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Variational principles in discrete differential geometry

» Variational principles of discrete integrability
» Convex variational principles

» uniqueness (implied)

» existence (helps)

» construction (numerics by minimization)

» Beyond the integrability:
» geometric interpretation (discrete complex analysis)
» applications (texture mapping,...)
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Quad-graph equation

72 lattice

quad-graph
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Integrability as Consistency

» Equation
c d
a b

f(a,b,c,d)=0
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Can be derived from consistency

» Lax representation, Backlund-Darboux transformations

» Classification of 3D-consistent multi-linear systems [ABS
'09]
» Master equation Q4

sn(a) sn(B) sn(e — B)(k2xxixixj + 1) + sn(a)(Xx; + X;X;)
—sn(B)(xx; + x;x;) — sn(e — B)(xx; + xix;) = 0.
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Quad-graph equation

72 lattice

quad-graph

Variational equations are on stars and not on quads.
Integrability of variational equations?
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Lagrangian systems on Z?

» Lagrangian equation
Ou(lL+L_4+L o+L 4_2)=0,

for some function L(u, uy, Us, Uq2) ON
the quad
o'2=(nn+e,n+e+e,n+tep).
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pluri-Lagrangian systems

Definition
Let L be a discrete 2-form (Lagrangian), defined on the oriented
2-dimensional faces o/ of Z9, L,, = —L,,. It depends on fields

u: Z™ — R at vertices. The action on a 2-dimensional surface
Y in Z™ is given by
Sy =) Ly

giex

The field u : Z™ — R satisfying the Euler-Lagrange equations
§Ss(u) = 0 for any 2-dimensional surface ¥ in Z< is called a
solution of the pluri-Lagrangian problem.
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» Pluriharmonic functions h.
h:C" — R, for any analytic curve C C C" the function hc
is harmonic.
h = Re f of holomorphic f : C" — C

» Baxter’s Z-invariance — quasiclassical limit [Bazhanov at
al]

» Lagrangian multi-form structure of discrete integrable
equations [Lobb, Nijhoff]

» Laplace equations of quad-equations are pluri-Lagrangian
[ABS]
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Discrete pluriharmonic functions as solution of linear

pluri-Lagrangian systems.

Definition

Discrete pluriharmonic function is a solution of a discrete pluri-
Lagrangian system, where the Lagrangian L., is a quadratic
form of 4 variables at vertices L, (u, u;, uj, uj). The action
Sy = ) _siex Lo, is discrete Dirichlet energy.

» linear EL equations but non-trivial example
» 10 coefficients per face

» — integrable systems and important discrete Laplace
operator
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Elementary Euler-Lagrange equations. 3D-corner

equations

In particular

(dL)’/k = AiLU'jk + AjLO'ki + AkLo'/jv Ai=T -1

the action on an elementary 3-cube implies the Euler-Lagrange
equations on 3D-corners. We call them elementary
Euler-Lagrange equations.
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From 3D-corners to a surface

The elementary Euler-Lagrange equations imply the
Euler-Lagrange equations on an arbitrary 2-dimesional surface
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Action invariance

Theorem

The Dirichlet energy of a discrete pluriharmonic function over an
elementary cube is zero

(dL) = AiLgy + AjLoy, + DLy, = 0.

Proof.
0dL=0— dL =const - dL =0,

evaluate on the zero solution.

Closed 2-form La,-, on pluriharmonic functions.
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Action invariance

Theorem

The discrete Lagrangian 2-form L,, is closed on pluriharmonic
functions. The Dirichlet energy of a discrete pluriharmonic func-
tion on a 2-dimensional surface ¥ with a fixed boundary is inde-
pendent of the choice of the surface

SX(U) = SZI(U).

» flip-invariance
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Diagonal quadratic Lagrangians

» Problem 1. Classify Dirichlet energies of discrete
pluriharmonic functions (unsolved)

» Problem 2. Classify Dirichlet energies of discrete
pluriharmonic functions with diagonal Lagrangians

1 1
Loy = Zey(uj — u)? + Bj(uj — u)(u; — u)) + 57 (Ui = uj)?
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Conjugate discrete pluriharmonic function

Equations
oLy oLy ] )
VTS T T gy~ W W )
aLi oLl ; ;
Vi—V = T = 87111 = —p(uj — u) =¥ (ui — uy)

are consistent (by virtue of the corner equations for u) and
define the function v : Z™ — C, called conjugate pluriharmonic
function.

