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The Heisenberg spin-1/2 chain:
an archetype of quantum integrable models

The XXZ spin-1/2 Heisenberg chain
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� space of states: H = ⊗N
n=1Hn with Hn ' C2

� σx,y,z
m ∈ End(Hn) : local spin-1/2 operators (Pauli matrices) at site m

� ∆ = cosh η : anisotropy parameter → ∆ = 1 for XXX (isotropic) chain

� h : magnetic field

� usually periodic boundary conditions are considered: σαN+1 = σα1

? First model solved via Bethe ansatz [Bethe, 1931]

? More algebraic solution in the framework of the Quantum Inverse
Scattering Method (QISM) [Faddeev, Sklyanin, Takhtajan, 1979]

 solution based on the representation theory of the Yang-Baxter algebra



The (periodic) XXX/XXZ spin-1/2 chain is probably the most widely studied
quantum integrable model:

? It has a simple Yang-Baxter algebra:
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 with ϕ(λ) =

{
λ (XXX chain)

sinh(λ) (XXZ chain)

� monodromy matrix: T (λ) = R0N(λ) . . .R01(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
R(λ− µ)

(
T (λ)⊗ 1

)(
1⊗ T (µ)

)
=
(
1⊗ T (µ)

)(
T (λ)⊗ 1

)
R(λ− µ)

� transfer matrix: t(λ) = trT (λ) = A(λ) + D(λ)

[t(λ), t(µ)] = [t(λ),H] = 0

? there exists a reference state (the state | 0 〉 ≡ | ↑↑ . . . ↑ 〉 ) such that

C(λ) | 0 〉 = 0, A(λ) | 0 〉 = a(λ)| 0 〉, D(λ) | 0 〉 = d(λ)| 0 〉

 algebraic Bethe ansatz (ABA) can be applied and eigenstates of t(λ)
can be constructed as Bethe states:

| {λ} 〉 =
n∏

k=1

B(λk)| 0 〉 ∈ H, 〈 {λ} | = 〈 0 |
n∏

k=1

C(λk) ∈ H∗

→ eigenstates (“on-shell” Bethe states) if {λ} solution of Bethe eq.
→ “off-shell” Bethe states otherwise



It is now possible to have access to correlation functions from the study of the
periodic XXZ chain by algebraic Bethe Ansatz

either numerically [Caux et al. 2005. . . ]

either analytically: large distance asymptotic behavior at the
thermodynamic limit. . . [Kitanine, Kozlowski, Maillet, Slavnov, VT 2008,

2011. . . ]

Both approaches are based

on the form factor decomposition of the correlation functions:

〈ψg |σαn σβn′ |ψg 〉 =
∑

eigenstates
|ψi 〉

〈ψg |σαn |ψi 〉 · 〈ψi |σβn′ |ψg 〉

on the exact determinant representations for the form factors 〈ψi |σαn |ψj〉
in finite volume [Kitanine, Maillet, VT 1999] , obtained from

� the action of local operators on Bethe states (using the solution of
the quantum inverse problem σ−n = t(0)n−1 B(0) t(0)−n)

� the use of Slavnov’s determinant representation for the scalar
products of Bethe states [Slavnov 89]

〈{µ}off-shell|{λ}on-shell〉 ∝ det1≤j,k≤n

[
∂τ(µj |{λ})

∂λk

]



Generalizations to more complicated integrable models ?

Limitations of the ABA approach:

it requires the clear identification of a reference state | 0 〉
 there are some interesting models for which ABA cannot be applied

even if ABA is a priori applicable, the completeness of the eigenstate
construction is a delicate issue

the ABA Bethe states have a complicated combinatorial structure

 the generalization of Slavnov’s formula for the scalar products of
Bethe states is a difficult problem (one does not know any
model-independent procedure to compute these scalar products)



Integrable generalizations of the XXZ Heisenberg chain

It has several interesting generalizations which are still integrable (in the sense
that one can still define a family of commuting transfer matrices):

? XYZ model (related to 8-vertex model):

HXYZ =
N∑

m=1

{
Jx σ

x
mσ

x
m+1 + Jy σ

y
mσ

y
m+1 + Jz σ

z
mσ

z
m+1

}

? Open spin chains (with boundary magnetic fields):
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 relation with open Asymmetric Simple Exclusion Process (ASEP) [de

Gier, Essler 05]

? higher spins or higher ranks. . .



