The infinite-dimensional *q*-Beta distribution

Talk by Grigori Olshanski

Institute for Information Transmission Problems of the Russian Academy of Sciences & Skoltech & Dept. Math., Higher School of Economics Large-N limit transition:

1. In point processes — ensembles of (randomly distributed) particles.

Example: Random Matrix Theory; finite particle configurations \leftrightarrow spectra of $N \times N$ random matrices.

2. In representation theory.

 $G(\infty) = \varinjlim G(N)$: finite particles configurations \leftrightarrow labels of irreducible representations of groups G(N).

Preliminaries: Schur-type polynomials

$$\begin{split} \varphi_n(x) &= x^n + \text{lower degree terms}, \qquad n = 0, 1, 2, \dots \\ & \text{Fix} \quad N = 2, 3, \dots \\ \nu &= (\nu_1 \geq \nu_2 \geq \dots \geq 0), \quad \ell(\nu) \leq N, \quad \text{a partition} \\ & \varphi_{\nu|N}(x_1, \dots, x_N) := \frac{\det[x_j^{\nu_i + N - i}]_{i,j = 1}^N}{\prod_{1 \leq i < j \leq N} (x_i - x_j)} \\ & \text{If } \varphi_n(x) = x^n, \text{ then } \varphi_{\nu|N} \text{ is } S_{\nu|N}, \text{ the Schur polynomial. In general,} \end{split}$$

 $\varphi_{\nu|N} = S_{\nu|N} + \text{lower degree terms}$

It follows: $\{\varphi_{\nu|N}:\ell(\nu)\leq N\}$ is a (non-homogeneous) basis in

$$\operatorname{Sym}(N) := \mathbb{C}[x_1, \dots, x_N]^{\operatorname{permutations}},$$

the algebra of N-variate symmetric polynomials.

Assume now that the φ_n are a system of **orthogonal** polynomials with a weight function W(x) on \mathbb{R} .

Then, for each fixed $N = 2, 3, \ldots$, the polynomials $\varphi_{\nu|N}$ are a system of symmetric N-variate polynomials, orthogonal with respect to the weight measure

$$M_N := \frac{1}{Z_N} \cdot \prod_{i=1}^N W(x_i) \cdot \prod_{1 \le i < j \le N} (x_i - x_j)^2 \cdot dx_1 \dots dx_N$$

Under mild assumptions on W(x), the $\varphi_{\nu|N}$ form an orthogonal basis in the Hilbert space

$$L^2_{\text{symmetric}}(\mathbb{R}^N, M_N)$$

Ensembles of random particle configurations

A slightly different viewpoint (necessary for letting $N \to \infty$): We replace \mathbb{R}^N by

 $\Omega_N := N$ -point configurations $X = (x_1 > \cdots > x_N)$

and regard M_N as a probability measure on Ω_N (Z_N being changed).

Symmetric polynomials can be viewed as functions on Ω_N , and then the polynomials the $\varphi_{\nu|N}$ form an orthogonal basis in

$$H_N := L^2(\Omega_N, M_N).$$

The measure M_N on Ω_N generates an **ensemble of random** particle configurations. The particles are "interacting" due to repulsive logarithmic pair potential in

$$\prod_{1 \le i < j \le N} (x_i - x_j)^2 = \exp\left\{-2\sum_{i < j} \log \frac{1}{|x_i - x_j|}\right\}$$

Hence the term **log-gas system** with parameter $\beta = 2$.

Log-gas systems with parameter $\beta = 2\theta > 0$ A more general model of log-gas system:

$$M_N := \frac{1}{Z_N} \cdot \prod_{i=1}^N W(x_i) \cdot \prod_{1 \le i < j \le N} (x_i - x_j)^{2\theta} \cdot dx_1 \dots dx_N$$
$$= \frac{1}{Z_N} \cdot \prod_{i=1}^N W(x_i) \cdot \exp\left\{-2\theta \sum_{i < j} \log \frac{1}{|x_i - x_j|}\right\}$$

For certain weight functions W(x) it is still possible to construct a system of symmetric polynomials, which constitute an orthogonal basis in the Hilbert space $L^2_{\text{sym}}(\Omega_N, M_N)$ and have the form

$$\varphi_{\nu|N}(x_1,\ldots,x_N;\theta) = P_{\nu|N}(x_1,\ldots,x_N;\theta) +$$
lower degree terms,

where the $P_{\nu|N}(x_1, \ldots, x_N; \theta)$ are the Jack symmetric polynomials, a 1-parameter deformation of the Schur polynomials.

