Positive representations of quantum groups

Alexander Shapiro

University of Toronto

August 10, 2017

Based on a joint work with Gus Schrader (Columbia University).

Positive representations are certain modules of a quantum group with many nice properties, for example:

- they are bimodules for a quantum group and its modular dual;
- Chevalley generators act there by positive essentially self-adjoint operators.

Conjecture

Positive representations form a "continuous braided monoidal category".

In 1999, Ponsot and Teschner proved the conjecture for $U_q(\mathfrak{sl}_2)$, namely

$$\mathcal{P}_{s_1}\otimes\mathcal{P}_{s_2}=\int_{\mathbb{R}_{>0}}^\oplus\mathcal{P}_sd\mu(s),$$

where $d\mu(s) = 4 \sinh(2\pi\hbar s) \sinh(2\pi\hbar^{-1}s) ds$.

Goal: prove the conjecture for other Dynkin types.

Applications:

- Non-compact Chern-Simons theory $\stackrel{?}{\longrightarrow}$ knot invariants.
- 4d N = 2 gauge theory ^{AGT}→ Liouville theory, 2d CFT Certain Virasoro modules 2 Positive rep's of U_q(sl₂) (as braided monoidal categories) To prove the equivalence one needs to calculate 3*i* and 6*i* symbols.
- Classical limits of 6*j*-symbols reproduce hyperbolic volumes of non-ideal tetrahedra.
- Inite-dimensional representations of quantum groups arise as "analytic continuation" in s ∈ R of positive representations P_s.

Quantum tori

The moduli space $\mathcal{X}_{G,\widehat{S}}$ of framed *G* local systems on \widehat{S} is covered by toric charts $\mathcal{T}_{\mathbf{i}} \simeq (\mathbb{C}^{\times})^d$ with log-canonical coordinates

$$\{x_j, x_k\} = \epsilon_{kj} x_j x_k.$$

On quantum level, toric charts \mathcal{T}_i become quantum tori:

$$\mathcal{T}_{\mathbf{i}}^{q} = \langle X_{1}, \ldots, X_{d} \rangle / \{ X_{j} X_{k} = q^{2\epsilon_{kj}} X_{k} X_{j} \}.$$

These quantum tori have the same field of fractions:

$$\mathcal{F} := \operatorname{Frac} \, \mathcal{T}_{i}^{q} = \operatorname{Frac} \, \mathcal{T}_{i'}^{q},$$

and are "glued" by quantum cluster mutations that preserve \mathcal{F} . The quantized moduli space $\mathcal{X}_{G,\widehat{S}}^{q}$ consists of those elements of \mathcal{F} that are Laurent polynomials in any chart $\mathcal{T}_{\mathbf{i}}^{q}$.

Theorem (Schrader-S. '16)

Let \widehat{S} be a punctured disk with two marked points. Then there is an embedding of algebras

$$U_q(\mathfrak{sl}_n) \hookrightarrow \mathcal{X}^q_{PGL_n,\widehat{S}},$$

with the property that for each Chevalley generator of the quantum group, there is a cluster in which this generator is a cluster monomial.

Conjecture

$$\mathrm{U}_q(\mathfrak{sl}_n)\simeq \left(\mathcal{X}^q_{PGL_n,\widehat{S}}\right)^{S_n}.$$

Idea: Pull-back representations of the field of fractions \mathcal{F} under the embedding $U_q(\mathfrak{sl}_n) \hookrightarrow \mathcal{F}$.

$$egin{array}{lll} E\mapsto X_1(1+qX_2), & K\mapsto q^2X_1X_2X_3, \ F\mapsto X_3(1+qX_4), & K'\mapsto q^2X_3X_4X_1. \end{array}$$

KK' is central.

Recall that

$$E = \mu_2(X_1)$$
 and $F = \mu_4(X_3)$.