The reflection algebra for the XXZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ n ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ+ η)U2(µ) = U2(µ)R12(λ+ µ+ η)U1(λ)R12(λ− µ)

↪→ most general 2× 2 solution of the refl. eq.
[de Vega, Gonzalez-Ruiz; Ghoshal, Zamolodchikov 93] :

K(λ; ζ, κ, τ) =
1

sinh ζ

(
sinh(λ− η

2
+ ζ) κeτ sinh(2λ− η)

κe−τ sinh(2λ− η) sinh(ζ − λ+ η
2

)

)

 2 boundary matrices K±(λ) describing boundary fields in left/right boundaries

 U(λ) = T (λ)K−(λ)σy T t(−λ)σy =

(
A(λ) B(λ)
C(λ) D(λ)

)
 transfer matrix: T (λ) = tr{K+(λ)U(λ)} [T (λ), T (µ)] = 0

Hopen
XXZ ∝

d

dλ
T (λ)



The open spin chains: limitations of the solution by ABA

? In the diagonal case (κ± = 0, boundary fields along σz
1 and σz

N only):

� the state | 0 〉 can still be used as a reference state to construct the
eigenstates  ABA can be applied [Sklyanin 88]

� ∃ generalization of Slavnov’s formula for the scalar products of Bethe
states [Tsuchiya 98; Wang 02]

� correlation functions can be computed (but no simple closed formula
for the form factors) [Kitanine et al. 07]

? it is possible to generalize Bethe ansatz equations to other cases with
nevertheless some constraints on the boundary fields [Nepomechie 03] , but

� problems in the ABA construction of a complete set of Bethe states
[Cao et al 03; Yang, Zhang 07; Filali, Kitanine 11]

 scalar products and correlation functions cannot be computed

? most general boundaries ? an ABA solution is missing. . .



A complementary approach to ABA: Sklyanin’s quantum
Separation of Variables (SOV) [Sklyanin 85,90]

Idea: Use the ”operator roots” b̂j of the operator B(λ) from the monodromy
matrix to construct a basis of the space of state which ”separate the variables”
for the transfer matrix spectral problem

Conditions on B(λ):

[B(λ),B(µ)] = 0,

B(λ) is a (usual, trigonometric, elliptic. . . ) polynomial of degree N

B(λ) is diagonalizable with simple spectrum

 N commuting ”operators roots” b̂j (with Spec(b̂j) ∩ Spec(b̂k) = ∅ if j 6= k)
which can be used to define a basis of the space of states H:

| b 〉 with b = (b1, . . . , bN) ∈ Spec(b̂1)× · · · × Spec(b̂N)

b̂n | b 〉 = bn | b 〉

This basis is moreover such that

A(b̂n) | b1, . . . , bn, . . . , bN 〉 = ∆+(bn) | b1, . . . , bn + η, . . . , bN 〉

D(b̂n) | b1, . . . , bn, . . . , bN 〉 = ∆−(bn) | b1, . . . , bn − η, . . . , bN 〉



A complementary approach to ABA: Sklyanin’s quantum
Separation of Variables (SOV) [Sklyanin 85,90]

 In this basis, the multi-dimensional spectral problem for the transfer matrix
t(λ) = A(λ) +D(λ) can be reduced to a set of N one-dimensional
finite-difference spectral problems:

t(λ) |Ψτ 〉 = τ(λ) |Ψτ 〉,

with |Ψτ 〉 =
∑

b=(b1,...,bN )

ψτ (b1, . . . , bN) | b 〉,

is solved by

ψτ (b1, . . . , bN) =
N∏

n=1

Qτ (bn)

where Qτ (bn) and τ(bn) are solution of a discrete version of Baxter’s T-Q
equation, for n ∈ {1, . . . ,N}, bn ∈ Spec(b̂n):

τ(bn)Qτ (bn) = ∆+(bn)Q(bn + η) + ∆−(bn)Qτ (bn − η)

Remark: the completeness is given by construction



SOV for the antiperiodic XXZ chain

One can here apply this process to the antiperiodic monodromy matrix (with
inhomogeneity parameters ξ1, . . . , ξN):

