On the integrability of the sine-Gordon equation

Yannick Widmer

university of Zurich

St Petersburg June 7, 2015

Motivation: pseudosphere

$\Sigma \subset \mathbb{R}^{2}$ open. \exists one to one correspondence (Hilbert):
(i) Immersion $f: \Sigma \rightarrow \mathbb{R}^{3},(x, t) \mapsto f(x, t)$ with Gaussian curvature $\equiv-1$ (pseudosphere) and $\left|\partial_{x} f\right|=\left|\partial_{t} f\right|=1$.
(ii) solution $u: \Sigma \rightarrow \mathbb{R},(x, t) \mapsto u(x, t)$ to

$$
\begin{equation*}
u_{x t}=\sin (u) \tag{1}
\end{equation*}
$$

Motivation: pseudosphere

$\Sigma \subset \mathbb{R}^{2}$ open. \exists one to one correspondence (Hilbert):
(i) Immersion $f: \Sigma \rightarrow \mathbb{R}^{3},(x, t) \mapsto f(x, t)$ with Gaussian curvature $\equiv-1$ (pseudosphere) and $\left|\partial_{x} f\right|=\left|\partial_{t} f\right|=1$.
(ii) solution $u: \Sigma \rightarrow \mathbb{R},(x, t) \mapsto u(x, t)$ to

$$
\begin{equation*}
u_{x t}=\sin (u) \tag{1}
\end{equation*}
$$

$"(i) \Rightarrow(i i)$ " the angle $\angle\left(\partial_{x} f, \partial_{y} f\right)=: u(x, y)$ is a solution of (1).
$"(i i) \Rightarrow(i) " \angle\left(\partial_{x}, \partial_{y}\right)=u(x, y)$ with $\left|\partial_{x}\right|=\left|\partial_{t}\right|=1$
characterizes metric on Σ; integrate Gauss-Mainardi-Codazzi equations to get pseudosphere f.

sine-Gordon Equation

$$
\begin{aligned}
& (I V P) \begin{cases}\partial_{t} \partial_{x} u(x, t)=\sin (u(x, t)) \\
u(0, x)=u_{0}(x) & t \in \mathbb{R}, x \in \mathbb{T}=\mathbb{R} / \mathbb{Z} \\
u(x, t) \in \mathbb{T}_{2 \pi}=\mathbb{R} / 2 \pi \mathbb{Z}\end{cases} \\
& u \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), m \geq 1: \quad \exists \stackrel{\circ}{u} \in H^{m}(\mathbb{T}, \mathbb{R}), k \in \mathbb{Z} \text { s.t. } \\
& u(x)=\grave{u}(x)+2 \pi k x \quad(\bmod 2 \pi) .
\end{aligned}
$$

Involution: $\quad u \mapsto \breve{u}+\pi, \breve{u}(x, t)=u(-x, t)$

$$
u \text { solution } \Leftrightarrow \breve{u}+\pi \text { solution }
$$

The phase space

observation: Any C^{1} solution $u: t \mapsto u(t, \cdot) \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right)$ satisfies

$$
\int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \partial_{t} \partial_{x} u \mathrm{~d} x=\partial_{t} 2 \pi k=0 .
$$

The phase space

observation: Any C^{1} solution $u: t \mapsto u(t, \cdot) \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right)$ satisfies

$$
\int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \partial_{t} \partial_{x} u \mathrm{~d} x=\partial_{t} 2 \pi k=0
$$

Introduce for $m \geq 1$:

$$
\begin{aligned}
& M^{m}:=\left\{u \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right): \int_{\mathbb{T}} e^{\mathrm{i} u} \mathrm{~d} x \in \mathbb{R}\right\} \\
& M^{m}=M_{+}^{m} \cup M_{-}^{m} \cup M_{0}^{m} \\
& M_{0}^{m} \subset M^{m}: \int_{\mathbb{T}} e^{\mathrm{i} u} \mathrm{~d} x=0 \\
& M_{ \pm}^{m} \subset M^{m}: \pm \int_{\mathbb{T}} e^{\mathrm{i} u} \mathrm{~d} x \in \mathbb{R}_{>0}
\end{aligned}
$$