Let

$$q = e^{\pi i \hbar^2}, \quad \hbar^2 \in \mathbb{R}_+ \setminus \mathbb{Q}_+.$$

We embed a quantum cluster chart \mathcal{T}^q into a Heisenberg algebra \mathcal{H} generated by x_1, \ldots, x_d with relations

$$[x_j, x_k] = \frac{i}{2\pi} \epsilon_{jk},$$

by the homomorphism

$$X_j \mapsto e^{2\pi\hbar x_j}.$$

The algebra \mathcal{H} has a family of irreducible Hilbert space representations V_{χ} parameterized by central characters $\chi \in \operatorname{Hom}(\ker \epsilon, \mathbb{R})$, in which the generators X_j act by unbounded self-adjoint operators.

Modular duality

Now consider $q^{\vee} = e^{\pi i/\hbar^2}$, obtained from $q = e^{\pi i\hbar^2}$ by the transformation $\hbar \mapsto 1/\hbar$.

We also have an embedding of $\mathcal{T}^{q^{ee}}$ into the Heisenberg algebra $\mathcal H$ given by

$$ilde{X}_j = e^{2\pi\hbar^{-1}x_j}$$

so

$$ilde{X}_{j} ilde{X}_{k}=(q^{ee})^{2\epsilon_{kj}} ilde{X}_{k} ilde{X}_{j}.$$

Note that the generators \tilde{X}_k commute with the original ones $X_j = e^{2\pi\hbar x_j}$:

$$X_j \tilde{X}_k = \mathrm{e}^{2\pi i \epsilon_{kj}} \tilde{X}_k X_j = \tilde{X}_k X_j,$$

since $\epsilon_{kj} \in \mathbb{Z}$.

Cluster mutation in direction k is now realized by conjugation by *non-compact quantum dilogarithm*

$$\Phi^{\hbar}(z) = rac{\Gamma_q(e^{2\pi\hbar z})}{\Gamma_{q^{ee}}(e^{2\pi\hbar^{-1}z})}.$$

We have

$$\overline{\Phi^{\hbar}(\overline{z})} = rac{1}{\Phi^{\hbar}(z)},$$

so since x_k is self-adjoint, the operator $\Phi^{\hbar}(x_k)$ is a unitary operator on V_{χ} .

This means the mutated operators $\mu_k(X_j)$ are also positive self-adjoint, and we get a unitary representation of the groupoid of cluster transformations.

Example: positive representations of $U_q(\mathfrak{sl}_2)$

Consider the Hilbert space $\mathcal{H} = L^2(\mathbb{R})$, and the self-adjoint, unbounded operators

$$\hat{p} = \frac{i}{2\pi} \frac{\partial}{\partial x}, \quad \hat{x} = x.$$

Then for all $s \in \mathbb{R}$, we have positive self-adjoint operators

$$\begin{aligned} X_1 &= e^{2\pi\hbar(\hat{p}-s)}, & X_2 &= e^{2\pi\hbar(\hat{x}+2s)} \\ X_3 &= e^{2\pi\hbar(-\hat{p}-s)}, & X_4 &= e^{2\pi\hbar(-\hat{x}+2s)} \end{aligned}$$

satisfying the cyclic quiver relations

$$q^2 X_k X_{k+1} = X_{k+1} X_k, \quad k \in \mathbb{Z}/4\mathbb{Z},$$

where $q = e^{\pi i \hbar^2}$.

