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In the process of studying properties of the Pascal adic
transformation, introduced to the Ergodic theory by A. M. Vershik
in 1982, X. Mela, É. Janvresse, T. de la Rue and Y. Velenik (2005)
found a new phenomenon which they called the limiting curve.
Limiting curve provides explicit description of the deviations of
ergodic sums along trajectories of dynamical systems.
Our work develops their results for a wider classes of functions and
other dynamical systems.



The Pascal graph
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Let I be {0, 1}∞ and µq be the dyadic Bernoulli measure∏∞
1 (q, 1− q), q ∈ (0, 1).

A vertex of the Pascal graph has coordinates (n, k), 0 ≤ k ≤ n. We
consider ω = (ωn)∞n=1 ∈ I as a path in the graph passing through
the vertices (n, kn(ω)), n ≥ 1.
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Concatenations procedure

Let N ∈ N. For each vertex (n, k), n ≥ N, 0 ≤ k ≤ n, we consider
a pair (Fn,k , ϕn,k) of piecewise linear continuous functions

Fn,k : [0,
(n
k

)
]→ R, ϕn,k : [0, 1]→ [−1, 1].

Functions Fn,k , n > N, are defined recursively building up from
some ”initial functions” FN,l such that FN,l(0) = 0, 0 ≤ l ≤ N,
using the following concatenation procedure:
For n > N and 1 ≤ k ≤ n − 1 let

Fn,k(j) =

{
Fn−1,k−1(j), 0 ≤ j ≤

(n−1
k−1
)
,

Fn−1,k−1(
(n−1
k−1
)
) + Fn−1,k(j −

(n−1
k−1
)
),

(n−1
k−1
)
< j ≤

(n
k

)
,

where 0 ≤ j ≤
(n
k

)
; and let Fn,0 = Fn−1,0, Fn,n = Fn−1,n−1. We

define

ϕn,k(t) =
Fn,k(t ·

(n
k

)
)− t · Fn,k(

(n
k

)
)

Rn,k
,

where Rn,k = max
t∈[0,1]

|Fn,k(t ·
(n
k

)
)− t · Fn,k(

(n
k

)
)|, provided

|Fn,k(t ·
(n
k

)
)− t · Fn,k(

(n
k

)
)| 6≡ 0, and Rn,k = 1, otherwise).
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Functions Fn,k , n = 2, 3, for the given initial condition
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Functions ϕn,k , n = 2, 3, for the given initial condition
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Functions F18,k , k = 6, 7, 8, 9 for the given initial condition
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Functions ϕ18,k , k = 6, 7, 8, 9 for the given initial condition
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Limiting curves: existence

Measure space (I ,B, µq).
Let ω = (ω)n ∈ I be a path in the Pascal graph.
Assume that the vector (FN,l(

(N
l

)
))Nl=0 containing endpoint values

of initial functions is not proportional to the vector (
(N
l

)
)Nl=0 of

binomial coefficients.
Functions ϕn,k are defined as above.

Theorem (É. Janvresse, T. de la Rue and Y. Velenik, ’05)

For any sequence (kn(ω)) such that limn
kn(ω)
n = q ∈ (0, 1), one

can extract a subsequence (nj) such that ϕnj ,knj (ω)
converges in

C [0, 1] to a continuous limiting function.

The graph of this limiting function is called a limiting curve.
In general, limiting curve depends on initial values, path ω and
chosen subsequence nj .



The Takagi function

The Takagi function τ(t) is a continuous nowhere differentiable
function introduced by Teiji Takagi in 1903. It has appeared in a
surprising number of different mathematical contexts, including
mathematical analysis, probability theory and number theory.
It can be defined on the unit interval x ∈ [0, 1] by

τ(x) = lim
n
τn(x), τn(x) =

n∑
k=0

d(2kx)

2k
, d(x) = min

n∈Z
|x − n|

Figure: Approximants to Takagi function: (left to right) τ2; τ3; τ4 (picture
by J. Lagarias).



The distribution function of the measure µq

The Bernoulli measure µq =
∏

(q, 1− q) (if carried to [0, 1]) can
be defined by the distribution function Lq(x) : [0, 1]→ [0, 1].

Lq : x =
∞∑
k=1

ωk
1

2k
7→

∞∑
k=1

ωkq
k−sk−1(1− q)sk−1 ,

where sk =
∑k

j=1 ωj , ωj ∈ {0, 1}.

Figure: The graphs of L0.5 (left) and L0.3 (right)



A class of self-affine functions

Let q1 and q2 be distinct parameters from (0, 1). We consider the
function Sq1,q2 : [0, 1]→ [0, 1] defined by Sq1,q2 = Lq2 ◦ L−1q1 . For

k ∈ N we define the function T k
q by the identity:

T k
q :=

∂kSq,a
∂ak

∣∣∣
a=q

, k ∈ N.

