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Introduction.

To obtain the low-energy Lagrangian of String theory compactified
on a CY manifold, one needs to know the Special Kähler geometry
on the moduli space of CY manifold X .
A way to compute this was proposed in the famous work by
Candelas, de la Ossa,Green and Parkes.
Kähler potential of the metric on the moduli space is expressed
bilinearly in terms of periods of the CY 3-form Ω.

ωµ :=

∮
qµ∈H3(X ,Z)

Ω,

Here qµ is a special basis of cycles in H3(X ,Z).
We present an alternative approach to the computation of Kähler
potential for the case when CY manifold is given by a Hypersurface
W0(x) = 0 in a weighted projective space.



This approach is based on the fact that the moduli space of CY
manifold is a subspace of a Frobenius manifold (FM)
which arises on the deformations of the singularity defined by the
LG superpotential W0(x).

This allows to introduce and compute the additional basises of
periods called σµ.
Since both ω±µ (φ) and σ±ν (φ) are periods defined as the integrals
over diffent basises of the cycles in the same group H3(X ,Z),
they are connected by some constant matrix T ν

µ :

ω±µ (φ) = T ν
µ σ
±
ν (φ).

Kähler potential is then given in terms of the periods σµ, the
holomorphic FM metric ηµρ and the matrix T ν

µ :

e−K = σ+
µ η

µρMν
ρσ
−
ν , M = T−1T̄ .
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The basis ωµ has the advantage of being taken over homology
cycles qµ with real coefficients. Therefore Kähler potential and FM
metric are expressed in terms of the same intersection matrix

e−K(φ) = ωµ(φ)Cµν ω̄ν(φ),

hαβ = ωαµ(0)Cµνωβν(0),

The inverse intersection matrix (C−1)µν = qµ ∩ qν .
ωαµ(φ) are the different bases of periods for the different α defined
by integration over the same cycles.
Using these two formulae together with the relation

ω±µ (φ) = T ν
µ σ
±
ν (φ).

permit leads to the above result

e−K = σ+
µ η

µρMν
ρσ
−
ν , M = T−1T̄ .

We demonstrate our method on the famous Quintic hypersurface,
Fermat surfaces and special more general CY, which are given by
an equation with minimal number of monomials.



Special geometry

Recall the basic facts about the special Kähler geometry and how
it arises on the CY moduli space.

Let moduli space M of complex structures of a given CY manifold
is n-dimensional and z1 · · · zn+1 are the special (projective)
coordinates on it.
Then there exists a holomorphic homogeneous function F (z) of
degree 2 in z called a prepotential such that the Kähler potential
K (z) of the moduli space metric is given by

e−K(z) = za · ∂F̄
∂z̄ ā
− z̄ ā · ∂F

∂za

This metric on the moduli space of complex structures is a metric
that naturally arises from deWitt (=Polyakov) metric on a space of
metrics on CY manifolds.



Special geometry on moduli spaces
Let X is CY three-fold and yµ (µ = 1, 2, 3) are complex
coordinates on X .
The moduli space of X is the space of metric perturbations of X
that preserve Ricci-flatness.
The metric on the complex structure CY moduli space obtained
from natural metric for CY metric deformations of type
δagµν , δb̄gµ̄ν̄ preserving Ricci-flatness is

Gab̄ =

∫
X
d6y g1/2 gµσ̄gνρ̄δagµνδb̄gσ̄ρ̄.

The deformations which leave the metric Ricci flat corresponds to
elements in H2,1(X ):

δgᾱβ̄ → χµνβ̄ ∼ Ωµνλg
λᾱδgᾱβ̄

We can then rewrite the above metric as

Gab̄ =

∫
X χa ∧ χ̄b̄∫
X Ω ∧ Ω̄

.

a, b̄ are indices of complex coordinates in the deformation space.



