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Aim : Probabilistic approaches to investigation of
nonlinear parabolic systems arising in physics,
biology, financial mathematics,

ue — div(F(u)Vu) = f(u), F(u)=(F"),
u(0,x) = up(x) € R, x € R?
and / or
us + div(M(u)Vu) + f(u) =0, M(u) = (M),
u(T,x)=u(x), 0<s<t<T.
ij=1...d Im=1,. .. . .d.
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Classification of nonilinear systems

1) Systems with diagonal principal part
PDE-approach - Ladyzenskaya, Solonnikov,
Uraltzeva (1967) - quasilinear case.
Probabilistic approach - Linear systems
Stroock, Dalecky 1965-1970, nonlinear —
Dalecky, Bel (1980 -1990 )- classical
solutions Bel.,Woyczynski (2012) — weak and
viscosity solutions.

(LYu)™ = lTrA“VQU’"(A“)* + (a", V)u™
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Stochastic problem has the form

d&(0) = a(&(0), u(0,£(0)))do0+A(E(0), u(0, 6(9)))(61';/(9),
2
f(s)=x€RY, s<OLT,

dn(0) = c(£(0), u(0.£(6)))n(0)do
+C(£(0), u(0.£(0))(n(0), dw(9)),  (3)
n(s) =he R,
(h, u(s,x)) = E[(n(T), uo(&x(T)N]. (4)

where B/ = C/™Aj; and summing over repeated
indices is assumed
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Quasilinear case
Consider the Cauchy problem

u™ 4 L(x, u, Vu)u™ + B (x,u, Vu)Vu'  (5)
—l—c'"/(x, u, ux)u/ =0, u(T,x)= u(x),
where

L(x,u, Vu)u = (a(x,u, Vu)Vu

1
+> TrA(x, u, Vu)V?uA(x, u, Vu)

Set v(s,x) = Vu(s, x), derive the equation for

V' = (u, Vu) called a differential prolongation of the
original equation and note that the systems w.r.t. V
is similar to (1).
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2) Reaction-diffusion systems. Consider the
Cauchy problem

ul' + Ly(x, u)u™ + Z cmi(x, u)u' =0, (6)
/

um(T,x) = uom(x),
1
Ln(x,u)v = (am(x, u), Vv>+§ TrA(x, u)V2VA% (x, u),

Set um(s, x) = u(s,x, m) and consider a Markov
chain y(0) € V. ={1,2,...,d} such that

P(y(t + At) = mly(t) = 1,(£(6),7(0)),0 < t)
= c™(&(t), u(t. (1), (1)) At + o(At).  (7)
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A stochastic counterpart for (6)

d&(0) = a"(£(0),~(0))do+A"(£(0), 7(9))dW(9),€((5)) =
8

dv(0) = / g¥(£(6).7(0). 2)p(d¥. d2). £(s) = x.

(9)
u(s, x, m) = E[uo(&s.x(T),vm(T))l, (10

d1
gV(Xa /,Z) = Z(m - /)I{ZGA/m(XN)}a
m=1

|Ajn(x, V)| = cm(x, v).
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3. Consider the Cauchy problem for the
MHD-Burgers system

O (v W)y = BV XB)XB,  v(0,x) = w(x)

(11)
B 2
%—t - %AB +V x(vxB), B(0,x)=Bx),
(12)
where x - vector product, v € R3 — fluid velocity,

B € R?® — magnetic field, ;1 and o — fluid viscosity
and conductivity.

Belopolskaya Ya. Probabilistic models for nonlinear parabolic systems with cro



When x, v, B € R!
0 0
u 4 (U1U2)

O'2 82U1
= ?W7 Ul(O,X) = Ulo(X)

ot Ox
(13)
Ou, 10(u? 4+ u3) v?0%u
Bt = g w0 = val)
(14)

Note that in Elsesser variables e™ = u; 4 u, the
system (13),(14) is reduced to

De* N o(e*)? p?+o0°0%e*  p?—o’d%e
ot ox 4 Ox? 4 0x?

that is a cross-diffusion system.
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4. Cross-diffusion systems a) Chemotaxis
models -

up = div(a(u, v)Vu+b(u,v)Vv)+g(u,v), (15)
ve = div(a(u, v)Vv + B(u, v)Vu) + v(u, v), (16)
u(0,x) = up(x), v(0,x) = v(x).
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b) Modeling spatial segregation phenomena of
competing species in population dynamics,
Shigesada, Kawasaki and Teramoto proposed [1] in
1979 to study some nonlinear parabolic systems
which include the following problem

up = Al(a1 + aq1u + apv)u] + u(ay — biu — av),
vi = Af(aa + ao1u + agpv)v] + v(ay — bhu — ov),
u(0,x) = up(x), v(0,x) = u,(x).
(17)
aq, bg, cq — positive constants, a, — nonnegative
constants. Lotka-Volterra system with cross diffusion.
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The aim of this talk is to construct a probabilistic
representation of a generalized solution of

ul = Af(u! + u?)u% + u%(a; — byu® — cyu?),
(18)
u9(0,x) = umo(x).
A pair (ul, u?) is called a generalized solution of (18)
if 1)u? € L2 ([0,00) x L°(RY)) g =1,2;

loc

2) V(u! + uv?) € L2 _((0,00) x RY);

loc

3) For any test function h € C°(RY)
Q/ uq(t,x)h(x)dx+1/ V[w(t, x)M;(u)]-V h(x)dx
ot Jra 2 Jpd
(19)
— [ w(emibondx. q=12,
Rd
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where {
SM(0) = 0H(6) + 2(0),

mi(x) = ag — beu*(x) — cau’(x), u = (u',?).