The function 1
2T

1
1/2 is the famous Takagi function (M. Hata and

M. Yamaguti).

Figure: The graphs of T 1
1/2 (left) and T 2

1/2 (right)



A class of self-affine functions.

T k
q (qi ) =

∂k

∂qk
qi = i(i − 1) . . . (i − k)qi−k−1,

i ∈ N, in particular,

T 1
q (qi ) = iqi−1, T 2

q (qi ) = i(i − 1)qi−2.

Taking into account certain self-affinity relations, the functions T k
q

are uniquely defined by these values.

Figure: The graphs of T 1
0.4 (left) and T 2

0.4 (right)



Let’s return to the Pascal adic

Theorem (É. Janvresse, T. de la Rue and Y. Velenik, ’05)

Let N = 1 and F1,0(1) = 1,F1,1(1) = −1 be the initial condition1.
For any sequence (kn(ω))∞n=1 such that kn(ω)/n→ q ∈ (0, 1), one
can extract a subsequence (nj) such that ϕnj ,knj (ω)

converges in

C [0, 1] to the function ±T 1
q .

Question: What curves can arise for initial conditions other then
F1,0(1) = 1 and F1,1(1) = −1?
The following theorem answers this question.

Theorem (A. Lodkin, A.M., 2016)

For µq almost any ω if a subsequence (nj) is such that ϕnj ,knj (ω)

converges in C [0, 1] to a continues function then this
function ±T 1

q .

1In fact, it was shown that the statement holds for a slightly more general
class of initial conditions.
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How to find the limiting curves explicitly?

Let hn,k = Fn,k(
(n
k

)
), n ≥ N.

Function h(k) = hn,k , 0 ≤ k ≤ n, is a function defined on the
discrete space {0, 1, 2, 3 . . . , n} with binomial measure defined by
the weighting function w(k) =

(n
k

)
qk(1− q)n−k .

For a given k ∈ N, any positive integer x ∈ N can be uniquely
written in the k−cascade x =

(ak
k

)
+
(ak−1

k−1
)

+ · · ·+
(ak−s

k−s
)
, where

ak > ak−1 > · · · > ak−s > 0.
The following expression (generalizing Vandermonde’s convolution
formula) holds

Fn,k(x) =
N∑
j=0

hN,j∂
N,j
n−k(x),

where ∂N,j
k (x) =

(ak−N
k−j

)
+
(ak−1−N
k−1−j

)
+ · · ·+

(ak−s−N
k−s−j

)
and

ak−s(x) ≥ N.
Thus initial condition is in fact given by N + 1 numbers
hN,l , 0 ≤ l ≤ N.
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formula) holds

Fn,k(x) =
N∑
j=0

hN,j∂
N,j
n−k(x),

where ∂N,j
k (x) =

(ak−N
k−j

)
+
(ak−1−N
k−1−j

)
+ · · ·+

(ak−s−N
k−s−j

)
and

ak−s(x) ≥ N.
Thus initial condition is in fact given by N + 1 numbers
hN,l , 0 ≤ l ≤ N.
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discrete space {0, 1, 2, 3 . . . , n} with binomial measure defined by
the weighting function w(k) =

(n
k

)
qk(1− q)n−k .

For a given k ∈ N, any positive integer x ∈ N can be uniquely
written in the k−cascade x =

(ak
k

)
+
(ak−1

k−1
)

+ · · ·+
(ak−s

k−s
)
, where

ak > ak−1 > · · · > ak−s > 0.
The following expression (generalizing Vandermonde’s convolution
formula) holds

Fn,k(x) =
N∑
j=0

hN,j∂
N,j
n−k(x),

where ∂N,j
k (x) =

(ak−N
k−j

)
+
(ak−1−N
k−1−j

)
+ · · ·+

(ak−s−N
k−s−j

)
and

ak−s(x) ≥ N.

Thus initial condition is in fact given by N + 1 numbers
hN,l , 0 ≤ l ≤ N.



How to find the limiting curves explicitly?

Let hn,k = Fn,k(
(n
k

)
), n ≥ N.

Function h(k) = hn,k , 0 ≤ k ≤ n, is a function defined on the
discrete space {0, 1, 2, 3 . . . , n} with binomial measure defined by
the weighting function w(k) =

(n
k

)
qk(1− q)n−k .

For a given k ∈ N, any positive integer x ∈ N can be uniquely
written in the k−cascade x =

(ak
k

)
+
(ak−1

k−1
)

+ · · ·+
(ak−s

k−s
)
, where

ak > ak−1 > · · · > ak−s > 0.
The following expression (generalizing Vandermonde’s convolution
formula) holds

Fn,k(x) =
N∑
j=0

hN,j∂
N,j
n−k(x),

where ∂N,j
k (x) =

(ak−N
k−j

)
+
(ak−1−N
k−1−j

)
+ · · ·+

(ak−s−N
k−s−j

)
and

ak−s(x) ≥ N.
Thus initial condition is in fact given by N + 1 numbers
hN,l , 0 ≤ l ≤ N.