Example: positive representations of $U_q(\mathfrak{sl}_2)$

Chevalley generators of $U_q(\mathfrak{sl}_2)$ act by positive, self-adjoint operators

$$\begin{split} E &\mapsto e^{2\pi\hbar(\hat{p}-s)} + e^{2\pi\hbar(\hat{p}+\hat{x}+s)} = \mu_2 \left(e^{2\pi\hbar(\hat{p}-s)} \right), \qquad K \mapsto e^{2\pi\hbar\hat{x}}, \\ F &\mapsto e^{-2\pi\hbar(\hat{p}+s)} + e^{-2\pi\hbar(\hat{p}+\hat{x}-s)} = \mu_4 \left(e^{-2\pi\hbar(\hat{p}+s)} \right), \quad K' \mapsto e^{-2\pi\hbar\hat{x}}. \end{split}$$

The $U_q(\mathfrak{sl}_2)$ Casimir element Ω acts by

$$\Omega\mapsto e^{4\pi\hbar s}+e^{-4\pi\hbar s}$$

Geometric approach: cutting and gluing isomorphisms

With Gus, we have a geometric approach to the conjecture using quantum higher Teichmüller theory.

First observation: central character of \mathcal{P}_{λ} is determined by eigenvalues of the holonomy around the puncture.

Geometric approach: cutting and gluing isomorphisms

Picture for $P_{\lambda} \otimes P_{\mu}$:

Casimirs of $\Delta(U_q(\mathfrak{g}))$ are determined by the holonomy around the red loop.

Geometric approach: cutting and gluing isomorphisms

Teichmüller theory interpretation of the decomposition of the tensor product of positive representations:

$${\sf P}_\lambda\otimes{\sf P}_\mu=\int_
u{\sf P}_
u\otimes{\sf M}_{\lambda,\mu}^
u{\sf d}
u.$$

Algebraically: the picture let us read off a natural sequence of cluster transformations, which identifies the traces of holonomies with the Hamiltonians of the *q*-difference *open Toda lattice*.

Fix a Coxeter element $c = s_1 s_2, \ldots, s_n$ of the symmetric group S_{n+1} . Let $H \subset SL_{n+1}(\mathbb{C})$ be a Cartan subgroup, B_{\pm} a pair of opposite Borels, and consider the double Bruhat cell

$$SL_{n+1}^{c,c}=B_+cB_+\cap B_-cB_-.$$

Then dim $SL_{n+1}^{c,c}/Ad_H = 2n$, and the conjugation-invariant functions define an integrable system.

The eigenfunctions of the quantum Toda Hamiltonians have been determined by Kharchev-Lebedev-Semenov-Tian-Shansky: they are the *q*-Whittaker functions.

Theorem (Kharchev-Lebedev-Semenov-Tian-Shansky, Kashaev)

The q-Whittaker functions are orthogonal and complete for $\mathfrak{g} = \mathfrak{sl}_2$.

Conjecture

The q-Whittaker functions are orthogonal and complete for other types.

At the end of the day, we construct an intertwining operator

$$\mathcal{I}\colon \mathcal{P}_{\lambda}\otimes \mathcal{P}_{\mu} \longrightarrow \int_{\mathcal{C}^{+}}^{\oplus} \mathcal{P}_{\nu}\otimes \textit{M}_{\lambda,\mu}^{\nu} \textit{dm}(\nu),$$

here $dm(\lambda)$ is the Sklyanin measure

$$dm(\lambda) = \prod_{j < k} 4 \sinh \left(\pi \hbar (\lambda_j - \lambda_k) \right) \sinh \left(\pi \hbar^{-1} (\lambda_j - \lambda_k) \right),$$

The intertwiner \mathcal{I} is an integral operator, whose kernel is a product of a number of quantum dilogarithms.

To a surface \widehat{S} , higher Teichmüller theory assigns an algebra $\mathcal{A}_{\widehat{S}}$ acting on a Hilbert space $\mathcal{H}_{\widehat{S}}$. Suppose we cut \widehat{S} into

$$\widehat{S} = \widehat{S}_1 \cup \widehat{S}_2.$$

Question: How does a representation $\mathcal{H}_{\widehat{S}}$ decompose with respect to the subalgebra $\mathcal{A}_{\widehat{S}_1}$?

Our construction allows to answer this question, when we cut out a pair of pants. By similar methods, we can cut a handle by a non-separating cycle.

The missing ingredient is cutting/gluing of a hole with a disk.

Thank you for listening!