Another representation (vector Moutard equation)

Up = U\ _ i (Ui =Y Al bl al
L - v ) —\ci pi)e
vj — Vv Vi —V ¢’ b

bij__Blj i 1 ol — (5'/)2—0/]7']'

al’ al’ all
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Non-commutative star-triangle equation

Lemma

Vector Moutard equation is consistent if and only if the matrix
coefficients A; satisfy

A,-A;1Ak = AKA;‘A,-,
and then the matrices A; are given by non-commutative star-
triangle relations
— AT = A+ A+ AATA,L

Notations: A; := A¥, and A; = T;A; is shifted A; (on the
opposite face).
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Matrices A’ solve a consistent system of vector Moutard
equations iff their entries satisfy

Aal + p(—1)"Mb 4 vl =0

for some fixed triple (\, i, v), where |n| = ny + ...+ np, and
their evolution is expressed through a solution of coupled
star-triangle relations

1 :i.qijqjk_i_qjqui_{_qkiqij

1 _ A plpf+ pPpk + plp!
A q’ - / 7

if if
Q. v p

)

via the following relations:
pl=d+ebl, o =dl+nbl, p]=al—cb], q]=al-nb],

where —¢, —n are the two roots of the quadratic equation
N2+ pué+v=0.
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Classification theorem

Theorem [BS '15]
Lagrangians

1 ) 1.
LV = Zol (u; - u)? + Bl(uy — u)(u — uy) + 57 (Ui - up)?.

define pluriharmonic functions, iff their coefficients satisfy
A= p(=D)"BT+ p((87) — a’yT) = 0

for some fixed triple (A, p,v), where |n| = ny + ... 4+ np, and
their evolution is expressed through a solution of the coupled
star-triangle relations with

i 18 g sty ey Tend
- i 9 i Pk = i 9= i
al o o Qe
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Special case: discrete complex analysis

w=0,\/v>0,wlog
(1) = oy = 1.
The Lagrangians can be parametrized as

R(ch)’

where ¢/ is a complex-valued solution of the star-triangle
relation ,

cl
click + cikeki + ckicii
This is the case of discrete complex analysis based on a
discretization of the Riemann-Cauchy equations.

CZ = chij =
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Polyhedral surfaces as RS

» polyhedral metric — RS
z4-coordinate at conical
singularities, plane
z-coordinate at regular
points

» Every RS can be induced by an abstract polyhedral metric
(flat metric with conical singularities). Troyanov ['86]

» Every abstract polyhedral metric can be realized as a
polyhedral surface embedded in R3. Burago-Zalgaller ['60]

» Every RS can be realized as a polyhedral surface
embedded in R3.
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» compact genus g

» canonical homology basis
aj, bj, i = 1,...,g

» dual basis of holo
differentials
Wi, i= 1,...,g, fa,-wj:5ij

» period matrix

n,-,-:/w,-, N=n",ImMN>0
by

» Torelli theorem. N determines its RS

» How to compute I1 for a given RS?
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Discrete Riemann Surfaces. Linear Theory.

Cauchy-Riemann equations

[Mercat '01]
» Discrete Riemann Surface is a Z3

quad-graph D with
a discrete complex structure » )
that is Z4
¢ : {diags of quads of D} — C,

h th ) = —— Z1
such that c(e*) 0

» f: V(D) — C discrete holomorphic if it satisfies
discrete Cauchy-Riemann equations

f(z4) — f(22)
f(z3) — f(z1)

» important special case - real c.

= ic(e)
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Discrete complex structure from a polyhedral surface

Quads are identified with planar quads in the complex plane C

24 ” C(e) = —i§4 — 2
3— 4

21
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Discrete complex structure from a polyhedral surface

/ﬂh K
ffrﬁ:”; e ,/\\
NF 7 '4% ) N
\l ‘ ) \ ‘g\ - ‘\
Rl W oo
\“} S\ A AT Tty

b S

Quads are identified with planar quads in the complex plane C
z3

24« E o(e) = it 2
3— 4

21
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Discrete complex structure from a polyhedral surface

i "10’:--
RIS KL
,:,‘:’,(0,-0&%9.&}

Quads are identified with planar quads in the complex plane C

24 ” C(e) = —i§4 — 2
3— 4

21
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Discrete holomorphic and discrete harmonic

Z3
» f: V(D) — C discrete holo if,
Mercat ['08] 22
24
f(z4) — ((z2) _ H(z3) — f(21)
24 — 2o 23 — 24 21

» Real part h = Re f is discrete harmonic
» & discrete Laplace operator vanishes

Ah(z) = 30 o (16 (h(z) ~ h(z2)) + Im c(h(zz) - h(z))) =O.

» & critical for the (convex!) discrete Dirichlet energy

S(h) =3 res(Icff(h(z1) — h(zs))? +
2Im c(h(z1) — h(z5))(h(z2) — h(z4)) + (P(22) — h(24))?).
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Discrete holomorphic and discrete harmonic

3
» f: V(D) — C discrete holo if,
Mercat ['08] )> 22
2y
f(z4) — f(2z2) _ f(23) — F(z1) ‘

24 — 2o 23 — 24 21

» Real part h = Re f is discrete harmonic
» & discrete Laplace operator vanishes

Ah(z) = 30 o (16 (h(z) ~ h(z2)) + Im c(h(zz) - h(z))) =O.

