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Absract

We discuss a method which yields upper and lower bounds for
probabilities of unions of events. These bounds are stronger than
the Chung–Erdős inequality and its generalizations. Relationships
with Hölder’s inequality and bounds for the first jumps of
distribution functions are considered. The method is also applied
to derive upper and lower bounds for probabilities that at least r
from n events occur.
All inequalities have conditional (given σ-fields) variants which
may give stronger bounds for probabilities of unions.
We discuss generalizations of the Borel–Cantelli lemma. Earlier
generalizations are special cases. The conditional Borel–Cantelli
lemma is mentioned as well.



1. Introduction

Inequalities for probabilities of unions of events:
Chung and Erdős (1952), Gallot (1966), Dawson and Sankoff
(1967), Kounias (1968), Kwerel (1975 a,b,c), Móri and Székely
(1985), Boros and Prékopa (1989), Galambos and Simonelli
(1996), de Caen (1997), Kuai et al. (2000), Feng et al. (2009),
Prékopa (2009), Frolov (2012, 2014, 2015a,b) and references
therein. (See also references on the Borel–Cantelli lemma.)
Various methods have been applied to derive these inequalities.
One of them was developed in Frolov (2012, 2015a).



2. Two examples
Let {Ai}ni=1 be events and IAi

be the indicators of Ai . Put

Un =
n⋃

i=1

Ai , ξn =
n∑

i=1

IAi
, pi = P(ξn = i), 0 6 i 6 n.

Consider bounds for P(Un) in terms of µk = Eξkn =
∑n

i=1 ikpi .
Simplest bounds for P(Un) are based on µ1 and µ2.

Fix m ∈ N with 2 6 m 6 n and put ci =
(

1− i
m−1

) (
1− i

m

)
for

1 6 i 6 n. Then all ci > 0 and

0 6
n∑

i=1

cipi =
n∑

i=1

pi −
2m − 1

m(m − 1)
µ1 +

1

m(m − 1)
µ2. (1)

Hence,

P(Un) =
n∑

i=1

pi >
2m − 1

m(m − 1)
µ1 −

1

m(m − 1)
µ2. (2)

Inequality (2) holds for all m. Choose the best m.



2. Two examples
The inequality in (1) turns to equality for distributions of ξn
concentrated in 0, m − 1 and m. Take such distribution with two
first moments µ1 and µ2. To this goal, we solve the system:

(m − 1)p∗m−1 + mp∗m = µ1,

(m − 1)2p∗m−1 + m2p∗m = µ2.

Then

p∗m−1 =
mµ1 − µ2

m − 1
, p∗m =

µ2 − (m − 1)µ1

m
.

Since p∗m−1 > 0 and p∗m > 0, we have µ2/µ1 6 m 6 µ2/µ1 + 1.
Putting m = µ2/µ1 − θ + 1 in (2), we get the Dawson–Sankoff
inequality:

P(Un) >
θµ2

1

µ2 + (1− θ)µ1
+

(1− θ)µ2
1

µ2 − θµ1
, (3)

where θ = µ2/µ1 − [µ2/µ1] and [x ] is the integer part of x . Note
that θ may be positive. The right-hand side of (3) is minimal for

θ = 0. It yields the Chung–Erdős inequality: P(Un) > µ2
1
µ2
.



2. Two examples
Instead of ξn, consider the r.v. ηn with qi = P(ηn = xi ) for
1 6 i 6 n, and 0 < x1 < x2 < · · · < xn. Put s1 = Eηn =

∑n
i=1 xiqi

and s2 = Eη2
n =

∑n
i=1 x2

i qi . An analogue of (1) is

0 6
n∑

i=1

(
1− xi

xm−1

)(
1− xi

xm

)
qi =1− xm + xm−1

xmxm−1
s1 +

1

xmxm−1
s2. (4)

For positive {αi}ni=1 and {βi}ni=1 with
∑n

i=1 α
2
i =

∑n
i=1 β

2
i = 1,

put qi = β2
i and xi = αi/βi for 1 6 i 6 n. (Assume now for

simplicity that all xi < xi+1.) Then (4) turns to

0 6 1− xm + xm−1

xmxm−1

n∑
i=1

αiβi +
1

xmxm−1
.

This gives an upper bound for
∑n

i=1 αiβi which is 6 1 for some
m∗. For the Chung–Erdős inequality, we have the analogue:

n∑
i=1

αiβi 6 1.

This is the Cauchy–Bunyakovski inequality.



3. Bounds for numbers.
All vectors are columns. For every v ∈ Rd , let vj , 1 6 j 6 d be its
coordinates. We write v 6 u for v,u ∈ Rd , if vj 6 uj for all j . Put
0d = (0, 0, . . . , 0)T ∈ Rd and 1d = (1, 1, . . . , 1)T ∈ Rd .

