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The Ising model

One of the most classical models of Statistical Mechanics. Introduced in
1920 by Wilhelm Lenz to understand the phase transition in ferromagnets
discovered and studied by Pierre Curie:

I At low temperature (T < Tc) metals behave as ferromagnets;

I At T > Tc, the behaviour changes to paramagnetic.

Tc = 1043◦K for iron, Tc = 292◦K for gadolynium.
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The basic assumptions

I Atoms are arranged in a lattice (a finite graph with vertex set V )

I Each atom is a tiny magnet, which can have two orientations (spins)

State space: {σ : V → ±1}

I The atoms affect each other by magnetic forces

Potential energy: H(σ) = −
∑
x∼y

σxσy.

(sum over pairs of nearest neighbors)

I The thermal motion produces randomness

P(σ) = e−βH(σ)/Z, β =
k

T
, Z =

∑
σ

e−βH(σ)

(Gibbs-Boltzmann disctribution)
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The phase transition
The lattice is a finite subset Ωδ ⊂ δZd. The “exact solution”: d = 1
(Ising 1924); d = 2 (Onsager 1944); d ≥ 3 (none).

For the rest of the talk,
d = 2.
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The mathematical formulation

A mathematical manifestation of the phase transition:
I take the scaling limit: Ωδ ⊂ δZ2 approximates Ω ⊂ C as δ → 0.

I look at the correlation E (σxσy), where x and y approximate distinct
fixed points of Ω.

I at β < βc: exponential decay E (σxσy) ≤ αe−γδ−1

I at β > βc: no decay at all E (σxσy)→ c > 0.

I from now on: β = βc = 1
2 log

(√
2 + 1

)
.
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A convergence result (Chelkak–Hongler–K. I., 2015)

As δ → 0, one has

EΩδ (σx1 . . . σxn) ∼ Cn · δ n8 · 〈σx1 . . . σxn〉Ω.

The correlation function 〈σx1 . . . σxn〉Ω is conformally covariant:

〈σx1
. . . σxn〉Ω =

n∏
i=1

|ϕ′(xi)|
1
8 · 〈σϕ(x1) . . . σϕ(xn)〉ϕ(Ω).

In the upper half-plane H, there is an explicit formula:

〈σx1
. . . σxn〉Ω =

n∏
i=1

|Imxi|−
1
8

 ∑
s∈{±1}n

s1 . . . sn
∏
i<j

[xi;xj ;xi;xj ]
sisj

4

 1
2

.

(Similar results for other boundary conditions.)
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More general correlations

Ideally, one would like generalize the result for more general random
variables (“lattice fields”)

EΩδ (O1(x1) . . .On(xn)) ∼ δ∆1+···+∆n〈O1(x1) . . .On(xn)〉Ω

where Oj(xj) only depends on spins at distance O(δ) from xj (finite
number of lattice steps).

In general, we get much more complicated covariance rules.
Example:

O1(x1) = σx1+δ − σx1 .

Then, it is natural to expect

EΩδ (O1(x1) · σx2
. . . σxn) ∼ δ1+n

8 ∂Re x1
〈σx1

. . . σxn〉.



More general correlations

Ideally, one would like generalize the result for more general random
variables (“lattice fields”)

EΩδ (O1(x1) . . .On(xn)) ∼ δ∆1+···+∆n〈O1(x1) . . .On(xn)〉Ω

where Oj(xj) only depends on spins at distance O(δ) from xj (finite
number of lattice steps).
In general, we get much more complicated covariance rules.
Example:

O1(x1) = σx1+δ − σx1 .

Then, it is natural to expect

EΩδ (O1(x1) · σx2
. . . σxn) ∼ δ1+n

8 ∂Re x1
〈σx1

. . . σxn〉.



Primary fields

Primary fields are those for which the simplest possible covariance rule
holds:

〈O1(x1) . . .On(xn)〉Ω =

n∏
i=1

ϕ′(xi)
∆′i

n∏
i=1

ϕ′(xi)
∆′′i ·〈O1(x1) . . .On(xn)〉ϕ(Ω).

We will focus on four primary fields in the Ising model:
I spins σx, indexed by vertices of Ωδ (∆′ = ∆′′ = 1

16 );

I energies εe = σe+σe− −
√

2
2 , indexed by edges of Ωδ (∆′ = ∆′′ = 1

2 );

I disorders µu, indexed by faces of Ωδ (∆′ = ∆′′ = 1
16 );

I fermion ψz, indexed by corners of Ωδ (∆′ = 1
2 ,∆

′′ = 0) (and its
“conjugate” ψ?z with ∆’=0,∆= 1

2 ).

(see Hongler-Kytölä-Viklund for more general fields)
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Convergence theorem
I As δ → 0, one has

EΩδ (O1(x1) . . .On(xn)) ∼
n∏
i=1

Ci · δ∆1+···+∆n · 〈O(x1) . . .O(xn)〉Ω,

where each Oi can be any of σ, ε, µ, ψ.

