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Large-N limit transition:

1. In point processes — ensembles of (randomly distributed)
particles.

Example: Random Matrix Theory; finite particle configurations
↔ spectra of N ×N random matrices.

2. In representation theory.
G(∞) = lim−→G(N): finite particles configurations ↔ labels of

irreducible representations of groups G(N).
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Preliminaries: Schur-type polynomials

ϕn(x) = xn + lower degree terms, n = 0, 1, 2, . . .

Fix N = 2, 3, . . .

ν = (ν1 ≥ ν2 ≥ · · · ≥ 0), `(ν) ≤ N, a partition

ϕν|N (x1, . . . , xN ) :=
det[xνi+N−ij ]Ni,j=1∏
1≤i<j≤N (xi − xj)

If ϕn(x) = xn, then ϕν|N is Sν|N , the Schur polynomial. In general,

ϕν|N = Sν|N + lower degree terms

It follows: {ϕν|N : `(ν) ≤ N} is a (non-homogeneous) basis in

Sym(N) := C[x1, . . . , xN ]permutations,

the algebra of N -variate symmetric polynomials.
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Assume now that the ϕn are a system of orthogonal polynomials
with a weight function W (x) on R.

Then, for each fixed N = 2, 3, . . . , the polynomials ϕν|N are a
system of symmetric N -variate polynomials, orthogonal with respect
to the weight measure

MN :=
1

ZN
·
N∏
i=1

W (xi) ·
∏

1≤i<j≤N
(xi − xj)2 · dx1 . . . dxN

Under mild assumptions on W (x), the ϕν|N form an orthogonal
basis in the Hilbert space

L2
symmetric(RN ,MN )
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Ensembles of random particle configurations
A slightly different viewpoint (necessary for letting N →∞):

We replace RN by

ΩN := N -point configurations X = (x1 > · · · > xN )

and regardMN as a probability measure on ΩN (ZN being changed).
Symmetric polynomials can be viewed as functions on ΩN , and

then the polynomials the ϕν|N form an orthogonal basis in

HN := L2(ΩN ,MN ).

The measure MN on ΩN generates an ensemble of random
particle configurations. The particles are “interacting” due to re-
pulsive logarithmic pair potential in

∏
1≤i<j≤N

(xi − xj)2 = exp

−2
∑
i<j

log
1

|xi − xj |


Hence the term log-gas system with parameter β = 2.
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Log-gas systems with parameter β = 2θ > 0

A more general model of log-gas system:

MN :=
1

ZN
·
N∏
i=1

W (xi) ·
∏

1≤i<j≤N
(xi − xj)2θ · dx1 . . . dxN

=
1

ZN
·
N∏
i=1

W (xi) · exp

−2θ
∑
i<j

log
1

|xi − xj |


For certain weight functionsW (x) it is still possible to construct

a system of symmetric polynomials, which constitute an orthogonal
basis in the Hilbert space L2

sym(ΩN ,MN ) and have the form

ϕν|N (x1, . . . , xN ; θ) = Pν|N (x1, . . . , xN ; θ) + lower degree terms,

where the Pν|N (x1, . . . , xN ; θ) are the Jack symmetric polynomi-
als, a 1-parameter deformation of the Schur polynomials.
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For instance, this holds for N-dimensional Beta distribution

MA,B,θ
N =

1

ZN
·
N∏
i=1

(1− xi)A(1 + xi)
B

×
∏

1≤i<j≤N
(xi − xj)2θ · dx1 . . . dxN ,

where −1 ≤ xN < · · · < x1 ≤ 1, A,B > −1, θ > 0.

• A close formula for ZN exists: the famous Selberg’s integral.

• The corresponding symmetric orthogonal polynomials ϕν|N
were studied by James & Constantine, Vretare, Debiard, Lassalle,
Macdonald, . . . . They are a particular case of the Heckman-
Opdam’s Jacobi polynomials corresponding to root system BCN .

• In the special case θ = 1, the ϕν|N are given by determinantal
formula with ϕn = classical Jacobi polynomials. But there is no such
elementary formula for θ 6= 1!
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“Quantization” of [−1, 1]

Fix q ∈ (0, 1). The q-version of [−1, 1] is

[−1, 1]q := {−1,−q,−q2, . . . } ∪ {. . . , q2, q, 1}

We will be dealing with particle configurations on [−1, 1]q.
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A (q, t)-analogue of N-particle Beta distribution

Set t = qθ, where (for simplicity only!) θ ∈ Z≥1 (actually, θ > 0 is al-
lowed). Denote (z; q) :=

∏
n≥0(1−zqn), the infinite q-Pochhammer.