The phase space

$\forall u \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right)$ consider the line $u+\mathbb{T}_{2 \pi}$ and note,

$$
\int_{\mathbb{T}} e^{\mathrm{i}(u+c)} \mathrm{d} x=e^{\mathrm{i} c} \int_{\mathbb{T}} e^{\mathrm{i} u} \mathrm{~d} x \quad \forall c \in \mathbb{T}_{2 \pi}
$$

case 1: $\int e^{\mathrm{i} u} \mathrm{~d} x=0$

$$
u+c \in M_{0}^{m} \quad \forall c \in \mathbb{T}_{2 \pi}
$$

case 2: $\int_{\mathbb{T}} e^{\mathrm{i} u} \mathrm{~d} x \neq 0$

$$
\begin{aligned}
& \exists!c_{+} \in \mathbb{T}_{2 \pi} \text { s.t. } u+c_{+} \in M_{+}^{m} \\
& \exists!c_{-} \in \mathbb{T}_{2 \pi} \text { s.t. } u+c_{-} \in M_{-}^{m}
\end{aligned}
$$

where $c_{+}=c_{-}+\pi=-\arg \left(\int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x\right)(\bmod 2 \pi)$

parametrization of $M_{ \pm}^{m}$

Introduce new variable $v:=\frac{1}{2} u_{x}$
note that $u \in H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right) \rightsquigarrow v \in H^{m-1}(\mathbb{T}, \mathbb{R})$
Introduce for $l \geq 0$

$$
W^{l}=\left\{v \in H^{l}(\mathbb{T}, \mathbb{R}): \int_{\mathbb{T}} \exp \left(2 \mathrm{i}_{x}^{-1} v\right) \mathrm{d} x \neq 0, \int_{\mathbb{T}} v \mathrm{~d} x \in \pi \mathbb{Z}\right\}
$$

where ∂_{x}^{-1} is the mean zero anti-derivative.

Definition

$$
\begin{aligned}
& \Psi^{+}: W^{l} \rightarrow M_{+}^{l+1}, v \mapsto 2 \partial_{x}^{-1} v+\gamma(v) \\
& \Psi^{-}: W^{l} \rightarrow M_{-}^{l+1}, v \mapsto\left(2 \partial_{x}^{-1} v\right)^{\llcorner }+\gamma(v)+\pi
\end{aligned}
$$

where $\breve{v}(x)=v(-x)$ and $\gamma(v)=-\arg \left(\int_{\mathbb{T}} e^{2 i \partial_{x}^{-1} v} \mathrm{~d} x\right)$

First main result

Theorem

For any $l \geq 0$, the following holds:
(i) $\Psi^{+}\left[\Psi^{-}\right]$parametrizes $M_{+}^{l+1}\left[M_{-}^{l+1}\right]$ real analytically.

Equation (1) in v-coordinates:

$$
\begin{equation*}
v_{t}=\frac{1}{2} \sin \left(2 \partial_{x}^{-1} v+\gamma(v)\right) \quad \text { on } W^{l} \tag{2}
\end{equation*}
$$

(ii) Equation (2) is Hamiltonian with respect to the Gardner bracket, i.e. is equivalent to $v_{t}=\partial_{x} \partial_{v} H$, with Hamiltonian

$$
\begin{equation*}
H: W^{l} \rightarrow \mathbb{R}, v \mapsto \frac{1}{4} \int_{\mathbb{T}} \cos \left(2 \partial_{x}^{-1} v+\gamma(v)\right) \mathrm{d} x \tag{3}
\end{equation*}
$$

(iii) The Hamiltonian H is in the Poisson algebra of the focusing $m K d V$ equation and hence (2) is an integrable PDE on W^{l}.

Birkhoff coordinates

Corollary

For any $l \geq 0$, equation (2) admits Birkhoff coordinates near 0. In particular, near 0, the Hamiltonian H is a function of the actions alone.

Birkhoff coordinates

Corollary

For any $l \geq 0$, equation (2) admits Birkhoff coordinates near 0. In particular, near 0, the Hamiltonian H is a function of the actions alone.
sketch of the proof
(i) [KST08]: global real analytic Birkhoff coordinates for defocusing mKdV
(ii) \Rightarrow existence of Birkhoff coordinates near 0 for focusing mKdV
(iii) all Hamiltonians in the Poisson algebra of focusing mKdV, when expressed in Birkhoff coordinates are in normal form.

Analysis of M_{0}^{m}

$$
M_{0}^{m}=\left\{u \in M^{m}: \int_{\mathbb{T}} \cos (u) \mathrm{d} x=0\right\}
$$

Analysis of M_{0}^{m}

$$
M_{0}^{m}=\left\{u \in M^{m}: \int_{\mathbb{T}} \cos (u) \mathrm{d} x=0\right\}
$$

Lemma
$\forall m \geq 1 M_{0}^{m}$ is a codimension 2 submanifold of $H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right)$

Analysis of M_{0}^{m}

$$
M_{0}^{m}=\left\{u \in M^{m}: \int_{\mathbb{T}} \cos (u) \mathrm{d} x=0\right\}
$$

Lemma

$\forall m \geq 1 M_{0}^{m}$ is a codimension 2 submanifold of $H^{m}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right)$
Definition
For all $k \in \mathbb{Z}$ introduce

$$
\begin{array}{r}
M_{0}^{m, k}=\left\{u \in M_{0}^{m}\right): \exists \stackrel{\circ}{u} \in H^{m}(\mathbb{T}, \mathbb{R}) \text { s.t. } \\
\quad u(x)=\grave{u}(x)+2 \pi k x(\bmod 2 \pi)\}
\end{array}
$$