From the Kodaira Lemma:

∂aΩ = kaΩ + χa,

it follows that this metric is a Kähler :

Gab̄ = −∂a∂b̄ ln

∫
X

Ω ∧ Ω̄

To obtain the bilinear formulae written above, define the basis of
periods as integrals over Poincare dual symplectic basises
Aa,Bb ∈ H3(X ,Z) and αa, β

b ∈ H3(X ,Z):

Aa ∩ Bb = δab, Aa ∩ Ab = 0, Ba ∩ Bb = 0.∫
Aa

αb = δab,

∫
Aa

βb = 0,

∫
Ba

αb = 0,

∫
Ba

βb = δba ,∫
X
αa ∧ βb = δba ,

∫
X
αa ∧ αb = 0

∫
X
βa ∧ βb = 0.

With this, we decompose Ω as

Ω = zaαa + Fbβ
b,

za =

∫
Aa

Ω, Fb =

∫
Bb

Ω.



We obtain

e−K =

∫
X

Ω ∧ Ω̄ = za · F̄ā − z̄ ā · Fa.

From the same lemma we obtain∫
X

Ω ∧ ∂aΩ = Fa − zb∂aFb = 0.

It follows

Fa(z) =
1

2
∂aF (z),

where F (z) = 1/2zbFb(z).
So Gab̄ is the special Kähler metric with prepotential F (z) and
with special coordinates given by the periods.
Using the notation for the vector of periods,

Π =
(
Fα, z

b
)

we write the expression for the Kähler potential as

e−K(z) = ΠaΣabΠ̄b,

where Σ is a symplectic unit, which is an inverse intersection
matrix for cycles Aa and Bb.



CY as Hypersurface in a weighted projective space

Further, we concentrate on the case where the CY manifold is
realized as a zero locus of a single polynomial equation in a
weighted projective space.
Let x1, . . . , x5 be homogeneous coordinates in a weighted
projective space and

X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W0(x) = 0}.

W0(x) is some quasi-homogeneous polynomial,

W0(λki xi ) = λdW0(xi )

and

degW0(x) = d =
5∑

i=1

ki .

The last relation ensures that X is a CY manifold.



W0(x) defines an isolated singularity in the origin.
The moduli space of complex structures is then given by
homogeneous polynomial deformations of this singularity modulo
coordinate transformations:

W (x , φ) = W0(x) + φ0

∏
xi +

µ∑
s=0

φses(x),

es(x) are polynomials of x with the same weight as W0(x). In this
case, the holomorphic 3-form Ω is given as a residue of a 5-form in
the underlying affine space C5:

Ω =
x5dx1 ∧ dx2 ∧ dx3

∂W (x)/∂x4
= ResW (x)=0

x5dx1 · · · dx4

W (x)
=

=
1

2πi

∮
|x5|=δ

ResW (x)=0
dx1 · · · dx5

W (x)
,

where the last equality is due to the homogeneity of the integrand.



A basis of periods ωµ(φ)
Having explicit expression for Ω, we can define and compute a
basis of periods ωµ(φ) as follows.
We take a so-called fundamental cycle q1, which is a torus in the
large complex structure limit φ0 >> 1 (for simplicity other φs = 0):

W (x , φ) = W0(x) + φ0

∏
xi .

In this limit, we can define an 5−dimensional torus Q1 = |xi | = δi
surrounding the hypersurface W (x) = 0 in C5. It corresponds to
an 3-dimensional torus q1 ⊂ X . Then the fundamental period is

ω1(φ) :=

∫
q1

Ω =

∫
Q1

dx1 · · · dx5

W (x , φ)

and is given by a residue in its large φ0 expansion.
More periods ωµ may be obtained as analytic continuations of ω1

in φ. This can be done by continuing ω1(φ) in a small φ0 region
using Barnes’ trick and using the symmetry of W0(x) afterwards.



Namely, there is a group of phase symmetries ΠX acting diagonally
on xi and preserving W0(x).
When W0(x) is deformed, this group acts on a parameter space
with an action A such that

W (g · x , A(g) · φ0) = W (x , φ).

The moduli space is then at most a factor of the parameter space
{φs}/A.
This allows defining a set of other periods by analytic continuation,

ωµg (φ) = ω1(A(g) · φ0), g ∈ GX

In many cases this construction gives the whole basis of periods for
the manifold X .