The N-particle (q, t)-Beta distribution with parameters (c, d):

1

ZN
·
N∏
i=1

|xi|
(xiq; q)∞(−xiq; q)∞
(cxi; q)∞(dxi; q)∞

·

∣∣∣∣∣∣
∏

1≤i 6=j≤N

θ−1∏
r=0

(xi − xjqr)

∣∣∣∣∣∣
Here X = (x1 > · · · > xN ) ⊂ [−1, 1]q and (c, d) are such that the
weights are ≥ 0. Important: the weight of X is nonzero if and only
if X is ‘θ-sparse’ meaning that any two points of X are separated
by at least θ − 1 unoccupied nodes of [−1, 1]q.
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Constraints on (c, d):

• either (principal series) d = c̄, c ∈ C \ R
• or (complementary series) c, d ∈ R are such that [c, d] lies

inside an interval between two neighboring points from

. . . − q−2, −q−1, −1, 1, q−1, q−2 . . .

Degeneration to ordinary Beta distribution

Set c = qA+1, d = −qB+1 and let q → 1−.

• [−1, 1]q approximates [−1, 1]

• The q-Beta distribution M q,t;c,d
N degenerates into the ordinary

Beta distribution MA,B,θ
N .
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Stokman-Koornwinder’s big q-Jacobi polynomials

Let q ∈ (0, 1), t = qθ with θ ∈ Z≥1, and (c, d) satisfy the
constraints above.

Let N ∈ Z≥1 and M q,t; c,d
N denote the N -particle (q, t) Beta

distribution living on the space of N -particle θ-sparse configurations
on [−1, 1]q.

Let Pν|N (x1, . . . , xN ; q, t) be the Macdonald polynomials (ν ranges
over partitions with `(ν) ≤ N).

Theorem [Stokman 1997; Stokman & Koornwinder 1997].

There exists a unique (non-homogeneous) basis {ϕν|N} in the algebra
of N -variate symmetric polynomials such that:

• ϕν|N (x1, . . . , xN ; q, t; c, d) = Pν|N (x1, . . . , xN ; q, t)+ lower de-
gree terms;

• the corresponding functions ϕν|N (X; q, t; c, d) are orthogonal with
respect to M q,t; c,d

N
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Main result

Theorem. The whole picture, i.e. N -particle (q, t) Beta proba-
bility distribution + related system of N -variate symmetric orthogo-
nal polynomials, survives in a large-N limit transition.
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Detalization: convergence of polynomials

In our limit regime, parameters (c, d) must vary together with
N :

c = γt1−N , d = δt1−N , where (γ, δ) are fixed.

Claim 1. For every fixed partition ν, there exists a limit

lim
N→∞

ϕν|N ( · ; q, t; γt1−N , δt1−N ) = Φν( · ; q, t; γ, δ).

The result is a symmetric function whose top degree homogeneous
component is Pν( · ; q, t), the Macdonald symmetric function with
index ν.
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Detalization: convergence of measures

Let Ω denote the set of all θ-sparse configurations in [−1, 1]q. It is
compact space, being a closed subspace of 2[−1,1]q . Its stratification:

Ω = Ω∞ ∪ Ωfin = Ω∞ ∪
⋃
N≥0

ΩN

(infinite and N -point configurations).

Assume (γ, δ) are in the principal or complementary series and
in the latter case additionally require that γ, δ have the same sign.

Claim 2. Under these assumptions, as N →∞, the N -particle (q, t)
Beta distributions with varying parameters (c, d) = (γt1−N , δt1−N )

weakly converge to a probability distribution M q,r; γ,δ
∞ concentrated

on Ω∞.
We call M q,r; γ,δ

∞ the infinite-dimensional (q, t) Beta distribu-
tion.
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Detalization: orthogonal system

Let Sym denote the algebra of symmetric functions.
There is a natural embedding Sym → C(Ω), because symmetric
functions F ∈ Sym can be evaluated at any X ∈ Ω.