3") For any test function h € C5°([0, 00) x RY)

/Rd ud(t, x)h(t,x)dx — / u9(0, x)h(0, x)dx =

Rd

/Ot /Rd u(0, x) {he(Q,x) + %Ms(u)Ah(Q,x)} dxd 0+

t
// u?(0, x)mi(6,x)h(0,x)dxdd, q=1,2.
0 JRd
(20)
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Main results :
Set W={v=(vliv?):vie
L>((0, 00); LOO(Rd)),VVq c L,20C((O, 00) X :"\”d)7 vd >

0}.
Let u? € W solve (18). Consider SDE

d¢(6) = My(£(0))dw(0),  £(s) = &,

é(t) - g(T - t)? gO,Kz(t) — @O,t("i%
¢O,t © Spo,t(/‘é) =K

Belopolskaya Ya. Probabilistic models for nonlinear parabolic systems with cro



A weak solution u(t,x) € W of the Cauchy problem
(18) admits a probabilistic representation

wi(t,x) = E [0 6ox(0))] . (21)
where £9(0),n9(0) satisfy
{dgoﬁ(e) = M(u(8, &0.+(0)))dw(6), &.x(0) = &,

dn?(6) = g (&,.(0))n?(6)d0 + C5 (& .(0))n°(6)dw

(22)
n9(0) = 1.
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d&(6) = M,V M,](£(0))d0-+M,(£(6))d (6). 5((0) )= X,
23

with M, (x) = \/2[u!(t, x) + v?(t, x)] and

w(0) = w(T —6) —w(T) for afixed T > 6.
Denote by J: = Jo+ = Vo, (t) the Jacobian matrix
of the map o : R" — RY and set

Jo.t(w) = det Jo ¢ (w).

We call r9(6) = n9(0)h(£(0))J(0) a stochastic

test function.
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Assume that (u!, u?) is a weak solution of (18) and

u9 are strictly positive bounded W functions. Then
the SDE

d&(0) = Mu(£(0))dw(0),  &(s) = ~,

has a unique solution which is Cl-smooth in k. Let
£9(0) = vs.t(K), Oxps.t(k) = Js+ be its Jacobian.
Set £q((9) = ¢t7s(X) .
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Given the stochastic test function

ri(0) = n(0)h(0.x(0))J7(0)

2

we show that if u!, u? are generalized solutions to

(18), then
E(e), P(8))) = ((u%(0). h})
v€ | (u(6), IME(E(9)) B(E(6)

+m(0)h(£(0))]4(0)n(0)))do.
holds.
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First we compute dr9(t)
dr(t) = dn(0)h(€, x(6))J(6)-+7(6)dh(E2, (6)) J°(6)

+17(0)h(&5.:(0))dJ(0) + dn?(0)dh(&s.x(0))J(0)
+dn?(0)h(&s.x(0))dI(0) + 17(0)dh(&s.(0))dI(0)
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Taking into account expressions for
dn?(0), dh(¢d,.(0)) and dJ9(0) we can deduce

dr(0) = [[Lo(u)]" + &](&s.x(0))] h(&s.x(0))dO (24)

H G M (u)](E5.5(0))V h(Es.1(0))J(0)n°(0)db
=G VML) (E.1(0))h(Es.x(0))n%(0)J () d6
[V Mq(1)(E6,x(0)) IMu(E5.1(0))V h(&s.1(0))n?(0) J(0)db
+J(0)n(0) K (0)dw(0).




Now it remains to specify coefficients of the SDE for
the process for n9(t) satisfying (22) which ensure the
required integral identities. To this end

Lemma

Assume that m and C9 in (22) have the form

mj = mi(£(0)) — (VM,(£(0)), VM,((9))),

C3(£(0)) = —VM,(£(0)) = — ;z[;f]

Then we get

drd (6. y) = [L3) h(o, (0))n°(6)J°(6)d6 + d mart
(28)

(27)
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As soon as we get (28) we have to use the change of
variables formula under the integral sign, namely,

/ (o (x)) A(x)dx = / u(y)A(0.) o () dy

Since
@/Jo,t(X) =y, X= SOO,t(Y)
and hence
u(t) o tho,r = A(t)u(0) o o,
where

A(t) = exp /O 7921 (x) O+ /0 Co(n(x)dw(0)}
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To obtain a closed stochastic system we onsider a
stochastic equation of the form

dn(0) = [fﬁq]*(5(9))77"(9)d9+[5q]*(5(9))77"(9)sz()9),
29
n?(s) =9

- ay — (SO .
with respect to the vector n9(0) = | 7§ with
12 (0)

coefficients m9 and C7 to be chosen below. Let 9(6)

g 17101900, hat s o0)  (10) 600
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Cii=-ViM,I, C,=0, & =ci+|VM,|?I.
(30)
Next we choose
Ciy=-ViM,1,Chy = ViM,5, — VM, I,  (31)
= Vimd + [ViM)? 1,
oy = [m)ix — VM,V M, + |[VM,|? 1. (32)
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Theorem

Under assumptions of theorem 1 both the functions
u?(t, x) admit stochastic representations (21) and
functions V! = (u?,V,;u) admit stochastic
representations

(v“Z‘q?tXQ) -F Kg’i% 52"2(29)) (C%Eg%) |

V.
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