Periods as oscillatory integrals

The next important step is to transform the integrals for the
periods

∫
qµ

Ω to the complex oscillatory form. First we have

ωµ(φ) :=

∫
qµ

Ω =

∫
Qµ

d5x

W (x)
,

qµ ∈ H3(X ), Qµ ∈ H5(C5\W (x) = 0), and Qµ is given by a
tubular neighbourhood of qµ. We can present them in the form∫

Qµ

d5x

W (x)
=

∫
Q±

µ

e∓W (x)d5x

where Q±µ ∈ H5(C5, ReW0(x) = ±∞). The map Qµ → Q±µ is
given by a contour deformation.



This deformation is performed due to the existence of a natural
isomorphism

Hr3(X )→ H5(C5\W (x) = 0) = H5(C5, ReW0(x) = ±∞)w∈d ·Z

such that, indeed

Q±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z

is a subgroup of H5(C5, ReW0(x) = ±∞) defined below.
The presentation as oscilatory integrals

ωµ = ω±µ =

∫
Q±

µ

e∓W (x)d5x

makes the computation of periods convenient. In terms of them

e−K = ω+
µ C

µν ω̄−ν ,

where Cµν = qµ ∩ qν = Q+
µ ∩ Q−ν and Q±µ ∩ Q±ν = 0.

So we need only to know the matrix Cµν .
To find Cµν we use the fact that the CY moduli space is the
marginal subspace of FM which arises on the deformations of the
singularity W0(x).



Connection with Frobenius manifold structure.

The polynomial W0(x) in C5, which defines CY hypersurface in
4-dimensional weighted projective space, is a quasi-homogeneous
polynomial:

W0(λki xi ) = λdW0(x)

with an isolated singularity in the origin.
Consider the Milnor ring of this singularity

R0 =
C[x1, . . . , x5]

∂1W0(x) · . . . · ∂5W0(x)
.

Let eµ(x) be a basis of this ring that consists of homogeneous
monomials. There is a natural multiplication in R0, and there is
also a metric, turning the space of eµ(x) into a Frobenius algebra.



The metric and struture constants are given by

ηµν = Res
eµ · eν

∂1W0(x) · · · ∂5W0(x)
,

Cµνλ = Cσµνησλ = Res
eµ · eν · eλ

∂1W0(x) · · · ∂5W0(x)
.

Consider the space of deformations of this singularity

W (x) = W0(x) +
∑

tµeµ(x).

On the space with parameters tµ arises the structure of Frobenius
manifold MF with the multiplication structure constants C ρµν(t) for
the ring R defined by the deformed singularity W (x)

R =
C[x1, . . . , x5]

∂1W (x) · . . . · ∂5W (x)
.

and a Riemanian flat metric hµν(t). The metric hµν(t = 0) equal
to ηµν . The structure constants are derivatives of Frobenius
potential F (t),

C ρµν(t)hρσ = ∇µ∇ν∇σF (t),

where ∇µ is Levi-Civita connection for hµν(t).



CY Moduli space as a subspace of the Frobenius manifold.

Consider the differentials D+ and D−

D± = D±W0
= d± dW0 ∧ .

The fifth cohomology groups H5
D±(C5) of this differentials as linear

spaces are isomorphic to the Milnor ring R

eµ(x)→ eµ(x)d5x .

Cohomology group H5
D∓(C5) is dual to the homology group

H5(C5,ReW0(x) = ∓∞) if pairing between the groups defined as

〈Γ±µ , eνd5x〉 =

∫
Γ±
µ

eν · e∓W0(x)d5x .

Then H5(C5, ReW0(x) = ±∞)w∈d ·Z ⊂ H5(C5, ReW0(x) = ±∞),
is a subgroup which consists of elements of dual to eµ(x)d5x
∈ H5

D±(C5, ReW0(x) = ±∞)w∈d ·Z such that weight of eµ(x) is
divisible by weight of the singularity: [eµ(x)] ∈ d · Z.



This is precisely the subgroup invariant under xi → e2πiki/dxi .
Using this duality, we define a set of cycles Γ±µ in the group
H5(C5, ReW0(x) = ±∞)w∈d ·Z by requiring that∫

Γ±
µ

eν · e∓W0(x)d5x = δµν .