Then

$$
M_{0}^{m}=\bigcup_{k \in \mathbb{Z}} M_{0}^{m, k} \quad \text { (disjoint union) }
$$

Second main result

Theorem
$\forall k \in \mathbb{Z} \exists U \subset M_{0}^{1, k}$ open s.t. $\forall u_{0} \in U, \forall T>0$ the initial value problem

$$
\left\{\begin{array}{l}
\partial_{t} \partial_{x} u=\sin (u) \\
u(0)=u_{0}
\end{array}\right.
$$

admits no C^{1} solution u in $C^{1}\left([0, T], M^{1}\right)$.

Remark.

Note that there are elements in U which are C^{∞}.

4. Illposed

Examples of elements in M_{0}^{1} $\left(M_{0}^{1}=\left\{u \in H^{1}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), \int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x=0\right\}\right)$

4. Illposed

Examples of elements in M_{0}^{1} $\left(M_{0}^{1}=\left\{u \in H^{1}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), \int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x=0\right\}\right)$

4. Illposed

Examples of elements in M_{0}^{1} $\left(M_{0}^{1}=\left\{u \in H^{1}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), \int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x=0\right\}\right)$

4. Illposed

Examples of elements in M_{0}^{1} $\left(M_{0}^{1}=\left\{u \in H^{1}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), \int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x=0\right\}\right)$

4. Illposed

Examples of elements in M_{0}^{1} $\left(M_{0}^{1}=\left\{u \in H^{1}\left(\mathbb{T}, \mathbb{T}_{2 \pi}\right), \int_{\mathbb{T}} e^{\mathrm{i} i u} \mathrm{~d} x=0\right\}\right)$

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

$$
0=\partial_{t} \int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \cos (u) u_{t} \mathrm{~d} x
$$

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

$$
0=\partial_{t} \int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \cos (u) u_{t} \mathrm{~d} x
$$

$u_{t}=\partial_{x}^{-1} \sin (u)+\partial_{t}[u]$, with $[u]=\int_{\mathbb{T}} u \mathrm{~d} x$ independent of x

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

$$
0=\partial_{t} \int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \cos (u) u_{t} \mathrm{~d} x
$$

$u_{t}=\partial_{x}^{-1} \sin (u)+\partial_{t}[u]$, with $[u]=\int_{\mathbb{T}} u \mathrm{~d} x$ independent of x

$$
\begin{equation*}
0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x+\partial_{t}[u] \int_{\mathbb{T}} \cos (u) \mathrm{d} x \tag{4}
\end{equation*}
$$

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

$$
0=\partial_{t} \int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \cos (u) u_{t} \mathrm{~d} x
$$

$u_{t}=\partial_{x}^{-1} \sin (u)+\partial_{t}[u]$, with $[u]=\int_{\mathbb{T}} u \mathrm{~d} x$ independent of x

$$
\begin{equation*}
0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x+\partial_{t}[u] \int_{\mathbb{T}} \cos (u) \mathrm{d} x \tag{4}
\end{equation*}
$$

On $M_{ \pm}^{m}(4)$ is trivially solved when $u=\Psi^{ \pm}(v)$ with v a solution of (2).

4. Illposed:proof

$u: t \mapsto u(t, \cdot) \in M^{1} C^{1}$-smooth solution of (1).

$$
0=\partial_{t} \int_{\mathbb{T}} \sin (u) \mathrm{d} x=\int_{\mathbb{T}} \cos (u) u_{t} \mathrm{~d} x
$$

$u_{t}=\partial_{x}^{-1} \sin (u)+\partial_{t}[u]$, with $[u]=\int_{\mathbb{T}} u \mathrm{~d} x$ independent of x

$$
\begin{equation*}
0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x+\partial_{t}[u] \int_{\mathbb{T}} \cos (u) \mathrm{d} x \tag{4}
\end{equation*}
$$

On $M_{ \pm}^{m}(4)$ is trivially solved when $u=\Psi^{ \pm}(v)$ with v a solution of (2). On M_{0}^{m} (4) reduces to

$$
0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x
$$

4. Illposed:proof

When does $0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x$ hold?

4. Illposed:proof

When does $0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x$ hold?

4. Illposed:proof

When does $0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x$ hold?

4. Illposed:proof

When does $0=\int_{\mathbb{T}} \cos (u) \partial_{x}^{-1} \sin (u) \mathrm{d} x$ hold?

References

国 T Kappeler, B Schaad, and P Topalov, $m K d V$ and its Birkhoff coordinates, Physica D: Nonlinear Phenomena 237 (2008), no. 10, 1655-1662.

