ρ−1.

Equation (1) takes the form

2f ′◦χ
(

τ−f ◦χ τ+f ◦χ− τ−χ τ+χ
)

+
(

1− (f ′◦χ)2
)(

τ−χ τ+f ◦χ+ τ+χ τ−f ◦χ
)

= 0, (2)

where we denote

τ±χ = χ− χ ◦ ρ±1, τ±f ◦ χ = f ◦ χ+ f ◦ χ ◦ ρ±1.



5. (Technical remark). It is convenient to use complex coordinates z, z̄ on
R
2 = {u, v},

z = u+ iv, z̄ = u− iv.

Then ρ(z, z̄) = (λz, λ̄z̄), λ = eiα.

6. Proposition. For any irrational α/(2π) equation (2) has a formal

solution f, χ.

Burlakov & Seslavina 2011.

Small divisors of the form (λk−1 − 1)(λ−k−1 − 1).



IV. Numeric results

1. First, we tried to compute a2j as functions of λ = eiα. Formulas

become more and more complicated. About 10 coefficients can be

computed by using MAPLE. Nothing is clear ...

2. Take α = 2πg, where g is the golden mean. We obtain the sequence

a2, a4, . . .:

1.7373, 1.2449, 1.7631, 3.1125, 6.1475, 13.002, 28.803,

65.969, 154.94, 371.18, 903.40, 2227.5, 5552.9, . . .

The sequence bj = a2j/a2j−2 grows monotonically:

0.71658, 1.4161, 1.7653, 1.9750, 2.1151, 2.2151,

2.2903, 2.3487, 2.3955, 2.4338, 2.4657, 2.4928, . . .



We put b∞ = limj→∞ bj 6 ∞. Then b
−1/2
∞ is the radius of convergence

for the series f .

(a) (Acceleration of convergence I). Suppose that b∞ < ∞ and

bj ≈ b∞ −
c1
j

(3)

Having bj and bj+1, we compute from two equations (3)

b∞(j) = (j + 1)bj+1 − jbj , c1 = j(j + 1)(bi+1 − bi).

For b∞(j) we obtain the sequence

2.81542, 2.81274, 2.81413, 2.81512, 2.81575, 2.81616,

2.81644, 2.81664, 2.81678, 2.81689, 2.81698, . . .



(b) (Acceleration of convergence II).

Assuming that bj ≈ b∞ − c1/j − c2/j
2, we obtain:

b∞(j) =
(j + 2)2bj+2 − 2(j + 1)2bj+1 + j2bj

2!
,

2.8100676, 2.8162207, 2.8170990, 2.8173217, 2.8173956,

2.8174247, 2.8174376, 2.8174439, 2.8174470, 2.8174487, . . .

(c) (Acceleration of convergence III). If we suppose that

bj ≈ b∞ − c1/j − c2/j
2 − c3/j

3,

we have:

b∞(j) =
(j + 3)3bj+3 − 3(j + 2)3bj+2 + 3(j + 1)3bj+1 − j3bj

3!
,

2.82032285, 2.81797742, 2.81761859, 2.81751871, 2.81748308,

2.81746786, 2.81746049, 2.81745658, 2.81745436, . . .



Continue in the same manner ...

Calculations show that the following conjecture is probably true

Conjecture 1. For good rotation numbers α/(2π) the function f is

real-analytic in a neighborhood of zero.



The quantity b∞ can be computed for various values of α. Let us

draw the corresponding points on the plane R
2 = { α

2π ,
1

b∞
}.

The function is not defined for rational values of the argument. We

see gaps near the "strongest"resonances α = 3/10 and α = 1/3.

Conjecture 2. The function α 7→ 1/b∞(α) is Whitney smooth.



For α/(2π) < 1/3 the sequence a2j is poorly described by the above

asymptotics, and for α/(2π) < 1/4 becomes sign-alternating.

3. For α/(2π) = 1/2 equation (2) can be solved w.r.t. f (not χ!):

f = −
1

2

√

1− 4x2.

A half-circle. Numerics confirm ... Hence, the billiard inside a circle is,

in a certain sense, a limit solution when α/(2π) → 1/2.



5. Suppose that

a2j = c0j
σbj∞(1 +O(1/j)). (4)

Then

bj = b∞

(

1 +
σ

j
+O

( 1

j2

))

, σ = −
c1
b∞

.

In calculations we always have σ = −3/2 with an error < 1/1000.

Conjecture 3. Asymptotic formula (4) is true, where σ = −3/2.

If Conjecture 3 holds, then

(a) f(x) is well-defined and finite at the “border points” x± = ±b
−1/2
∞ .

(b) f has in x± a singularity of type
√

±(x± − x).



Graph of the function α
2π 7→ h(α) := f(x±) is presented in the figure.

Conjecture 4. The function α 7→ 1/b∞(α) is Whitney smooth.



It may happen that the billiard curve γα can be continued

analytically through the points (x±(α), h(α)).



Canonic gauge.

It is determined by the condition that h is symplectic.

The corresponding equation is as follows:

(

(τ−f ◦χ)
2 − τ−f

′◦χ τ−f ◦χ τ−χ− f ′◦χ f ′◦χ− (τ−χ)
2
)

×

×
(

∂zχ− ∂z̄χ− ∂z̄χ− ∂zχ
)

= (λ−1 − λ)
(

(τ−f ◦χ)
2 + (τ−χ)

2
)3/2

.

Here χ− = χ ◦ ρ−1.

Taking the main equation (2) and the conjugacy equation together,

we obtain a highly overdetermined system for two unknown functions

f and χ.

Can this be used in the proof of local convergence of the solutions?

Still unclear ...



3D case. Everything is analogous. Now we have to compute the

Taylor coefficients aj,l (j, l even).

The coefficients a0,l and aj,0 can be computed from 2D case because

sections of the billiard domain by the vertical planes x1 = 0 and

x2 = 0 give solutions of the 2D problem.

Comments on numerics. Take for example, as the linear map

in R
4 = {q1, q2, q3, q4} the rotation in α1 = 2π · (3, 3, 1, 1, 1, . . .) (chain

fraction) in the (q1, q2)-plane and the rotation in

α2 = 2π · (2, 5, 2, 2, 2, . . .) in the (q3, q4)-plane.

For any even k we present the line

a0,k
√

C0
k

,
a2,k−2
√

C2
k

, . . . ,
ak,0
√

Ck
k

.

The multipliers 1/
√

Cl
k are motivated by the Bombieri metric on the

space of homogeneous polynomials.



Here are numeric data beginning from k = 4 (we save only 5 digits):

.50276, 1.0749, 1.8853

.38788, 1.1811, 1.9557, 3.6123

.36853, 1.5808, 2.7866, 4.5700, 8.6479

.39228, 2.3233, 4.4113, 7.3709, 12.080, 23.183

.44643, 3.6066, 7.3683, 12.798, 20.965, 34.380, 66.587

.53202, 5.8039, 12.711, 23.049, 38.630, 62.628, 102.77, 200.34