The convenient computation technique in HD±(C5) can be used to
compute the integrals ∫

Γ±
µ

eν · e∓W (x ,ψ)d5x .

This technique is based on the fact that∫
Γ±
µ

P(x)e−W0(x)d5x =

∫
Γ±
µ

P̃(x)e−W0(x)d5x

if the differential forms are equivalient in D± cohomology(
P(x)− P̃(x)

)
d5x = D±U.

This reduces the problem to a system of linear equations.



For a generic deformation W (x) = W0(x) +
∑

tµeµ(x) = 0 does
not define a surface in a projective space.
This only occurs when W (x) is quasihomogeneous, i.e. in a case of
marginal deformations or deformations that have the same scaling
property as W0(x).

We let {φs} ⊂ {tα} to denote the marginal deformation
parameters.
Thus, the marginal deformations W0(x) +

∑
φses(x) define a

subspace of a total Frobenius manifold connected with W0.
This subspace of the FM coincides with the moduli space of the
CY manifold.



Computing the Kähler potential

We use the connection of the CY moduli space to the
corresponding FM to find the inverse intersection matrix of the
cycles Cµν , qµ ∩ qν = Q+

µ ∩ Q−ν .
To do this, introduce a few additional basises of periods ω±α,µ(φ) as
integrals of eα(x)d5x ∈ H5

D±(C5, ReW0(x) = ±∞)w∈d ·Z over the
cycles Q±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z that have been
defined earlier:

ω±αµ(φ) =

∫
Q±

µ

eα(x) e∓W (x ,φ)d5x .

In particular, the periods ω±1µ(φ) coincide with the periods ω±µ (φ)
defined above since we assume that e1(x) = 1 denotes the unity in
the ring R.
The crucial fact for possibility to compute Cµν is its connection
with the FM metric hαβ(t = 0) as:

ηαβ = ω+
α,µ(t = 0)Cµνω−β,ν(t = 0)



So we need to prove the relation

hab(t = 0) = Res
ea · eb dnx

∂1W0 · · · ∂nW0
=

=

∫
Q+

µ

ea e
−W0dnx Cµν

∫
Q−

ν

eb eW0dnx

To do this consider a small perturbation W (x , t) = W0(x) + taea,
so that 0 - critical point of W becomes a set of Morse points
p1, . . . , pµ and consider a bilinear form

hab(t, z) =

∫
Q+

µ

ea e
−W (x ,t)/zdnx Cµν

∫
Q−

ν

eb eW (x ,t)/zdnx

Notice, that

hab(t = 0, z) = zk · hab(t = 0, z = 1),

because if t = 0, we can absorb z by coordinate transform
xi → zki/dxi .



We can choose basis of cycles : L±i to start from pi and go along
the gradient of Re(W (x , t)) in positive/negative direction and
their intersections L+

i ∩ L−j = δij .
In this basis rhs becomes:

µ∑
i=1

∫
L+
i

ea e
−W (x ,t)/zdnx

∫
L−i

eb eW (x ,t)/zdnx

Using stationary phase expansion as z → 0 we obtain for a period:∫
L+
i

ea(x) e−W (x ,t)/zdnx = ± (2πz)N/2√
HessW (pi , t)

(ea(pi ) + O(z))

From this we get

hab(t, z) = ±
µ∑

i=1

(2πiz)N
ea(pi ) · eb(pi )

Hess(W (pi , t))
(1 + O(z)) =

= (2πiz)N
(
Res

ea · ebdnx
∂1W · · · ∂NW

+ O(z)

)
By analytic continuation it holds for t = 0. Also we have
hab(0, z) = zk · hab(0, 1). The above equality now follows from the
previous formula.



This formula helps to obtain the expression for Cµν if we know
values of ω+

α,µ(t = 0) for all α.
From the their definition

ω±αµ(φ) =

∫
Q±

µ

eα(x) e∓W (x ,φ)d5x .

we can see that ω+
α,µ(t = 0) is expressed in terms of a few first

derivatives over φ of the periods ω±µ (φ) for φ = 0. Denote

ω±α,µ(φ = 0) := (T±)αµ.