T̄ (λ) = σx R0N(λ− ξN) . . .R02(λ− ξ2)R01(λ− ξ1)

=

(
Ā(λ) B̄(λ)
C̄(λ) D̄(λ)

)
=

(
C(λ) D(λ)
A(λ) B(λ)

)

B̄(λ) = D(λ) is a (trigonometric) polynomial of degree N with N
operator roots b̂n

Spec(b̂n) = {ξn, ξn − η}
→ the simplicity condition is fulfilled if ξj 6= ξk , ξk ± η for j 6= k

 basis | b 〉 of H and 〈 b | of H∗ which separate the variables for the spectral
problem for the antiperiodic transfer matrix t̄(λ) = Ā(λ) + D̄(λ)

Remark: Since b is of the form (ξ1 − h1η, . . . , ξN − hNη) with
h = (h1, . . . , hN) ∈ {0, 1}N , we shall use from now on the notation | h 〉 and
〈 h | instead of | b 〉 and 〈 b |.



SOV for the antiperiodic XXZ chain: Spectrum and
eigenstates of the antiperiodic transfer matrix

If the inhomogeneity parameters of the model are such that

Λi ∩ Λj = ∅, if i 6= j , where Λi = Spec(b̂i ) = {ξi , ξi − η}, 1 ≤ i ≤ N

the antiperiodic transfer matrix t̄(λ) = Ā(λ) + D̄(λ) has simple spectrum, and
a function τ(λ) is an eigenvalue of t̄(λ) if and only if

1 it is a

{
polynomial (XXX case)

trigonometric polynomial (XXZ case)
of degree N − 1.

2 it satisfies the discrete system of equations

τ(ξj) τ(ξj − η) = −a(ξj) d(ξj − η), ∀j ∈ {1, . . . ,N}.

The t̄(λ)-eigenstate associated with the eigenvalue τ(λ) is

|Ψτ 〉 =
∑

h∈{0,1}N

N∏
a=1

Qτ (ξa − haη)Vξ+hη | h 〉

where Vξ+hη =
∏

b<a ϕ(ξa + haη − ξb − hbη), and where Qτ ∈ Fun(∪N
j=1Λj)

satisfies

τ(bn)Qτ (bn) = −a(bn)Qτ (bn − η) + d(bn)Qτ (bn + η),

for bn ∈ {ξn, ξn − η}, 1 ≤ n ≤ N.



Form factors of local operators in antiperiodic XXZ chain

Scalar product of left/right eigenstates:

? The transfer matrix eigenstates are particular cases of “separate
states”:

〈α | =
∑

h∈{0,1}N

N∏
a=1

α(ξa − haη)Vξ−hη 〈 h |

|β 〉 =
∑

h∈{0,1}N

N∏
a=1

β(ξa − haη)Vξ+hη | h 〉

with α, β ∈ Fun(∪N
j=1Λj)

? scalar product for SOV states: 〈h | k〉 =
δh,k

Vξ−hη
where
Vξ =

∏
k<j ϕ(ξj − ξk) = det1≤i,j≤N [ϕ̃(ξi )

j−1]

 determinant representation for the scalar product of left/right separate
states (for XXX):

〈α |β 〉 = det1≤i,j≤N

[
1∑

h=0

α(ξi − hη)β(ξi − hη) (ξi + hη)j−1

]



Form factors of local operators in antiperiodic XXZ chain

Scalar product of left/right eigenstates:

Eigenstates written as “separate states”

 determinant representation for the scalar product of left/right separate
states (for XXX):

〈α |β 〉 = det1≤i,j≤N

[
1∑

h=0

α(ξi − hη)β(ξi − hη) (ξi + hη)j−1

]

Solution of the quantum inverse problem:

σ−m =
m−1∏
k=1

t̄(ξk) · B̄(ξm) ·
m∏

k=1

[
t̄(ξk)

]−1

and similar expressions for σ+
m, σz

m. . .

