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Phyllotaxy (= ëèñòîðàñïîëîæåíèå) is a phenomenon of the
arrangement of plant organs, e.g., leaves or branches around a
stem, seeds on a pinecone or a sun�ower, �orets, petals, scales, and
other units on a plant, which usually shows a regular character. It
has attracted scientists for centuries (L. da Vinci, J. Kepler,
J. W. Goethe, et al.)













There is a variety of phyllotaxy patterns among plants, but only
two of them prevail. One of them, in which the leaves around a
stem, or �orets in a daisy �ower, etc. are arranged in spirals, is the
most widespread and at the same time intriguing. This type of
phyllotaxy has been described in detail by brothers Bravais in 1837,
by D'Arcy Thompson in 1917, and by many others in our time. The
other one, the whorled phyllotaxis (example: pine or araukaria
branches), is more comprehensible.



Whorled (ìóòîâ÷àòûé)
phyllotaxis

Here leaves are arranged in
triplets: a triplet of leaves at
each level.



Spiral phyllotaxis

Here �orets are arranged in a
spiral, one �oret at each level.



Cylindrical model

We assume a stem to be the
semi-cylinder T× [0,∞), and
the places where leaves
(branches) attach to it to be
its points pk = (2πxk , hk),
k ∈ N, xk ∈ [0, 1).
hk is called the internodal

distance, xk+1 − xk mod 1
the divergence angle.



Divergence angle

Usually it turns out that the divergence angle
and the internodal distance are almost
constant. This leads to the consideration of
the case where xk and hk are arithmetic
progressions: xk = xk , hk = hk .

The remarkable fact is that in most cases x is
close to the golden mean

τ =
√
5−1
2

= 0.618 . . . or some number in its
PSL(2,Z)-orbit on the real line.

xk

xk+1

k



The set of points

pk = (xk mod 1, hk)

representing the phyllotaxis with constant
parameters x and h forms a lattice on the
cylinder whose development we represent as
the strip [0, 1]× [0,∞) with two border
lines identi�ed. This lattice is also the
upper half of the lattice

Lx ,h ⊂ R2

with base u = p1 = (x , h), v = (0, 1)
factorized by the subgroup {0} × Z.



Disk model
A similar representation of the phyllotaxis which one founds in
a daisy �ower or in a sun�ower head may be obtained on the
disk D = {z ∈ C | |z | ≤ 1} if we take the images of the points
pn under the mapping

(xk , hk) 7→ e−hk+i2πxk .

In this case parastichies form spirals on the disk. The center of
the disc corresponds to the in�nity on the cylinder.

Simple transformations can also send one of the patterns
above to a pattern on the cone.
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Lattice image on the disk



The spiral pattern described is an abstraction of the growth
principle formulated by Hofmeister in 1868. This principle states
that botanical units usually appear one by one periodically in time,
each on its level. Thus, the points of the lattice receive
chronological order which can be given by the level numbers.



The parastichies are imaginary straight lines going through lattice
points. The indices (= birth dates) of points in one parastichy Lk
form a progression mi + k, i = 1, 2, . . . . There are m such parallel
parastichies. The best discernible parastichies form two families of
m parastichies going clockwise around the stem and n parastichies
going anticlockwise.
We call this pattern the (m, n)-phyllotaxis.



(3, 5)-phyllotaxis



(8, 13)-phyllotaxis



Most plants demonstrate spiral phyllotaxis of types (3,5),
(5,8), (8,13), . . . , i.e., the right and left parastichy numbers
are usually made up of two consecutive Fibonacci numbers
Fi ,Fi+1.

Recall that the cylinder lattice is determined by the parameters
x , h. If you change h leaving x �xed, you will see that the most
discernible parastichies go and come: one pair disappears,
another becomes visible.



Most plants demonstrate spiral phyllotaxis of types (3,5),
(5,8), (8,13), . . . , i.e., the right and left parastichy numbers
are usually made up of two consecutive Fibonacci numbers
Fi ,Fi+1.

Recall that the cylinder lattice is determined by the parameters
x , h. If you change h leaving x �xed, you will see that the most
discernible parastichies go and come: one pair disappears,
another becomes visible.



There is a simple rule that translates the divergence angle x into
the series of parastichy numbers pairs (m, n) that appear while h
decreases from ∞ to 0. Take the development of x into continued
fraction

x = [0; k1k2k3 . . . ] =
1

k1 +
1

k2 +
1

k3 + . . .

and consider its rational approximates

ri = [0; k1 . . . ki ] =
pi
qi
.

Then the visible (at the convenient values of h) pairs of parastichies
are given by (m, n) = (pi , qi ), i = 1, 2, . . . .



Thus, the golden number τ = [0; 1, 1, 1, . . . ] corresponds to the

Fibonacci pairs (Fi ,Fi+1) as in this case Fi = [0;

i︷ ︸︸ ︷
1, . . . , 1] and we

come to the sequence of rational approximants

[0; 1] =
1

1
, [0; 1, 1] =

1

2
, [0; 1, 1, 1] =

2

3
, [0; 1, 1, 1, 1] =

3

5
, . . . .