For instance, this holds for N-dimensional Beta distribution

$$M_N^{A,B,\theta} = \frac{1}{Z_N} \cdot \prod_{i=1}^N (1-x_i)^A (1+x_i)^B$$
$$\times \prod_{1 \le i < j \le N} (x_i - x_j)^{2\theta} \cdot dx_1 \dots dx_N,$$

where $-1 \le x_N < \cdots < x_1 \le 1$, A, B > -1, $\theta > 0$.

• A close formula for Z_N exists: the famous **Selberg's integral**.

• The corresponding symmetric orthogonal polynomials $\varphi_{\nu|N}$ were studied by James & Constantine, Vretare, Debiard, Lassalle, Macdonald, They are a particular case of the **Heckman-Opdam's** Jacobi polynomials corresponding to root system BC_N .

• In the special case $\theta = 1$, the $\varphi_{\nu|N}$ are given by determinantal formula with $\varphi_n =$ classical Jacobi polynomials. But there is no such elementary formula for $\theta \neq 1!$

"Quantization" of [-1, 1]

We will be dealing with particle configurations on $[-1, 1]_q$.

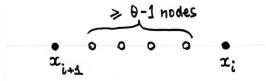
A (q, t)-analogue of N-particle Beta distribution

Set $t = q^{\theta}$, where (for simplicity only!) $\theta \in \mathbb{Z}_{\geq 1}$ (actually, $\theta > 0$ is allowed). Denote $(z;q) := \prod_{n \geq 0} (1-zq^n)$, the infinite q-Pochhammer.

The *N*-particle (q, t)-Beta distribution with parameters (c, d):

$$\frac{1}{\mathcal{Z}_N} \cdot \prod_{i=1}^N |x_i| \frac{(x_i q; q)_\infty (-x_i q; q)_\infty}{(cx_i; q)_\infty (dx_i; q)_\infty} \cdot \left| \prod_{1 \le i \ne j \le N} \prod_{r=0}^{\theta-1} (x_i - x_j q^r) \right|$$

Here $X = (x_1 > \cdots > x_N) \subset [-1, 1]_q$ and (c, d) are such that the weights are ≥ 0 . Important: the weight of X is nonzero if and only if X is ' θ -sparse' meaning that any two points of X are separated by at least $\theta - 1$ unoccupied nodes of $[-1, 1]_q$.



Constraints on (c, d):

• either (principal series) $d = \bar{c}, \ c \in \mathbb{C} \setminus \mathbb{R}$

• or (complementary series) $c,d\in\mathbb{R}$ are such that [c,d] lies inside an interval between two neighboring points from

$$\dots -q^{-2}, \quad -q^{-1}, \quad -1, 1, \quad q^{-1}, \quad q^{-2} \quad \dots$$

Degeneration to ordinary Beta distribution

Set
$$c = q^{A+1}$$
, $d = -q^{B+1}$ and let $q \to 1^-$.

• $[-1,1]_q$ approximates [-1,1]

 \bullet The q-Beta distribution $M_N^{q,t;c,d}$ degenerates into the ordinary Beta distribution $M_N^{A,B,\theta}.$

Stokman-Koornwinder's big q-Jacobi polynomials

Let $q\in (0,1),\ t=q^\theta$ with $\theta\in\mathbb{Z}_{\geq 1},$ and (c,d) satisfy the constraints above.

Let $N \in \mathbb{Z}_{\geq 1}$ and $M_N^{q,t;c,d}$ denote the *N*-particle (q,t) Beta distribution living on the space of *N*-particle θ -sparse configurations on $[-1,1]_q$.

Let $P_{\nu|N}(x_1, \ldots, x_N; q, t)$ be the Macdonald polynomials (ν ranges over partitions with $\ell(\nu) \leq N$).

