
Discrete pluri-Lagrangian systems and
discrete pliriharmonic functions

Alexander Bobenko

Technische Universität Berlin

IMSM, Euler Institute, St. Petersburg, August 2017

Alexander Bobenko Discrete pliriharmonic functions



Variational principles in discrete differential geometry

I Variational principles of discrete integrability
I Convex variational principles

I uniqueness (implied)
I existence (helps)
I construction (numerics by minimization)

I Beyond the integrability:
I geometric interpretation (discrete complex analysis)
I applications (texture mapping,...)
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Quad-graph equation

Z2 lattice

quad-graph
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Integrability as Consistency

I Equation I Consistency
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Can be derived from consistency

I Lax representation, Bäcklund-Darboux transformations
I Classification of 3D-consistent multi-linear systems [ABS

’09]
I Master equation Q4

sn(α) sn(β) sn(α− β)(k2xxixjxij + 1) + sn(α)(xxi + xjxij)

− sn(β)(xxj + xixij)− sn(α− β)(xxij + xixj) = 0.
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Quad-graph equation

Z2 lattice

quad-graph

Variational equations are on stars and not on quads.
Integrability of variational equations?
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Lagrangian systems on Z2

I Lagrangian equation

∂u(L + L−1 + L−2 + L−1,−2) = 0,

for some function L(u,u1,u2,u12) on
the quad
σ12 = (n,n + e1,n + e1 + e2,n + e2).
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pluri-Lagrangian systems

Definition
Let L be a discrete 2-form (Lagrangian), defined on the oriented
2-dimensional faces σij of Zd , Lσij = −Lσji . It depends on fields
u : Zm → R at vertices. The action on a 2-dimensional surface
Σ in Zm is given by

SΣ =
∑
σij∈Σ

Lσij .

The field u : Zm → R satisfying the Euler-Lagrange equations
δSΣ(u) = 0 for any 2-dimensional surface Σ in Zd is called a
solution of the pluri-Lagrangian problem.
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Origins

I Pluriharmonic functions h.
h : Cn → R, for any analytic curve C ⊂ Cn the function h|C
is harmonic.
h = Re f of holomorphic f : Cn → C

I Baxter’s Z-invariance→ quasiclassical limit [Bazhanov at
al.]

I Lagrangian multi-form structure of discrete integrable
equations [Lobb, Nijhoff]

I Laplace equations of quad-equations are pluri-Lagrangian
[ABS]
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Discrete pluriharmonic functions as solution of linear
pluri-Lagrangian systems.

Definition
Discrete pluriharmonic function is a solution of a discrete pluri-
Lagrangian system, where the Lagrangian Lσij is a quadratic
form of 4 variables at vertices Lσij (u,ui ,uj ,uij). The action
SΣ =

∑
σij∈Σ Lσij is discrete Dirichlet energy.

I linear EL equations but non-trivial example
I 10 coefficients per face
I → integrable systems and important discrete Laplace

operator
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Elementary Euler-Lagrange equations. 3D-corner
equations

In particular

(dL)ijk = ∆iLσjk + ∆jLσki + ∆kLσij , ∆i = Ti − 1

the action on an elementary 3-cube implies the Euler-Lagrange
equations on 3D-corners. We call them elementary
Euler-Lagrange equations.
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From 3D-corners to a surface

The elementary Euler-Lagrange equations imply the
Euler-Lagrange equations on an arbitrary 2-dimesional surface
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Action invariance

Theorem
The Dirichlet energy of a discrete pluriharmonic function over an
elementary cube is zero

(dL)ijk = ∆iLσjk + ∆jLσki + ∆kLσij = 0.

Proof.
δdL = 0→ dL = const→ dL = 0,

evaluate on the zero solution.

Closed 2-form Lσij on pluriharmonic functions.
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Action invariance

Theorem
The discrete Lagrangian 2-form Lσij is closed on pluriharmonic
functions. The Dirichlet energy of a discrete pluriharmonic func-
tion on a 2-dimensional surface Σ with a fixed boundary is inde-
pendent of the choice of the surface

SΣ(u) = SΣ′(u).

I flip-invariance

=
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Diagonal quadratic Lagrangians

I Problem 1. Classify Dirichlet energies of discrete
pluriharmonic functions (unsolved)

I Problem 2. Classify Dirichlet energies of discrete
pluriharmonic functions with diagonal Lagrangians

Lσij =
1
2
αij(uij − u)2 + βij(uij − u)(ui − uj) +

1
2
γij(ui − uj)

2
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Conjugate discrete pluriharmonic function

Equations

vi − vj = −∂Lij

∂u
=
∂Lij

∂uij
= αij(uij − u) + β ij(ui − uj)

vij − v = −∂Lij

∂ui
=
∂Lij

∂uj
= −β ij(uij − u)− γ ij(ui − uj)

are consistent (by virtue of the corner equations for u) and
define the function v : Zm → C, called conjugate pluriharmonic
function.
Another representation (vector Moutard equation)(

uij − u
vij − v

)
= Aij

(
ui − uj
vi − vj

)
, Aij =

(
bij aij

c ij bij

)
,

bij = −β
ij

αij , aij =
1
αij , c ij =

(β ij)2 − αijγ ij

αij .
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Non-commutative star-triangle equation