How to find the limiting curves explicitly?

In order to find the limiting curve ϕ along the sequence (nj , k(nj))j
(we write simply (n, k)) for the given initial conditions
h(l) = hN,l , 0 ≤ l ≤ N, we decompose the function h(l) in the
convenient basis {hm(l)}Nm=0.

Krawtchouk polynomials K (k , q, n) are discrete orthogonal
polynomials of a discrete variable k ∈ {0, 1, . . . , n} associated with
the binomial distribution w(k) =

(n
k

)
qk(1− q)n−k , introduced by

M. Krawtchouk in 1929.
They can be defined by the identity

Km(k , q, n) = 2F1

[
−k, −m
−n

;
1

q

]
(1)

where 2F1 is the Gauss hypergeometric function.
Setting hmN,k = (−2q)mKm(k, q,N), 0 ≤ k ≤ N, 0 ≤ m ≤ N, by
induction one can show that

Fm
n,k(
(n−i
k−i
)
) = (−2q)mKm(k − i , q, n − i)

(n−i
k−i
)

We study the asymptotic behavior of Fn,k for n→∞, kn → q.
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Let n→∞, and ξn = k−nq√
nq(1−q)

= O(1).

I There is a classical asymptotic expansion of the Krawtchouk
polynomial

Km(k , q, n) = b0Hm(ξn) + O(n−(m+1)/2),

where Hm(x) ≡ (−1)mex
2 dm

dxm e
−x2 is the Hermite polynomial

and b0 = (−1)m
(
pq
2n

)m/2
.

I There are also expansions by N. Temme and J. Lopez (with
asymptotic property)

Km(k, q, n) =
m∑
j=0

bj(ξn)Hm−j(ξn)

For instance, we have

Km(k , q, n) = b0Hm(ξn) + b3(ξn)Hm−3(ξn)
1

n
+ o(n−(m+2)/2)



Recall that

ϕn,k(t) =
Fn,k(t ·

(n
k

)
)− t · Fn,k(

(n
k

)
)

Rn,k
.

Note that lim
n→∞

(n−i
k−i)
(nk)

= qi , provided k
n → q.



Recall that

ϕn,k(t) =
Fn,k(t ·

(n
k

)
)− t · Fn,k(

(n
k

)
)

Rn,k
.

Note that lim
n→∞

(n−i
k−i)
(nk)

= qi , provided k
n → q.

Technically, for almost every sequence (n, kn(x)) (in the sense of
the µq measure) using the classical expansion of the Krawtchouk
polynomials, we show that for xi ,k,n =

(n−i
k−i
)
, i = O(1),

Fm
n,k(xi ,k,n)− xi,k,n

x0,k,n
· Fm

n,k(x0,k,n) = iqi−1Rm
n,k + o(Rm

n,k)

Rm
n,k = βHm−1(ξn),

where β = β(m, n, k , q), provided ξ = limn ξn is not the root of
Hm−1 this corresponds to T 1

q function.



Graphical interpretation

Consider an infinite path passing through the vertices (n, kn(x)) of
the Pascal graph.



Limiting curves



Limiting curves

v = k − nq,



Limiting curves

v = k − nq, ξ = k−nq√
2q(1−q)n

= v√
2q(1−q)n

, m = 4.
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Limiting curves
Transition regimes

What if v = O(1)?
αvT 1

q + βvT 2
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Limiting curves: dynamical systems interpretation

Let (f0, f1, . . . , fn, . . . ) be a sequence with fi ∈ R, i ∈ N0.
Let F denote the partial sum, defined by

F (n) =
n−1∑
i=0

fi , n ≥ 0,

The function F is assumed to be linearly interpolated between
consecutive integers.
Let the function ϕn : [0, 1]→ [−1, 1] be defined by

ϕn(t) =
F (t · n)− t · F (n)

Rn
,

(The normalizing coefficient Rn = max
t∈[0,1]

|F (t · n)− t · F (n)|,

provided |F (t · n)− t · F (n)| 6≡ 0, and Rn = 1, otherwise)



Definition (É. Janvresse, T. de la Rue and Y. Velenik)

Let (X ,T ) be a dynamical system, a function f : X → R and a
point x ∈ X . Define fi := f (T ix), i ≥ 0, and considered cluster
points in C [0, 1] of the set {ϕn}n≥1. Any cluster point ϕ = ϕx ,f is
called a limiting function.