I The correlation functions 〈σx1
. . . σxn〉Ω is conformally covariant:

〈O1(x1) . . .On(xn)〉Ω

=

n∏
i=1

ϕ′(xi)
∆′i

n∏
i=1

ϕ′(xi)
∆′′i · 〈O1(ϕ(x1)) . . .On(ϕ(xn))〉ϕ(Ω).

I In the upper half-plane or an annulus, the formulas are (in principle)
explicit.

I For boundary conditions, one may partition the boundary into free,
plus, or minus parts.
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What is µu

.
I Given an arbitrary collection γ of dual edges, define

µγ := e−2β
∑

(xy)∩γ 6=∅ σxσy

I Observe that up to sign, the correlation

E(µγσv1 . . . σvn)

only depends on γ through {u1, . . . , um} =: ∂γ mod 2

I Moreover, there is a natural way to choose the signs of
E(µγσv1 . . . σvn) as v1, . . . , vn and u1, . . . , um move around in the
lattice.

I With this choice, E(µγσv1 . . . σvn)
∏
i,j(ui − vj)

1
2 is a well-defined

function of u1, . . . , um, v1, . . . , vn. We write
E(µu1

. . . µumσv1 . . . σvn) instead of E(µγσv1 . . . σvn).
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What is µu – continued

EΩδ(µγσv1 . . . σvn)

=
1

Z

∑
σ:Ωδ→{±1}

e−2β
∑

(xy)∩γ 6=∅ σxσyσv1 . . . σvne
β
∑
x∼y σxσy

=
1

Z

∑
σ:Ωδ→{±1}

σv1 . . . σvne
β
∑

(xy)∩γ=∅ σxσy−β
∑

(xy)∩γ 6=∅ σxσy

=
1

Z

∑
σ:Ωδ[u1,u2]→{±1}
σ(v)=−σ(v∗)

e
β
2

∑
x∼y σxσyσv1 . . . σvn .



What is ψz
.
We define, formally, ψz = (z• − z◦)− 1

2 δ
1
2σz◦µz• :

What we mean by this is that any expression of the form

E(ψz1 . . . ψzkµu1
. . . µumσv1 . . . σvn)

is well defined
I up to sign at any particular point;
I as a (multi-valued) function of z1, . . . vm living on the Riemann

surface of ∏
(zi − uj)

1
2

∏
(zi − vj)

1
2

∏
(ui − vj)

1
2 .
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We define, formally, ψz = (z• − z◦)− 1
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1
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Properties of ψz

I Discrete holomorphicity within correlations, that is, any correlation
of the form

E(ψzO)

is discrete holomoprhic in z (away from other marked points implicit
in O).

I The anti-symmetry

E(O1ψzO2ψwO3) = −E(O1ψwO2ψzO3)

and the Pfaffian structure of the correlations

E(ψz1 . . . ψzkσv1 . . . σvn)

E(σv1 . . . σvn)
= Pf

E(ψziψzjσv1 . . . σvn)

E(σv1 . . . σvn)
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Convergence theorem

I As δ → 0, one has

EΩδ (O1(x1) . . .On(xn)) ∼
n∏
i=1

Ci·δ∆1+···+∆n ·〈O1(x1) . . .On(xn)〉Ω,

where each Oi can be any of σ, ε, µ, ψ.
I The correlation functions 〈σx1 . . . σxn〉Ω is conformally covariant:

〈O1(x1) . . .On(xn)〉Ω

=

n∏
i=1

ϕ′(xi)
∆′i

n∏
i=1

ϕ′(xi)
∆′′i · 〈O1(ϕ(x1)) . . .On(ϕ(xn))〉ϕ(Ω).

I In the upper half-plane or an annulus, the formulas are (in principle)
explicit.

I For boundary conditions, admit free, plus, minus, or combinations
thereof.



Overview of the proof

I It suffices to consider E(ψz1 . . . ψzkσv1 . . . σvn). E. g.,
µu = (u− v)

1
2ψ(u+v)/2σv, where v ∼ u.

I By Pfaffian formula, it suffices to consider the asymptotics of

E(ψzψwσv1 . . . σvn)

E(σv1 . . . σvn)
and E(σv1 . . . σvn),

where vi are away from each other, and z, w may be either away
from other marked points, or immediately adjacent to vi or each
other.

I Use that
E(ψzψwσv1 . . . σvn)

E(σv1 . . . σvn)

is discrete holomoprhic, solves a well-posed discrete boundary value
problem, and has a “discrete pole” at z = w with a residue
proportional to its value (which is, more or less, equal to one).



Convergence of discrete holomoprhic functions

I When points are far apart, we deduce F

δ−1EΩδ(ψzψwσv1 . . . σvn)

EΩδ(σv1 . . . σvn)
→ C · 〈ψzψwσv1 . . . σvn〉Ω

〈σv1 . . . σvn〉Ω
,

where the RHS is a holomoprhic spinor solving a well-posed,
conformally covariant boundary-value problem, with singularities of
the type

(z − w)−1 and αj(z − vj)−
1
2 .