Lemma
Vector Moutard equation is consistent if and only if the matrix
coefficients Ai satisfy

AiA−1
j Ak = AkA−1

j Ai ,

and then the matrices Âi are given by non-commutative star-
triangle relations

− Â−1
i = Aj + Ak + AkA−1

i Aj ,

Notations: Ai := Ajk , and Âi = TiAi is shifted Ai (on the
opposite face).
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Solution

Matrices Aij solve a consistent system of vector Moutard
equations iff their entries satisfy

λaij + µ(−1)|n|bij + νc ij = 0

for some fixed triple (λ, µ, ν), where |n| = n1 + . . .+ nm, and
their evolution is expressed through a solution of coupled
star-triangle relations

1

pij
k

=
λ

ν
·q

ijqjk + qjkqki + qkiqij

qij ,
1

qij
k

=
λ

ν
·p

ijpjk + pjkpki + pkipij

pij ,

via the following relations:

pij = aij +ξbij , qij = aij +ηbij , pij
k = aij

k−ξb
ij
k , qij

k = aij
k−ηbij

k ,

where −ξ, −η are the two roots of the quadratic equation
λξ2 + µξ + ν = 0.
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Classification theorem

Theorem [BS ’15]
Lagrangians

Lij =
1
2
αij(uij − u)2 + β ij(uij − u)(ui − uj) +

1
2
γ ij(ui − uj)

2.

define pluriharmonic functions, iff their coefficients satisfy

λ− µ(−1)|n|β ij + ν((β ij)2 − αijγ ij) = 0

for some fixed triple (λ, µ, ν), where |n| = n1 + . . . + nm, and
their evolution is expressed through a solution of the coupled
star-triangle relations with

pij =
1− ξβ ij

αij , qij =
1− ηβ ij

αij , pij
k =

1 + ξβ ij
k

αij
k

, qij
k =

1 + ηβ ij
k

αij
k

.
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Special case: discrete complex analysis

µ = 0, λ/ν > 0, wlog

(β ij)2 − αijγ ij = −1.

The Lagrangians can be parametrized as

αij =
1
<(c ij)

, β ij =
=(c ij)

<(c ij)
, γ ij =

|c ij |2

<(c ij)
,

where c ij is a complex-valued solution of the star-triangle
relation

c ij
k := Tkc ij =

c ij

c ijc jk + c jkcki + ckic ij .

This is the case of discrete complex analysis based on a
discretization of the Riemann-Cauchy equations.
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Polyhedral surfaces as RS

I polyhedral metric→ RS
za-coordinate at conical
singularities, plane
z-coordinate at regular
points

I Every RS can be induced by an abstract polyhedral metric
(flat metric with conical singularities). Troyanov [’86]

I Every abstract polyhedral metric can be realized as a
polyhedral surface embedded in R3. Burago-Zalgaller [’60]

I Every RS can be realized as a polyhedral surface
embedded in R3.
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Period matrix

I compact genus g
I canonical homology basis

ai ,bi , i = 1, . . . ,g
I dual basis of holo

differentials
ωi , i = 1, . . . ,g,

∫
ai
ωj = δij

I period matrix

Πij =

∫
bj

ωi , Π = ΠT , Im Π > 0

I Torelli theorem. Π determines its RS
I How to compute Π for a given RS?

Alexander Bobenko Discrete pliriharmonic functions



Discrete Riemann Surfaces. Linear Theory.
Cauchy-Riemann equations

[Mercat ’01]

I Discrete Riemann Surface is a
quad-graph D with
a discrete complex structure
that is
c : {diags of quads of D} → C,

such that c(e∗) =
1

c(e)

z4

z2

z1

z3

e
�

e

1I f : V (D)→ C discrete holomorphic if it satisfies
discrete Cauchy-Riemann equations

f (z4)− f (z2)

f (z3)− f (z1)
= ic(e)

I important special case - real c.
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Discrete complex structure from a polyhedral surface

Quads are identified with planar quads in the complex plane C

z4

z2

z1

z3

e
�

e

1

c(e) = −i
z4 − z2

z3 − z1
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Discrete holomorphic and discrete harmonic

I f : V (D)→ C discrete holo if,
Mercat [’08]

f (z4)− f (z2)

z4 − z2
=

f (z3)− f (z1)

z3 − z1

z4

z2

z1

z3

1
I Real part h = Re f is discrete harmonic
I ⇔ discrete Laplace operator vanishes

∆h(z1) =
∑ 1

Re c

(
|c|2(h(z1)− h(z3)) + Im c(h(z2)− h(z4))