» & critical for the (convex!) discrete Dirichlet energy

S(h) =3 res(Icff(h(z1) — h(zs))? +
2Im c(h(z1) — h(z5))(h(z2) — h(z4)) + (P(22) — h(24))?).
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Real weights

g f(Z4) — f(Zg)

EAEEN) =ic(e), ceR

» discrete Laplace operator
Ah(z)= Y c(e)(h(z) — h(w)),
e=[z,w]
sum is over the diagonals incident to z,
» (convex!) discrete Dirichlet energy

e=[z,w]

sum over all diagonals e.
» c € R - cotan-Laplace operator, ¢ = cotana + cotanf3
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Delaunay tesselation

Orthogonal diagonals, real ¢
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Multivalued functions with periods

» canonical homology basis ay, by, ..., ag, by

» A multivalued function with periods Ay, ..., Ag,
Bi,...Bg € Cis a pair of functions f = (Ref : V — R,
Imf: F — R) suchthatforany x € V,y € F
Ref(g,X) — Ref(x) = ReAx, Ref(p, X) — Ref(x) = ReBy
Imf(4,y) — Ref(y) = ImAx, Imf(p, x) — Ref(y) = ImBx,

where 4, x is a deck transformation of x
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Discrete period matrix

multi-valued discrete holomorphic functions are called discrete
Abelian integrals of the first kind.

Theorem

There exist normalized discrete Abelian integrals of the first kind
Qf and Q7 with A5Q¢ = 5 and A5 Q% = 6.

Definition
The matrix NP = 3(N? + NY), (N9)x = 28,07, (N9 =
—/Akad is called the discrete period matrix.
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Convergence of discrete period matrix

Theorem [B., Skopenkov]

Consider a polyhedral surface R of genus g. For any 6 < 0
there exist two constants Const,const (depending on R and §
only) such that for any Delaunay triangulation T of R which ver-
tices include all conical singularities of R, and the maximal edge
length r < const, and with the minimal face angle < ¢ there holds

NP — M|l < Const r?, a=min{1,4x/0;},

where ©; are the conical angles at singularities.
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Idea of the proof

» Consider (discrete) harmonic differentials u with prescribed
periods A;, B;
Minimize the Dirichlet energy E4 (convex) for given A;, B;

> c(e)ui—u)y

[xixj]=ecE

v

v

min E4 is a quadratic form of A;, B;, coefficients give My

Re N(Im M%)~ "Re N + Im N4 —(ImN¢)~" Re N9
—Re N¢(Im N¢)~* (Im N¢)~1

v

same in the smooth case with £ = [ |Vul|?
show that min E; — min E

v
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Computational RS.

Tori with constant mean curvature (CMC)

» first example. Wente ['86]

» all tori, description as
integrable systems.
Hitchin, Pinkall, Sterling
[89]

» explicit formulas in terms
of RS (theta functions,
Abelian integrals).
Bobenko ['91] Heil [95]
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Wente torus

Grid 10 x 10 20 x 20 40 x 40 80 x 80
My —n[ | 569-103 | 2.00-102 | 511-10% | 2.41-10~%

M= 0.41300 +i0.91073

B., Mercat, Schmies ['11]
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Hyperelliptic curve

o —7.70—-i0.17 3.72—i2.00
N 3.72—-i2.00 -6.61+i2.70

q._ ( —7-70-i0.15 3.73 —2.00
d=\ 373-i200 -6.62+i2.70

Kndppel, Sechelmann
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Cotan discrete Laplace operator for texture mapping

Original and iDT (Beatuful Freack dataset): Texture plane
image (Dirichlet boundary conditions) and resulting checker
board mapping. [Fischer et al. ’07]
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Classification of linear pluri-Lagrangian systems

» discrete pluriharmonic functions (massive Laplacian ?,
Bouitiller et al.)

» possibly 3 parameters per face

» 2D linear pluri-Lagrangian systems — 3D nonlinear
discrete integrable systems for coefficients

» new discrete Laplace operators for approximation theory
and geometry processing?
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Laplace version of conjugated nets

Theorem [BS]
The discrete Lagrangian 2-form

1

_ iy — oy — cidhy:)2. s = —gff
ZsUc'/c/'(u d'ui—c'uj—c'd'uy)*, 8" = —s

L(oj) =

describes a pluri-Lagrangian system iff the coefficients satisfy
the extended conjugate net equation

N _ ik ~Ki ij ~Ki
ck_c—(c chl — ckeh — ik,

sl = oM ST 1 cM(ch — o)k 4 (ol — o)sh,
3 coefficients ¢/, ¢/, s/ per face.
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