From the eq-n above we have

ηµν = (T+)µρ C ρσ (T−)νσ.

Expressing the intersection matrix C ρσ in terms Frobenius metric
ηµν and matrix T we insert it to the Kahler potential formula

e−K(φ) = ωµ(φ)Cµν ω̄ν(φ)

to obtain the explicit expression for K (φ).



To get more covenient expression for K (φ) we define one more
basis of periods σ±µ (φ) as integrals over the cycles
Γ±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z defined above:

σ±µ (φ) =

∫
Γ±
µ

e∓W (x ,φ)d5x ,

Once we have an oscillatory representation for the periods σ±µ (φ)
over the corresponding cycles Γ±µ , we can define additional
integrals σ±α,µ(φ) over the same cycles as

σ±α,µ(φ) =

∫
Γ±
µ

eα(x) e∓W (x ,φ)d5x

It follows from e1(x) = 1 that σ±1µ = σ±µ . Due to our choice of the
cycles Γ±µ we also have σ±α,µ(t = 0) = δα,µ .
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The construction

Since both ω±µ (φ) and σ±ν (φ) are basises of periods defined as the
integrals over the cycles in H5(C5, ReW0(x) = ±∞)w∈d ·Z,
they are connected by some constant matrix (T±)νµ:

ω±µ (φ) = (T±)νµ σ
±
ν (φ).

To find T , it suffices to take a few first terms of the expansion
over φ of the periods ω±µ (φ) and σ±µ (φ). The same relation
connects periods ω±αµ(φ) and σ±αν(φ) for each α.
Knowing that σ±α,µ(φ = 0) = δα,µ, we obtain

ω±α,µ(φ = 0) = (T±)αµ.

From above eq-n we then obtain

ηµν = (T+)µρ C ρσ (T−)νσ.

So we express the intersection matrix C ρσ in terms of the known
Frobenius metric ηµν and the also known matrix T .



Main statement.

Thus we arrive to the main statement that

e−K(φ) = σµ(φ) ηµν Mλ
ν σ
−
λ , (φ)

where the matrix Ma
b = (T−1)ac T̄ c

b .

It gives an explicit expression for the Kähler potential K in terms
of the periods σµ(φ), FM metric ηµν and matrix Tµ

ν .
All these data can be computed exactly as it has been explained
above.
It makes sense to stress that having the exact expression for
ω±ν (φ), we can obtain the exact and explicit expressions for the
periods σ±µ (φ) :

σ±µ (φ) =
(
(T±)−1

)ν
µ
ω±ν (φ).

In terms of the periods σ±µ (φ) expression for the Kähler potential
has a convenient form for calculating the metric on the CY moduli
space.



Example 1: Quintic
The one-parameter family of CY manifold is defined as

Xψ = {xi ∈ P4 |Wψ(x) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5−

− 5ψx1x2x3x4x5 = 0}.
In this case, the phase symmetry is Z5

5 and the induced action A

on the one-dimensional space {ψ} is Z5 : ψ → e2πi/5ψ.
That is the whole complex structure moduli space of the quotient
X/Z3

5 =: X̂ , that is the mirror manifold of the original quintic. In
particular, h1,1(X̂ ) = 101, h2,1(X̂ ) = 1.
We choose cycles Γ±µ dual to the cohomology classes
d5x ,

∏
xi · d5x ,

∏
x2
i · d5x ,

∏
x3
i · d5x , a basis in the cohomology

subgroup invariant under the Z3
5.