SOV action of B̄(ξm) on | h 〉 → form factors reduce to scalar products of
separate states

 determinant representations for the finite-size form factors of the XXX (or
XXZ model)



The XXZ open spin chain by SOV

Similar construction can be performed for the XXZ open spin chain with
(at least) one triangular boundary matrix [Niccoli 13]

In the XXX case, the most general boundaries can be reduced to this case
by means of the SU(2) symmetry [cf. also Frahm et al. 08]

In the XXZ case, the most general boundaries can be reduced to this case
by means of a Vertex-IRF transformation (dynamical gauge
transformation) [cf. Baxter 73; Cao et al, 03. . . ]

R12(λ− µ) S1(λ|β) S2(µ|β + σz
1) = S2(µ|β) S1(λ|β + σz

2)Rdyn
12 (λ− µ|β)

K dyn
− (λ|β) = S−1(−λ+ η/2|β)K−(λ) S(λ− η/2|β)

with

S(λ|β) =

(
eλ−η(β+α) eλ+η(β−α)

1 1

)
 new boundary monodromy matrix Udyn

− (λ|β)

Rdyn
21 (λ− µ|β) Udyn

1 (λ|β + σz
2) Rdyn

12 (λ+ µ− η|β) Udyn
2 (µ|β + σz

1)

= Udyn
2 (µ|β + σz

1) Rdyn
21 (λ+ µ− η|β) Udyn

1 (λ|β + σz
2) Rdyn

12 (λ− µ|β)

 spectrum and eigenvectors of
T dyn(λ|β) = S1...N({ξ}|β)−1 T (λ) S1...N({ξ}|β)

Similar formulas also hold for the scalar products of separate states



Problems...

All these results (characterization of the transfer matrix spectrum and
eigenstates, expressions for the scalar products/form factors...) depend on a
non-trivial way on the inhomogeneity parameters of the model

 the study of the homogeneous (→ physical model) or thermodynamic
limits is not easy !

 2 main problems to be solved:

1 reformulate the discrete characterization (in terms of discrete T-Q
equations) of the spectrum in a more convenient way, i.e. in terms of
continuous T-Q equations

 Bethe equations and Bethe-type representation for the eigenstates

2 transform the determinant representations for the scalar products/form
factors into a more convenient form for the consideration of the
homogeneous/thermodynamic limit



Problems...

All these results (characterization of the transfer matrix spectrum and
eigenstates, expressions for the scalar products/form factors...) depend on a
non-trivial way on the inhomogeneity parameters of the model

 the study of the homogeneous (→ physical model) or thermodynamic
limits is not easy !

 2 main problems to be solved:

1 reformulate the discrete characterization (in terms of discrete T-Q
equations) of the spectrum in a more convenient way, i.e. in terms of
continuous T-Q equations

 Bethe equations and Bethe-type representation for the eigenstates

2 transform the determinant representations for the scalar products/form
factors into a more convenient form for the consideration of the
homogeneous/thermodynamic limit



From discrete to continuous T-Q equations

SOV characterization of the spectrum/eigenstates of the transfer matrix:

? eigenvalue τ(λ) characterized by

its functional form (polynomial of a given degree. . . )

the fact that it satisfies a discrete system of equations at the
(shifted) inhomogeneity parameters:

there exists Qτ ∈ Fun(∪N
j=1Λj) (Λj = {ξj , ξj − η}) s.t.

τ(b)Qτ (b) = −a(b)Qτ (b − η) + d(b)Qτ (b + η) on ∪N
j=1 Λj

? The corresponding eigenvector |Ψτ 〉 is constructed in terms of Qτ

Question: Can we identify a class of function ΣQ on C such that, for each
eigenvalue τ(λ), there exists a unique Q(λ) ∈ ΣQ

? which interpolates the 2N discrete values Qτ (ξn) and Qτ (ξn − η)

? s.t. τ(λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ+ η) ?

 complete description of the spectrum in terms of Bethe equations, and
rewriting of the eigenstates as Bethe-type states



From discrete to continuous T-Q equations: the
antiperiodic XXX case

Theorem

The following propositions are equivalent:

1 τ(λ) is an eigenvalue of the antiperiodic transfer matrix

2 τ(λ) is an entire function of λ such that there exists a unique polynomial
Q(λ) of the form

Q(λ) =
R∏
j=1

(λ− λj), R ≤ N, λ1, . . . λR ∈ C \ {ξ1, . . . , ξN},

such that τ(λ) and Q(λ) satisfy the functional T-Q equation

τ(λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ+ η).