This correspondence gives a practical means to measure the
divergence angle on a real biological object in which units are
far from being points and it is very di�cult to �nd the
consecutive units because chronological neighbors are very far
from each other in space. Instead, one can simply count the
left and right parastichies and take the ratio m

n as an
approximation to x such that |x − m

n | <
1
mn .

For example, one can count on a good sun�ower head 144 left
and 255 right parastichies (or vice versa). This gives the
golden number with accuracy 3 · 10−5 !!!
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Two problems:

Why phyllotactic pattern is usually a lattice?

How does a plant know the golden number?



I Some researchers tried to �nd the explanation of the existence
of parastichies by looking for morphological relationship
between their units.

I Another approach was based on the explanation of the regular
phyllotaxis by trying to prove a better illumination of the
whole leaf system of the grownup plant, etc.

I In more recent time theories based on local mechanisms of
consecutive appearance of the units prevailed.
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Local mechanism theories were based to great extent upon the
pictures of the apex region made with electronic microscope.

The character of the appearance of the primordia in the
meristem area suggested the geometric (a search for the least
crowded place) and the di�usion-inhibition models (a search
for the least inhibitor concentration place).
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Modeling

1. Computer experiments.

I A. L., 1986 � a geometric model based on the local
optimization following the �largest space� rule.

I S. Douady & Y. Couder, 1992 � extensive computer simulation
with di�erent parameters varied

2. Physical experiments.

I L. S. Levitov, 1991 � �ux lattices in layered semiconductors
I Douady & Couder, 1992 � magnetic dipoles moving in a

magnetic �eld
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Rigorous results

Levitov found such x that minimizes the energy
E =

∑
i 6=0

U(||pi − p0||) for the potential U(d) = d−s or the like

in the cylinder lattice model with given constant internodal
distance h.

P. Atela, C. Gol�e, S. Hotton (2002) investigated a dynamical
system on Tn+1 based on local rules.

The two investigations gave similar results showing that global
optimality can be reached by local optimization.
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For each h, the authors of [A,G,H] considered the operator
Tn+1 → Tn+1. The meaning of this operator is the following. Given
the points p0, . . . , pn on n + 1 consecutive levels, we move the
con�guration one level down and put a new point on the nth level
that gives minimum energy with respect to the n predecessors.
Passing to the coordinates yk = xk+1 − xk (due to the symmetry of
the model), one comes to the operator Tn → Tn of the form

(y0, y1, y2, . . . , yn−1) 7→ (y1, y2, y3, . . . , yn−1,Φ(y0, y1, y2, . . . , yn−1)),

where the function Φ is de�ned by the optimal pn+1.
It was shown that the �xed points (vectors) for this operator are
constant sequences that correspond to the spirals with constant
divergence angle x=x(h) and that these �xed points are stable.



Bifurcation diagram



Sail and Diophantine approximation

The sale is the convex hull of
the lattice points in a
quadrant. The numbers at the
vertices of the broken lines are
nominators and denominators
of fractions approximating the
(irrational) number x .
The polygon around the origin
is its Voronoi cell.



One can measure the speed of this approximation. It is high for x
transcendental and low for x algebraic. The lowest possible speed is
in the case of x = τ . This number satis�es the equation
x2 = x + 1. One can consider the geometrical properties of lattices
which undergo a continuous vertical compression.



One can consider the
geometrical properties of
lattices which undergo a
continuous vertical
compression. In the case of the
golden lattice, the parastichies
remain most isotropic.



One can pose a similar question in the case of higher dimensions. If
we wish to approximate the ray with direction vector (x1, x2, x3) in
space by integer vectors, it can be accurately said what is quick and
what is slow approximation. Several algorithms generalizing the
continued fraction algorithm exist (Jacobi-Perron, etc.).

Conjecture. The slowest (in some sense) approximation is attained
at the ray with direction vector (1, λ, λ2) where λ = 1.325 . . . is
the real root of the equation λ3 = λ+ 1 (the plastic number), the
least Pisot-Vijayaraghavan number.

This conjecture has been checked in a large class of vectors for the
generalized Jakobi-Perron approximation by S. M. Blyudze (1998,
master thesis).



Science �ction: fantastic fruit

The λ from the previous slide is a candidate for the analogue of the
golden number in the 3D situation. One can build a lattice in the
3-dimensional beam

[0, 1)× [0, 1)× R+

using the vector (1, λ, λ2) as we did in the strip

[0, 1)× R+

using the generator (1, τ) of the optimal lattice, in a sense. As in
the 2D-case, this lattice can be transformed into an in�nite
arrangement of points inside the torus T2 that may be considered a
3D analogue of the sun�ower head.



Random toric 1D-lattices

(1, λ, λ2)-lattice
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