É. Janvresse, T. de la Rue and Y. Velenik showed that for the
Pascal adic transformation the famous graph of the
Takagi-Blancmange function arises as a limiting curve for certain
functions f .
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Adic dynamical systems
b

bb

b b b

bbb

b b b b

Figure: A graded graph (Bratteli diagram).

I The space X of infinite edge paths of some graded graph with
some linear order on the incoming edges of each vertex. It is
equipped with a partial order �, which is lexicographical on
the set of edge paths in X that belong to the same class of
the tail partition.

I The adic transformation T is defined on X \
(
Xmax ∪ Xmin

)
by

sending x ∈ X to its successor Tx , that is, the smallest y that
satisfies y � x .



Let (X ,T ) be an adic transformation. This assumption is not
restrictive due to the following theorem by A. M. Vershik:

Theorem

Any ergodic measure preserving transformation on a Lebesgue
space is isomorphic to some adic transformation.

Let FN denote the space of cylindric functions of rank N
(i.e., functions that depend only on the first N coordinates of
x = (xn)∞0 ).



The Pascal adic transformation

1 0

Let I be {0, 1}∞ and µq be the dyadic Bernoulli measures∏∞
1 (q, 1− q), q ∈ (0, 1).

We denote by P the Pascal adic transformation can be explicitly
defined by:

x 7→ Px ; P(0m−l1l10 . . . ) = 1l0m−l01 . . .

(that is only the initial m + 2 coordinates of x are being changed).



x 7→ Px ; P(0m−s1s10 . . . ) = 1s0m−s01 . . . (2)

x = 11100101 . . .

1 0

P9(x) = 00111. . .
P8(x) = 01011. . .
P7(x) = 10011. . .
P6(x) = 01101. . .
P5(x) = 10101. . .
P4(x) = 11001. . .
P3(x) = 01110. . .
P2(x) = 10110. . .
P(x) = 11010. . .
x = 11100. . .
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Theorem

Let P be the Pascal adic transformation of the Lebesgue
probability space (I ,B, µq), N ∈ N, and g ∈ FN be a function
that is not cohomologous to a constant. Then for µq-a.e. x there
exists a stabilizing sequence ln(x) such that the limiting function is
αg ,xT 1

q , where αg ,x ∈ {−1, 1}.





Wider class of dynamical systems
Polynomial adic systems

Let p(x) be a positive integer polynomial, for example,
p(x) = 1 + x + 3x2

b

b bb

b bbb bb b bb

b bb b bbb bb b bb b bb

b bb b bb b bbb bb b bb b bbb bb

Figure: The graded graph associated to p(x) = 1 + x + 3x2.



Wider class of dynamical systems
Polynomial adic systems

b

bb b

0
1

2 3 4

Figure: Canonical ordering for p(x) = 1 + x + 3x2.

As for the Pascal adic, the set of all invariant ergodic measures for
a polynomial system is a certain one-parameter family µq,
q ∈ (0, 1

a0
), of Bernoulli measures.

Denote by tq the unique solution in (0, 1) of the equation

a0q
d + a1q

d−1t + · · ·+ ad t
d − qd−1 = 0.

X. Mela and S. Bailey showed that these measures are as follows:

µq =
∞∏
0

(
q, . . . , q︸ ︷︷ ︸

a0

, tq, . . . , tq︸ ︷︷ ︸
a1

,
t2q
q
, . . . ,

t2q
q︸ ︷︷ ︸

a2

, . . . ,
tdq

qd−1
, . . . ,

tdq
qd−1︸ ︷︷ ︸

ad

)
.



Wider class of dynamical systems
Polynomial adic systems

Theorem

Let (X ,T , µq) be a polynomial system and g be a cylindric
function from FN . Then for µq-a.e. x a limiting curve
ϕg
x ∈ C [0, 1] exists if and only if the function g is not

cohomologous to a constant.

Figure: An example of a limiting curve



Figure: The Bratteli diagram and the polygonal approximation
p(x) = 2 + x + x2.



A class of self-affine functions

Everything can be generalized for p(x) = a0 + a1x + · · ·+ adx
d :

As above, for q1, q2 ∈ (0, 1/a0), functions Sp
q1,q2 : [0, 1]→ [0, 1]

can be defined.
Similarly,

T k
p,q1 :=

∂kSp
q1,q2

∂qk2

∣∣∣
q2=q1

, k ∈ N.

Figure: The graph of T k
p,q1 ,p(x) = 2 + x + x2.



Smooth limits of limiting curves

We answer the question by É. Janvresse et.al: is there a smooth
curve in the limit?

Figure: Limiting curves observed for the polynomial adic transformations
associated with polynomial p(x) = 1 + x + x2 + · · ·+ xd for (from left to
right): d + 1 = 2, 3, 8, 32 and symmetric measure.



Smooth limits of limiting curves

Statement:

Figure: Limiting curve is parabola.
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