Theorem [Stokman 1997; Stokman & Koornwinder 1997].

There exists a unique (non-homogeneous) basis $\{\varphi_{\nu|N}\}$ in the algebra of N-variate symmetric polynomials such that:

• $\varphi_{\nu|N}(x_1,\ldots,x_N;q,t;\,c,d)=P_{\nu|N}(x_1,\ldots,x_N;q,t)+$ lower degree terms;

 \bullet the corresponding functions $\varphi_{\nu|N}(X;q,t;\,c,d)$ are orthogonal with respect to $M_N^{q,t;\,c,d}$

Main result

Theorem. The whole picture, i.e. N-particle (q, t) Beta probability distribution + related system of N-variate symmetric orthogonal polynomials, survives in a large-N limit transition.

Detalization: convergence of polynomials

In our limit regime, parameters (c, d) must vary together with N:

$$c = \gamma t^{1-N}, \quad d = \delta t^{1-N}, \qquad \text{where } (\gamma, \delta) \text{ are fixed}.$$

Claim 1. For every fixed partition ν , there exists a limit

$$\lim_{N \to \infty} \varphi_{\nu|N}(\,\cdot\,;q,t;\,\gamma t^{1-N},\delta t^{1-N}) = \Phi_{\nu}(\,\cdot\,;q,t;\gamma,\delta).$$

The result is a symmetric function whose top degree homogeneous component is $P_{\nu}(\cdot;q,t)$, the Macdonald symmetric function with index ν .

Detalization: convergence of measures

Let Ω denote the set of all θ -sparse configurations in $[-1,1]_q$. It is compact space, being a closed subspace of $2^{[-1,1]_q}$. Its stratification:

$$\Omega = \Omega_{\infty} \cup \Omega_{\text{fin}} = \Omega_{\infty} \cup \bigcup_{N \ge 0} \Omega_N$$

(infinite and N-point configurations).

Assume (γ, δ) are in the principal or complementary series and in the latter case additionally require that γ, δ have the same sign.

Claim 2. Under these assumptions, as $N \to \infty$, the *N*-particle (q, t)Beta distributions with varying parameters $(c, d) = (\gamma t^{1-N}, \delta t^{1-N})$ weakly converge to a probability distribution $M^{q,r;\gamma,\delta}_{\infty}$ concentrated on Ω_{∞} .

We call $M^{q,r;\,\gamma,\delta}_\infty$ the infinite-dimensional (q,t) Beta distribution.

Detalization: orthogonal system

Let Sym denote the algebra of symmetric functions.

There is a natural embedding Sym $\rightarrow C(\Omega)$, because symmetric functions $F \in \text{Sym}$ can be evaluated at any $X \in \Omega$.

Claim 3. Under this embedding, the limit symmetric functions $\Phi_{\nu}(\cdot; q, t; \gamma, \delta)$ give rise to an orthogonal basis in the Hilbert space $L^2(\Omega_{\infty}, M_{\infty}^{q,r;\gamma,\delta})$.

Corollary. The limit measure $M^{q,t;\gamma,\delta}_{\infty}$ admits the following characterization: it is a unique probability distribution on Ω , orthogonal to all basis functions $\Phi_{\nu}(X;q,t;\gamma,\delta)$ with $\nu \neq 0$.

In the special case $\theta = 1$, the measure $M^{q,t;\gamma,\delta}_{\infty}$ is determinantal. Its correlation kernel is computed in [Gorin-O., 2016], it is expressed through $_2\phi_1$. Degeneration at q = 1 destroys large-N limit transition Recall that the degeneration, as $q \rightarrow 1^-$, assumes

$$(c,d) = (q^{A+1}, -q^{B+1}), \quad \text{where } A, B > -1.$$

Therefore, (c, d) must be in the complementary series and, moreover, c and d must have **opposite sign**.

On the other hand, the limit regime assumes

$$(c,d) = (\gamma t^{1-N}, \delta t^{1-N}).$$

This in turn requires to take $\gamma > 0$, $\delta < 0$. But then $(c,d) \rightarrow (+\infty, -\infty)$ and hence, for N large enough, (c,d) cannot be in the complementary series as [c,d] will not be contained in one of the intervals between the points

$$-q^{-2}, -q^{-1}, -1, 1, q^{-1}, q^{-2} \dots$$

Conclusion. Our large-*N* limit regime is a **specific "q" phenomenon**.