For the periods, the recursion procedure gives:

σ±µ (ψ) =
(±1)µ−1

Γ(µ/5)55µψ

∞∑
n=0

Γ5(n + µ/5)

Γ(5n + µ)
(5ψ)5n+µ =

=
(±ψ)µ−1

Γ(µ)
+ O(ψµ+3)



The fundamental period for the quintic is defined as a residue of a
holomorphic three-form Ω

x5dx1 ∧ dx2 ∧ dx3

∂Pψ/∂x4
,

and given by an integral over a cycle q1, which is three-dimensional
torus. Its analytic continuations as explained give the whole basis
of periods in a basis of cycles with integral coefficients:

ωµ(ψ) =
∞∑

m=1

e4πim/5Γ(m/5)(5e2πi(µ−1)/5ψ)m−1

Γ(m)Γ4(1−m/5)
, |ψ| < 1,

Taking the first four terms of the expansion of the periods above
we obtain

Tµ
ν =

5ν−1e2πi((ν−1)(µ−1)+2ν)/5Γ(ν/5)

Γ4(1− ν/5)
,

The FM holomorphic metric in this case

η = antidiag(1, 1, 1, 1).



Finally we obtain η̂ = ηT−1T̄ and Kähler potential for the metric:

e−K(ψ) =
Γ5(1/5)

125Γ5(4/5)
σ+

11σ
−
11 +

Γ5(2/5)

5Γ5(3/5)
σ+

12σ
−
12+

+
5Γ5(3/5)

Γ5(2/5)
σ+

13σ
−
13 +

125Γ5(4/5)

Γ5(1/5)
σ+

14σ
−
14.

In particular,

Gψψ(0) = 25
Γ5(4/5)Γ5(2/5)

Γ5(1/5)Γ5(3/5)

that coincides with the famous result by Candelas et al.



Example 2: Fermat hypersurface
The direct generalization of the quintic is a Fermat hypersurface,
which is the one given by the equation

W0(x) =
5∑

i=1

xnii , ni = d/ki ,
∑

ki = d ,

and the degree d is equal to the least common multiple of {ki}.
As in the case above, we consider a one-dimensional deformation
W (x , φ0) = W0(x) + φ0

∏5
i=1 xi . The phase symmetry group is

ΠX = Zn1 × · · · × Zn5 . The lifted action on φ0 is
Zd : φ0 → ζφ0, ζ = e2πi/d . We take the expression for the
fundamental period the known result by Berglund et al:

ω1(φ0) ==
d−1∑
µ=1

A(µ)
φµ−1

0

Γ(µ)
+ O(φd−1

0 ).

and

A(µ) =
(−1)µ−1e

−πiµ
d

sin µπ
d

∏5
i=1 Γ(1− kiµ

d )



We note that A(µ) vanishes if kiµ/d ∈ Z, i.e. µ/ni ∈ Z.
According to the general analytic continuation procedure

ωµ(φ0) =
∑

ζ(ν−1)(µ−1)A(ν)
φν−1

0

Γ(ν)
+ O(φd−1

0 ).

Using the definitions for σ+
µ (φ0) we obtain

σ+
µ (φ0) =

φµ−1
0

Γ(µ)
+ O(φµ+d−2

0 ), µ/ni /∈ Z, otherwise 0

This latter condition implies that ωµ form a basis in the periods of
Ω deformed by φ0. We obtain the transition matrix

Tµ
ν = ζ(µ−1)(ν−1)A(µ), µ/ni /∈ Z, ν/ni /∈ Z

(T−1)λµ =
ζ̄(λ−1)(ν−1)

d̃ − 1

1

A(µ)

and the real structure

Mµ
ν =

Ā(µ)

A(d − µ)
δµ+ν,d .



In this case, ηµ,ν = δµ+ν,d and therefore

e−K(φ0) =
d−1∑

µ=1, µ/ni /∈Z

5∏
i=1

γ

(
kiµ

d

)
σ+
µ (φ0)σ−µ (φ0)

where γ(x) = Γ(x)/Γ(1− x) and

σ±µ (φ0) = ±
∞∑

R=0

φµ−1+dR
0

Γ(dR + µ)

5∏
j=1

Γ
(
kj(R + µ

d )
)

Γ(
kjµ
d )

From this we get a formula for the metric itself

Gφ0φ0
=

5∏
i=1

(
γ

(
kiµ0

d

)
γ

(
1− ki

d

))
|φ0|2(µ0−1)

Γ(µ0)2
+ O(|φ0|2µ0),

µ0 is the least integer 1 ≤ µ0 < d such that (µ0 + 1)/nj 6= Z.
The last formula reproduces the known results for CY manifolds
P4

(2,1,1,1,1)[6], P4
(4,1,1,1,1)[8] and P4

(5,2,1,1,1)[10] obtained by Klemm
and Theisen.