 the complete characterization of the antiperiodic transfer matrix spectrum
(and eigenstates) is given by the solutions of the Bethe equations for R ≤ N:

a(λj)
R∏

k=1

(λj − λk − η) = d(λj)
R∏

k=1

(λj − λk + η), 1 ≤ j ≤ R

with corresponding eigenstates which can be written as Bethe-type vectors:

B̄(λ1) . . . B̄(λR) |Ω 〉 with |Ω 〉 = ⊗N
n=1

(
1
−1

)



From discrete to continuous T-Q equations: the
antiperiodic XXZ case

Construction of the Q-operator using the “pair-propagation through a vertex”
property of the six-vertex model [Batchelor et al. 95]

 eigenvalues of the form Q(λ) =
N∏
j=1

sinh
(λ− λj

2

)
, λ1, . . . , λN ∈ C (1)

Starting from the SOV complete characterization of the spectrum in terms of
discrete equations we have indeed proven that

Theorem [Niccoli, VT 2015]

The following propositions are equivalent:

1 τ(λ) is an eigenvalue of the antiperiodic transfer matrix

2 τ(λ) is an entire function of λ such that τ(λ+ iπ) = (−1)N−1 τ(λ), and
there exists a unique function Q(λ) of the form (1) such that

τ(λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ+ η).

This function Q(λ) is s.t.
(
Q(ξj),Q(ξj + iπ)

)
6= (0, 0) ∀j ∈ {1, . . . ,N}.



From discrete to continuous T-Q equations: the
antiperiodic XXZ case

Q(λ) =
N∏
j=1

sinh
(λ− λj

2

)
, λ1, . . . , λN ∈ C (1)

Theorem [Niccoli, VT 2015]

The following propositions are equivalent:

1 τ(λ) is an eigenvalue of the antiperiodic transfer matrix

2 τ(λ) is an entire function of λ such that τ(λ+ iπ) = (−1)N−1 τ(λ), and
there exists a unique function Q(λ) of the form (1) such that

τ(λ)Q(λ) = −a(λ)Q(λ− η) + d(λ)Q(λ+ η).

This function Q(λ) is s.t.
(
Q(ξj),Q(ξj + iπ)

)
6= (0, 0) ∀j ∈ {1, . . . ,N}.

 the complete characterization of the antiperiodic transfer matrix spectrum
(and eigenstates) is given by the solutions of the Bethe equations:

a(λj)
N∏

k=1

sinh
(λj − λk − η

2

)
= d(λj)

N∏
k=1

sinh
(λj − λk + η

2

)
, 1 ≤ j ≤ N

with corresponding eigenstates which can still be written as Bethe-type vectors:
B̂(λ1) . . . B̂(λN) |Ω 〉 but here B̂ 6= B̄ !



From discrete to continuous T-Q equations: the
XXX/XXZ open case

If Nepomechie’s constraint on the boundary parameters is satisfied, it is
possible to reformulate the SOV discrete characterization of the spectrum
in terms of polynomial (in λ2 for XXX and in sinh2 λ for XXZ) Q-solutions
of a functional T -Q equation of the form

τ(λ)Q(λ) = A(λ)Q(λ− η) + A(−λ)Q(λ+ η).

where A(λ) depends on the boundary parameters

 the SOV construction also provides the corresponding Bethe states

If Nepomechie’s constraint is not satisfied, such a reformulation is
presently not known.

 It was instead proposed in different contexts [Cao et al. 2013; Kitanine,

Maillet, Niccoli 2013; Belliard, Crampé 2013] to consider instead polynomials
solutions of a T -Q with an inhomogeneous term:

τ(λ)Q(λ) = A(λ)Q(λ− η) + A(−λ)Q(λ+ η) + F (λ),

with F (ξn) = F (ξn + η) = 0, n = 1, . . . ,N.