Claim 3. Under this embedding, the limit symmetric functions
Φν( · ; q, t; γ, δ) give rise to an orthogonal basis in the Hilbert space
L2(Ω∞,M

q,r; γ,δ
∞ ).

Corollary. The limit measure M q,t; γ,δ
∞ admits the following charac-

terization: it is a unique probability distribution on Ω, orthogonal to
all basis functions Φν(X; q, t; γ, δ) with ν 6= 0.

In the special case θ = 1, the measureM q,t; γ,δ
∞ is determinantal.

Its correlation kernel is computed in [Gorin-O., 2016], it is expressed
through 2φ1.
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Degeneration at q = 1 destroys large-N limit transition

Recall that the degeneration, as q → 1−, assumes

(c, d) = (qA+1,−qB+1), where A,B > −1.

Therefore, (c, d) must be in the complementary series and, moreover,
c and d must have opposite sign.
On the other hand, the limit regime assumes

(c, d) = (γt1−N , δt1−N ).

This in turn requires to take γ > 0, δ < 0. But then (c, d) →
(+∞,−∞) and hence, for N large enough, (c, d) cannot be in the
complementary series as [c, d] will not be contained in one of the
intervals between the points

. . . − q−2, −q−1, −1, 1, q−1, q−2 . . .

Conclusion. Our large-N limit regime is a specific “q” phenomenon.
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Comments on proof

Claim 1 (convergence of Stokman-Koornwinder’s N -variate big q-
Jacobi polynomials ϕν|N as N →∞).

Proof is based on expansion of the ϕν|N ’s on multivariate inter-
polation Macdonald polynomials of Knop-Okounkov-Sahi.

Claim 2 (convergence of N -particle (q, t) Beta distributions.)
Existence of weak limit follows from Claim 1. A fine point is that

the resulting limit measure on Ω is concentrated on Ω∞ ⊂ Ω. This
is proved using the method of intertwiners.

Claim 3 (orthogonality).
Not evident that each of the limit functionsX → Φν(X; q, t; γ, δ)

gives a nonzero vector in the Hilbert space L2(Ω∞,M
q,t;γ,δ
∞ ). This

is proved by computation of the norms.

The special case θ = 1 is investigated in [O., 2017].
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Method of intertwiners: the boundary

Theorem 1. The space Ω∞ arises as the entrance boundary of a
(highly inhomogeneous) Markov chain

Ω1

Λ2
1

L99 Ω2

Λ3
2

L99 Ω3

Λ4
3

L99 . . .

Here ΩN is the space of all N -particle θ-sparse configurations on
[−1, 1]q and ΛNN−1 are certain stochastic matrices. Their con-
struction is based on [Okounkov, 1998].
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Method of intertwiners: coherency relation

Theorem 2. The N -particle (q, t) Beta distributions with parame-
ters (γt1−N , δt1−N ) (denote them by MN ) are consistent with the
stochastic matrices ΛNN−1 in the sense that

MNΛNN−1 = MN−1, row vector×matrix = row vector

In more detail, this coherency relation means∑
X∈ΩN

MN (X)ΛNN−1(X,Y ) = MN−1(Y ), for every fixed Y ∈ ΩN−1.

Theorem 1 & Theorem 2 automatically imply that the limit
measure limN→∞MN (the infinite-particle (q, t) Beta distribution)
lives on Ω∞ ⊂ Ω.
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Comparison with RMT

• Continuum R is replaced by a q-lattice.

• The “Jack-type” two-point factor |xi − xj |2θ, responsible for pair
interaction, is replaced by “Macdonald-type” factor∣∣∣∣∣∣

∏
1≤i 6=j≤N

θ−1∏
r=0

(xi − xjqr)

∣∣∣∣∣∣
• No space scaling in the large-N limit transition
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Summary: infinite-variate orthogonal polynomials

• A system {Φν} of “symmetric orthogonal polynomials with in-
finitely many variables” is constructed. They are indexed by arbi-
trary partitions ν and form an orthogonal basis in L2(Ω∞,M∞).

• The functions Φν actually live in the algebra Sym of symmetric
functions and have the form

Φν(x1, x2, . . . ) = Pν(x1, x2, . . . ; q, t) + lower degree terms,

where Pν( · ; q, t) is Macdonald symmetric function.

• Each Φν can be explicitly written as (a kind of ) (terminating)
basic hypergeometric series.
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