Comments on proof

Claim 1 (convergence of Stokman-Koornwinder's N-variate big q-Jacobi polynomials $\varphi_{\nu|N}$ as $N \to \infty$).

Proof is based on expansion of the $\varphi_{\nu|N}$'s on multivariate interpolation Macdonald polynomials of Knop-Okounkov-Sahi.

Claim 2 (convergence of N-particle (q, t) Beta distributions.)

Existence of weak limit follows from Claim 1. A fine point is that the resulting limit measure on Ω is concentrated on $\Omega_{\infty} \subset \Omega$. This is proved using the **method of intertwiners**.

Claim 3 (orthogonality).

Not evident that each of the limit functions $X \to \Phi_{\nu}(X; q, t; \gamma, \delta)$ gives a nonzero vector in the Hilbert space $L^2(\Omega_{\infty}, M^{q,t;\gamma,\delta}_{\infty})$. This is proved by computation of the norms.

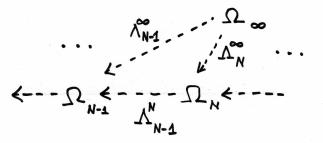
The special case $\theta = 1$ is investigated in **[O., 2017]**.

Method of intertwiners: the boundary

Theorem 1. The space Ω_{∞} arises as the **entrance boundary** of a (highly inhomogeneous) Markov chain

$$\Omega_1 \xleftarrow{\Lambda_1^2}{\leftarrow} \Omega_2 \xleftarrow{\Lambda_2^3}{\leftarrow} \Omega_3 \xleftarrow{\Lambda_3^4}{\leftarrow} \dots$$

Here Ω_N is the space of all *N*-particle θ -sparse configurations on $[-1,1]_q$ and Λ_{N-1}^N are certain stochastic matrices. Their construction is based on [Okounkov, 1998].



Method of intertwiners: coherency relation

Theorem 2. The *N*-particle (q, t) Beta distributions with parameters $(\gamma t^{1-N}, \delta t^{1-N})$ (denote them by M_N) are **consistent** with the stochastic matrices Λ_{N-1}^N in the sense that

 $M_N \Lambda_{N-1}^N = M_{N-1}$, row vector × matrix = row vector

In more detail, this coherency relation means

 $\sum_{X\in\Omega_N}M_N(X)\Lambda_{N-1}^N(X,Y)=M_{N-1}(Y),\quad\text{for every fixed }Y\in\Omega_{N-1}.$

Theorem 1 & Theorem 2 automatically imply that the limit measure $\lim_{N\to\infty} M_N$ (the infinite-particle (q,t) Beta distribution) lives on $\Omega_{\infty} \subset \Omega$.

Comparison with RMT

• Continuum \mathbb{R} is replaced by a *q*-lattice.

• The "Jack-type" two-point factor $|x_i-x_j|^{2\theta}$, responsible for pair interaction, is replaced by "Macdonald-type" factor

$$\prod_{1 \le i \ne j \le N} \prod_{r=0}^{\theta-1} (x_i - x_j q^r)$$

 \bullet No space scaling in the large-N limit transition

Summary: infinite-variate orthogonal polynomials

• A system $\{\Phi_{\nu}\}$ of "symmetric orthogonal polynomials with infinitely many variables" is constructed. They are indexed by arbitrary partitions ν and form an orthogonal basis in $L^{2}(\Omega_{\infty}, M_{\infty})$.

 \bullet The functions Φ_{ν} actually live in the algebra ${\rm Sym}$ of symmetric functions and have the form

 $\Phi_{\nu}(x_1, x_2, \dots) = P_{\nu}(x_1, x_2, \dots; q, t) +$ lower degree terms,

where $P_{\nu}(\cdot; q, t)$ is Macdonald symmetric function.

• Each Φ_{ν} can be explicitly written as (a kind of) (terminating) basic hypergeometric series.