Remark. It is possible to rewrite the separate states in a Bethe-type form, i.e.
as multiple action of commuting operators B̄(λ) on a reference state |Ω 〉



Determinant representations for the scalar products and
form factors: antiperiodic XXX case [Kitanine, Maillet, Niccoli, VT 15]

For two separate states

〈α | =
∑

h∈{0,1}N

N∏
a=1

α(ξa − haη)Vξ−hη 〈 h |, |β 〉 =
∑

h∈{0,1}N

N∏
a=1

β(ξa − haη)Vξ+hη | h 〉

with α(λ) =

p∏
j=1

(λ− αj), β(λ) =

q∏
j=1

(λ− βj) and Vξ = det
1≤i,j≤N

[ξj−1
i ]

〈α |β 〉 = det1≤i,j≤N

[
1∑

h=0

α(ξi − hη)β(ξi − hη) (ξi + hη)j−1

]
This determinant can be transformed, through some algebraic identities, to a
similar determinant in which the role of the set of variables {ξj} and
{αj} ∪ {βj} are exchanged.

In its turn, this new determinant can be transformed into a generalized
version of Slavnov’s determinant (which reduces to the usual Slavnov
determinant when p = q and when one of the state is an eigenstate)

 One can express the form factors of local operators in a form similar to ABA

Remark: Due to the SU(2) symmetry of the XXX spin chain, it is possible to
relate the form factors of the antiperiodic chain with the form factors of the
σz -twisted chain, which can be computed by ABA  check of the result



Determinant representations for the scalar products: open
XXX chain with non-diagonal boundaries

In the case with a constraint (solvable by Bethe ansatz):

the SOV construction provides the completeness of the Bethe eigenstates: the
later are characterized in terms of polynomial solutions

Q(λ) =

q∏
j=1

(λ2 − λ2
j ), q ≤ N,

of the functional T -Q equation

general separate states (associated with arbitrary polynomials) correspond to
(off-shell) Bethe states

the scalar products of two arbitrary separate states, associated with
polynomials α(λ) =

∏nα
j=1(λ2−α2

j ) and β(λ) =
∏nβ

j=1(λ2−β2
j ) (with nβ ≥ nα)

can be reformulated in terms of a generalized Slavnov determinant of size nβ

the determinant simplifies if one of the states is an eigenstate

Remark: A representation in terms of a generalized Slavnov determinant can also
be obtained in the case without constraint (most general boundaries) for the scalar
products of separate states associated with polynomials (at the price of using the
T-Q equation with extra inhomogeneous term)



What about the XXZ cases ?

? In the antiperiodic XXZ case: separates states should be associated with
functions of the form

α(λ) =

p∏
j=1

sinh
(λ− αj

2

)
, β(λ) =

q∏
j=1

sinh
(λ− βj

2

)
whereas Sklyanin measure is Vξ =

∏
k<j

sinh(ξj − ξk)

 the naive generalization of the algebraic identities used in the XXX case does
not enable us to transform the determinant for 〈α|β〉

? In the XXZ open case: separates states should be associated with polynomials
of the form

α(λ) =

p∏
j=1

[cosh(2λ)− cosh(2αj)], β(λ) =

q∏
j=1

[cosh(2λ)− cosh(2βj)]

and Sklyanin measures is Vξ =
∏
k<j

[cosh(2ξj)− cosh(2ξk)]

 the naive generalization of the algebraic identities used in the XXX case
enables us to transform the determinant for 〈α|β〉 into a generalized Slavnov’s one
only at the price of an additional constraint between the boundary parameters

There is nevertheless the possibility to compute scalar products between two
slightly different types of separate states, constructed from two slightly different
versions of T-Q equations (→ 2 different rewriting of the same eigenstate)...



Conclusion

SOV provides by construction a complete description of the spectrum and
eigenstates, as well as determinant representations for the scalar products
of separate states and form factors of local operators

however, it needs a reformulation for the consideration of the
homogeneous / thermodynamic limit:

? from the characterization of the spectrum / eigenstates in terms of
discrete equations involving the inhomogeneity parameters of the
model to a description in terms of solutions of a continuous version
of these equations (functional T -Q equation  Bethe equations)

? from determinant representations for the form factors involving the
inhomogeneity parameters to some more convenient representations
in terms of the Bethe roots

Interesting open problems:

? solution of the functional T-Q equation for the general open chain
(case without constraint) ?

? how to transform the scalar product determinant when Q(λ) is not a
polynomial (cf. antiperiodic XXZ, but also antiperiodic XYZ. . . ) ?