I When z is adjacent to v1 (that is, at distance δ from v1), we expect
an additional factor of δ−

1
2 . This turns out to be is indeed true:

δ−1(z − v1)
1
2
EΩδ(ψzψwσv1 . . . σvn)

EΩδ(σv1 . . . σvn)
→ C ′ · 〈ψwµv1 . . . σvn〉Ω

〈σv1 . . . σvn〉Ω
,

where the fraction in the RHS is equal to α1. Similarly when w ∼ vj
and/or w ∼ z.



Pure spin correlations
I Let v̂1 be adjacent to v1, and take z, w as follows:

EΩδ(ψzψwσv1 . . . σvn)

EΩδ(σv1 . . . σvn)
= δ(z − v1)−

1
2 (w − v1)−

1
2
EΩδ(σv̂1σv2 . . . σvn)

EΩδ(σv1σv2 . . . σvn)

I This allows one to compute the limits of ratios

EΩδ(σv̂1 . . . σv̂n)

EΩδ(σv1 . . . σvn)
→ 〈σv̂1 . . . σv̂n〉Ω
〈σv1 . . . σvn〉Ω

.

I Finally, we use that

EΩδ(σv1 . . . σv2n) ∼ ECδ(σv1σv2) . . .ECδ(σv2n−1σv2n)

as v1 → v2, . . . , v2n−1 → v2n.



Fusion rules (or Operator Product Expansions)

Fusion rules are a collection of asymptotic expansions of correlation
functions as marked point collide together.

Example:

σvσv̂ = |v − v̂|− 1
4

(
1 +

1

2
εw|v − v̂|+ o(v − v̂)

)
, v → v̂.

This is understood as follows:

〈σvσv̂O〉Ω = |v − v̂|− 1
4 〈σvσv̂O〉Ω

+
1

2
|v − v̂| 34 〈εvO〉+ o(v − v̂)

3
4 , v → v̂,

where O is anything (containing spins, energies, disorders and fermions)
away from v.
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The rules

ψŵψw = 2(ŵ − w)−1 +O(ŵ − w),

ψŵψ
?
w = −2iεw +O(ŵ − w),

ψŵεw = i(ŵ − w)−1ψ?w +O(1),

ψŵµw = e−
iπ
4 (ŵ − w)−

1
2 (σw +O(ŵ − w)) ,

σŵσw = |ŵ − w|− 1
4

(
1 +

1

2
εw|ŵ − w|+ o(ŵ − w)

)
,

µŵµw = |ŵ − w|− 1
4

(
1− 1

2
εw|ŵ − w|+ o(ŵ − w)

)
,

µŵσw = |ŵ − w| 12 (ψηŵww +O(ŵ − w)),

εŵεw = |ŵ − w|−2 +O(1),

εŵσw =
1

2
|ŵ − w|−1σw +O(1),

εŵµw = −1

2
|ŵ − w|−1µw +O(1).



Overview of the proof

〈O1(w)O2(ŵ)O〉Ω ∼ α1|w − ŵ|γ1〈O3(w)O〉Ω + . . . , w → ŵ.

I By Pfaffian formulae, reduce everything to the case

O = σv1 . . . σvn or O = ψz1σv1 . . . σvn or O = ψz1ψz2σv1 . . . σvn .

I Use properties of Riemann boundary value problem (uniqueness and
compactness arguments are mostly enough)
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Application to SLE3 variants

Spins configurations can be put in correspondence to loop configurations:

Configurations := {S ⊂ Edges((Ωδ)?) : ∂S = 0 mod2}.
P(S) = 1

Zx
|S|, where x = e−2β =

√
2− 1.



Application to SLE3 variants

It is natural to generalize this to:

Configurations := {S ⊂ Edges((Ωδ)?) : ∂S = u1, . . . , um mod2}.

P(S) =
1

Z
x|S|

Apart from loops, there are now interfaces connecting u1, . . . , um in
some order.
On the lever of spins, this corresponds to disorder insertions, that is,
tilting the probability measure by µγ = e−2β

∑
(xy)∩γ 6=∅ σxσy with γ such

that ∂γ = {u1, . . . , um} mod 2.
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Application to SLE3 variants

Bold: a random condiguration S with ∂S = {u1, u2}.
Dashed: a “disorder line” γ with ∂γ = {u1, u2}.
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Martingale observables

Let β[n] be the initial segment of the interface starting from u1.
Then,

EΩδ\β[n]
(Oµγ\β[n]

)

EΩδ\β[n]
(µγ\β[n]

)

is a martingale with respect to F(β[n]).
This is enough to characterize the scaling limit of γ

Usually, the most convenient choice is O = ψzψw with w ∼ uj for some
j (as is the case for the original Smirnov’s observable)
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Martingale observables

This is enough to characterize the scaling limit of γ

da(t) =
√

3dBt −
3/2

a(t)− b1
dt− 3/2

a(t)− b2
dt− 3/2

a(t)− b3
dt

+ 3

(
a(t)− b1

√
b3 − b2 + b2

√
b3 − b1√

b3 − b2 +
√
b3 − b1

)−1

dt.



Thank you!


