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Motivation: pseudosphere

Σ ⊂ R2 open. ∃ one to one correspondence (Hilbert):

(i) Immersion f : Σ→ R3, (x, t) 7→ f(x, t) with Gaussian
curvature ≡ −1 (pseudosphere) and |∂xf | = |∂tf | = 1.

(ii) solution u : Σ→ R, (x, t) 7→ u(x, t) to

uxt = sin(u). (1)

"(i)⇒ (ii)" the angle ∠(∂xf, ∂yf) =: u(x, y) is a solution of (1).

"(ii)⇒ (i)" ∠(∂x, ∂y) = u(x, y) with |∂x| = |∂t| = 1
characterizes metric on Σ; integrate Gauss-Mainardi-Codazzi
equations to get pseudosphere f .
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sine-Gordon Equation

(IV P )

{
∂t∂xu(x, t) = sin(u(x, t)) t ∈ R, x ∈ T = R/Z
u(0, x) = u0(x) u(x, t) ∈ T2π = R/2πZ

u ∈ Hm(T,T2π), m ≥ 1: ∃ ů ∈ Hm(T,R), k ∈ Z s.t.

u(x) = ů(x) + 2πkx (mod 2π).

Involution: u 7→ ŭ+ π, ŭ(x, t) = u(−x, t)

u solution ⇔ ŭ+ π solution



The phase space

observation: Any C1 solution u : t 7→ u(t, ·) ∈ Hm(T,T2π)
satisfies∫

T
sin(u) dx =

∫
T
∂t∂xu dx = ∂t2πk = 0.

Introduce for m ≥ 1:

Mm :=

{
u ∈ Hm(T,T2π) :

∫
T
eiu dx ∈ R

}
Mm = Mm

+ ∪Mm
− ∪Mm

0

Mm
0 ⊂Mm :

∫
T
eiu dx = 0

Mm
± ⊂Mm : ±

∫
T
eiu dx ∈ R>0
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The phase space

∀ u ∈ Hm(T,T2π) consider the line u+ T2π and note,∫
T
ei(u+c) dx = eic

∫
T
eiu dx ∀ c ∈ T2π.

case 1:
∫
eiu dx = 0

u+ c ∈Mm
0 ∀ c ∈ T2π

case 2:
∫
T e

iu dx 6= 0

∃ ! c+ ∈ T2π s.t. u+ c+ ∈Mm
+

∃ ! c− ∈ T2π s.t. u+ c− ∈Mm
−

where c+ = c− + π = − arg
(∫

T e
iu dx

)
(mod 2π)



parametrization of Mm
±

Introduce new variable v := 1
2ux

note that u ∈ Hm(T,T2π) v ∈ Hm−1(T,R)

Introduce for l ≥ 0

W l =

{
v ∈ H l(T,R) :

∫
T

exp(2i∂−1
x v) dx 6= 0,

∫
T
v dx ∈ πZ

}
where ∂−1x is the mean zero anti-derivative.

Definition

Ψ+ :W l →M l+1
+ , v 7→ 2∂−1x v + γ(v)

Ψ− :W l →M l+1
− , v 7→

(
2∂−1x v

)̆
+ γ(v) + π

where v̆(x) = v(−x) and γ(v) = − arg
(∫

T e
2i∂−1

x v dx
)



First main result

Theorem
For any l ≥ 0, the following holds:

(i) Ψ+ [Ψ−] parametrizes M l+1
+ [M l+1

− ] real analytically.
Equation (1) in v-coordinates:

vt =
1

2
sin(2∂−1x v + γ(v)) on W l. (2)

(ii) Equation (2) is Hamiltonian with respect to the Gardner
bracket, i.e. is equivalent to vt = ∂x∂vH, with Hamiltonian

H : W l → R, v 7→ 1

4

∫
T

cos(2∂−1x v + γ(v)) dx. (3)

(iii) The Hamiltonian H is in the Poisson algebra of the focusing
mKdV equation and hence (2) is an integrable PDE on W l.



Birkhoff coordinates

Corollary
For any l ≥ 0, equation (2) admits Birkhoff coordinates near 0.
In particular, near 0, the Hamiltonian H is a function of the
actions alone.

sketch of the proof
(i) [KST08]: global real analytic Birkhoff coordinates for

defocusing mKdV
(ii) ⇒ existence of Birkhoff coordinates near 0 for focusing

mKdV
(iii) all Hamiltonians in the Poisson algebra of focusing mKdV,

when expressed in Birkhoff coordinates are in normal form.
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Analysis of Mm
0

Mm
0 =

{
u ∈Mm :

∫
T

cos(u) dx = 0

}

Lemma
∀ m ≥ 1 Mm

0 is a codimension 2 submanifold of Hm(T,T2π)

Definition
For all k ∈ Z introduce

Mm,k
0 = { u ∈Mm

0 ) : ∃ ů ∈ Hm(T,R) s.t.
u(x) = ů(x) + 2πkx (mod 2π) }

Then

Mm
0 =

⋃
k∈Z

Mm,k
0 (disjoint union)



Analysis of Mm
0

Mm
0 =

{
u ∈Mm :

∫
T

cos(u) dx = 0

}

Lemma
∀ m ≥ 1 Mm

0 is a codimension 2 submanifold of Hm(T,T2π)

Definition
For all k ∈ Z introduce

Mm,k
0 = { u ∈Mm
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Second main result

Theorem
∀ k ∈ Z ∃ U ⊂M1,k

0 open s.t. ∀ u0 ∈ U , ∀ T > 0 the initial
value problem{

∂t∂xu = sin(u)
u(0) = u0

admits no C1 solution u in C1([0, T ],M1).

Remark.
Note that there are elements in U which are C∞.



4. Illposed

Examples of elements in M1
0

(M1
0 = {u ∈ H1(T,T2π),

∫
T eiu dx = 0})

T

2π

4π

2kπ
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4. Illposed:proof

u : t 7→ u(t, ·) ∈M1 C1-smooth solution of (1).

0 = ∂t

∫
T

sin(u) dx =

∫
T

cos(u)ut dx

ut = ∂−1x sin(u) + ∂t[u], with [u] =
∫
T udx independent of x

0 =

∫
T

cos(u)∂−1x sin(u) dx+ ∂t[u]

∫
T

cos(u) dx. (4)

On Mm
± (4) is trivially solved when u = Ψ±(v) with v a solution

of (2). On Mm
0 (4) reduces to

0 =

∫
T

cos(u)∂−1x sin(u) dx
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