)
= 0,

I ⇔ critical for the (convex!) discrete Dirichlet energy

S(h) =
∑ 1

Re c (|c|2(h(z1)− h(z3))2 +

2Im c(h(z1)− h(z3))(h(z2)− h(z4)) + (h(z2)− h(z4))2).
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Real weights

I
f (z4)− f (z2)

f (z3)− f (z1)
= ic(e), c ∈ R

I discrete Laplace operator

∆h(z) =
∑

e=[z,w ]

c(e)(h(z)− h(w)),

sum is over the diagonals incident to z,
I (convex!) discrete Dirichlet energy

S(h) =
∑

e=[z,w ]

c(e)(h(z)− h(w))2,

sum over all diagonals e.
I c ∈ R - cotan-Laplace operator, c = cotanα + cotanβ
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Delaunay tesselation

Orthogonal diagonals, real c
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Multivalued functions with periods

I canonical homology basis a1,b1, . . . ,ag ,bg
I A multivalued function with periods A1, . . . ,Ag ,

B1, . . .Bg ∈ C is a pair of functions f = (Ref : V → R,
Imf : F → R) such that for any x ∈ V , y ∈ F

Ref (ak x)− Ref (x) = ReAk , Ref (bk x)− Ref (x) = ReBk

Imf (ak y)− Ref (y) = ImAk , Imf (bk x)− Ref (y) = ImBk ,

where ak x is a deck transformation of x
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Discrete period matrix

multi-valued discrete holomorphic functions are called discrete
Abelian integrals of the first kind.
Theorem
There exist normalized discrete Abelian integrals of the first kind
Ωd

k and Ωd
∗k with ∆aj Ω

d
k = δjk and ∆aj Ω

d
∗k = iδjk .

Definition

The matrix ΠD = 1
2(Πd + Πd

∗ ), (Πd )jk = ∆bk Ωd
j , (Πd

∗ )jk =

−i∆bk Ωd
∗j is called the discrete period matrix.
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Convergence of discrete period matrix

Theorem [B., Skopenkov]
Consider a polyhedral surface R of genus g. For any δ < 0
there exist two constants Const, const (depending on R and δ
only) such that for any Delaunay triangulation T of R which ver-
tices include all conical singularities of R, and the maximal edge
length r < const, and with the minimal face angle < δ there holds

‖ΠD − Π‖ < Const ra, a = min{1,4π/Θi},

where Θi are the conical angles at singularities.
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Idea of the proof

I Consider (discrete) harmonic differentials u with prescribed
periods Ai ,Bi

I Minimize the Dirichlet energy Ed (convex) for given Ai ,Bi∑
[xi xj ]=e∈E

c(e)(ui − uj)
2

I min Ed is a quadratic form of Ai ,Bi , coefficients give Πd(
Re Πd

∗ (Im Πd
∗ )−1Re Πd + Im Πd −(ImΠd

∗ )−1 Re Πd

−Re Πd
∗ (Im Πd

∗ )−1 (Im Πd
∗ )−1

)
I same in the smooth case with E =

∫
|∇u|2

I show that min Ed → min E
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Computational RS.
Tori with constant mean curvature (CMC)

I first example. Wente [’86]
I all tori, description as

integrable systems.
Hitchin, Pinkall, Sterling
[’89]

I explicit formulas in terms
of RS (theta functions,
Abelian integrals).
Bobenko [’91] Heil [’95]
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Wente torus

Grid 10× 10 20× 20 40× 40 80× 80
‖Πd − Π‖ 5.69 · 10−3 2.00 · 10−3 5.11 · 10−4 2.41 · 10−4

Π = 0.41300 + i0.91073

B., Mercat, Schmies [’11]
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Hyperelliptic curve

Π =

(
−7.70− i0.17 3.72− i2.00
3.72− i2.00 −6.61 + i2.70

)
Πd =

(
−7.70− i0.15 3.73− i2.00
3.73− i2.00 −6.62 + i2.70

)

Knöppel, Sechelmann
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Cotan discrete Laplace operator for texture mapping

Original and iDT (Beatuful Freack dataset): Texture plane
image (Dirichlet boundary conditions) and resulting checker
board mapping. [Fischer et al. ’07]
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Problem

Classification of linear pluri-Lagrangian systems
I discrete pluriharmonic functions (massive Laplacian ?,

Boutiller et al.)
I possibly 3 parameters per face
I 2D linear pluri-Lagrangian systems→ 3D nonlinear

discrete integrable systems for coefficients
I new discrete Laplace operators for approximation theory

and geometry processing?
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Laplace version of conjugated nets

Theorem [BS]
The discrete Lagrangian 2-form

L(σij) =
1

2sijc ijc ji (uij − c jiuj − c ijuj − c ijc jiuij)
2, sij = −sji

describes a pluri-Lagrangian system iff the coefficients satisfy
the extended conjugate net equation

c ij
k =

1
ckj (c ikcki − c ikckj − c ijcki),

sij
k = ckickjsij + cki(c ij − c ik )sjk + ckj(c ji − c jk )ski .

3 coefficients c ij , c ji , sij per face.
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