Example 3: Sums of 5 monomials

We assume that the above approach is applicable to the case of
CY manifold defined in terms of the hypersurface in weighted
projective spaces defining polynomial is

W0(x) =
5∑

j=1

5∏
i=1

x
aij
i ,

∑
kiaij = d ,

and ∑
ki = d .

In this case periods are given in terms of the mirror CY manifold
X̂ . The polynimial W0(x) has a group ΠX of phase symmetries
represented as

ΠX = QX × GX ,

where Qx , a quantum symmetry group ' (Zd : k1, · · · , k5), acts as
xi → e2πiki/d . We note that action of the quantum symmetries on
X is trivial. The complement to QX in ΠX is called a geometric
symmetry group GX .



For mirror manifolds the total phase symmetry is unchanged
whereas roles of quantum and geometric symmetries switch:

GX = QX̂ , QX = GX̂ .

To build such a mirror, we must first to consider a polynomial
Ŵ0(x) with a transposed matrix of exponents âij = aji ,

Ŵ0(x) =
5∑

j=1

5∏
i=1

x
âij
i ,

∑
k̂iaji = d̂ ,

and ∑
k̂i = d̂ .

Here k̂i and d̂ are uniquely defined by the reqirement that the
equalities above are satisfied.
This polynomial has the same group of phase symmetries, however
generically the needed condition is not fulfiled, i.e. its quantum
symmetry is smaller, than geometric symmetry of the original
hypersurface.



To get a mirror we need to enlarge quantum symmetry of
{Ŵ0(x) = 0}. For this purpose we take a quotient of the
hypersurface {Ŵ0(x) = 0}/H, where H is some subgroup of phase
symmetries which is to be found in each case.
Thus, computing complex moduli space for the manifold X (or X̂ )
we compute also a complexified Kähler moduli space metric for the
mirror CY through the mirror map.
The periods ωµ(φ) in this case were computed earlier and, if we set
all parameters φs (but not φ0) equal to zero for simplicity , then
we have:

ω1(φ0) =
d̂−1∑
r=1

A(r)
φr−1

0

Γ(r)
+ O(φd̂−1

0 )

A(µ) = (−1)µ
π

d̂ sin πµ

d̂

5∏
j=1

1

Γ(1− k̂jµ

d̂
)
.

For our general method to work, this must give all relevant
periods. Basically we must check that all possible periods are
obtained from this one (with all φs 6= 0) by phase-symmetry
analytic continuations.



In other words it is necessary to verify the relation

dim〈ω0(A(g) · φ)〉g∈GX
= dimH3(X ).

This was certainly the case in the preceding examples, but not in
this case, we are not aware of this fact in general ( it is so in all
examples). As in the previous example, in the one-modulus case
we obtain

e−K(φ0) =
d̂−1∑

µ=1, µk̂i/d̂ /∈Z

ηµ,d̂−ν
5∏

j=1

γ

(
k̂jµ

d̂

)
σ+
µ (φ0)σ−ν (φ0).

For this formula to hold the number of linearly independent
elements

∏5
i=1 x

n
i d

5x ∈ H5
D±(C5) should be equal to the number

of 1 ≤ µ < d̂ , µki/d 6= Z.



Conclusion

A new method for computing the metric of CY moduli space is
proposed.This method does not demand using of Picard–Fuchs
equations. Instead, the cohomology technique for computing
periods can be applied. It can be used for the computations of the
CY moduli space geometry in cases when the dimesion of the
moduli space more than one.

The FM structure naturally arising from an N=2 SCFT plays a
significant role. The result is given in terms of the topological
metric on FM and two basises of periods, both of which we are
able to compute avoiding the complicated direct computation of
the symplectic basis of periods.

The method was used here for CY manifolds, given by one
polynomial equation, such as the case of Fermat hypersurfaces.
We suppose the same approach can be applied to CY manifolds of
a more general type.