Theorem (1)

Let r ∈ Rn be a vector with r > 0n and F = (fki )
`,n
k=1,i=1 be a

matrix with real entries, where 2 6 ` 6 n. Put R =
n∑

i=1
ri and

s̄ = Fr. (5)

Assume that for some i ∈ R` such that 1 6 i1 < i2 < . . . < i` 6 n,
the vector a ∈ R` is the solution of

FT
i a = 1`, (6)

where Fi = (fkij )
`,`
k=1,j=1. Put

c = 1n − FTa. (7)



3. Bounds for numbers.

Let r∗ ∈ Rn be a vector such that r∗i = (r∗i1 , r
∗
i2
, . . . , r∗i`)T is the

solution of the system

Fir
∗
i = s̄ (8)

and r∗i = 0 for all i 6= ik , 1 6 i 6 n. Put R∗ =
n∑

i=1
r∗i .

If c > 0n, then R > R∗. If c 6 0n, then R 6 R∗. �

In the examples: ` = 2, ri = pi , fki = ik , i1 = m − 1, i2 = m,
ci = (1− i/(m − 1))(1− i/m) > 0, a1 and a2 – coefficients at µ1

and µ2, rij = p∗ij . For the second example fki = xk
i .

Theorem 1 yields lower bounds. Finally, an optimization over m.

The way of application of Theorem 1. Take `, F = (fki ) (above
choice only), i. Solve (6) (or (8) for invertible Fi). Find c and
check c > 0n or c 6 0n. For i = i(m), make an optimization.



3. Bounds for numbers.

Choice of i comes from the special case

ci =
∏̀
j=1

(1− i

ij
).

Lower bounds (ci > 0).
` = 2: i = (m − 1,m),
` = 3: i = (m − 1,m, n),
` = 4: i = (m − 3,m − 2,m − 1,m) and so on.

Upper bounds (ci 6 0). ` = 2: i = (1, n), ` = 3: i = (1,m − 1,m),
` = 4: i = (1,m − 2,m − 1, n) and so on.



3. Bounds for numbers.

Properties of bounds:
1. they are sharp, i.e. inequalities may turn to equalities. Assume
that for R, we can construct R∗. Put R = R∗. Bounds for such R
is R∗ as well.
2. Let R∗(`) and R∗(`− 1) be lower bounds based on (s̄1, . . . , s̄`)
and (s̄1, . . . , s̄`−1). Then R∗(`) > R∗(`− 1).
This follows from Theorem 1 since for R = R∗(`) we get
R∗ = R∗(`− 1) using (s̄1, . . . , s̄`−1).
Similarly, we have an opposite inequality for lower bounds.
So, if the number of moments increases then bounds improve.



4. Lower bounds for P(Un).

Simplest variant ri = pi in Theorem 1.

Theorem (2)

Let ` = 2, 0 < a < b, f1i = ia and f2i = ib for all i . Put
δ̄ = (s̄2/s̄1)1/(b−a), θ = δ̄ − [δ̄] and
θ̄ = (δ̄b−a − (δ̄ − θ)b−a)/((δ̄ + 1− θ)b−a − (δ̄ − θ)b−a) ∈ [0, 1).
(0/0 = 0).
Then

P(Un) >
θ̄s̄

b/(b−a)
1(

s̄
1/(b−a)
2 + (1− θ̄)s̄

1/(b−a)
1

)a +
(1− θ̄)s̄

b/(b−a)
1(

s̄
1/(b−a)
2 − θ̄s̄

1/(b−a)
1

)a .
If a = 1 and b = 2, then Theorem 2 yields the Dawson–Sankoff
inequality. For a = 1 and b = 1.5 the bound is better, but for
a, b ∈ N moments s̄i are sums of probabilities of intersections of
the events.



4. Lower bounds for P(Un).

Theorem (3)

Let ` = 3, a > 0, % > 0. Put f1i = ia, f2i = ia+%, fki = ia+2% for all
i . Put δ̄1 = n%s̄1 − s̄2, δ̄2 = n%s̄2 − s̄3,
m = min{1 + [(δ̄2/δ̄1)1/%], n − 1} (0/0 = 0). Then

P(Un) >
1

na(m% − (m − 1)%)

((mρδ̄1 − δ̄2)(na − (m − 1)a)

(m − 1)a(n% − (m − 1)%)

−((m − 1)ρδ̄1 − δ̄2)(na −ma)

ma(n% −m%)

)
+

s̄1

na
.

For a = 1 and % = 1, Theorem 3 is obtained by Kwerel (1975). In
this case, moments s̄i are sums of probabilities of intersections of
the events.
We see two types of bounds. For moments of integer orders, they
are good calculated and known. For non-integer orders, they may
be stronger.



5. First jump of d.f. and Hölder’s inequality.

Assume that 0 = x0 < x1 < x2 < · · · < xn. Let ξ be a random
variable such that pi = P(ξ = xi ) for i = 0, 1, 2, . . . , n.
Theorem 1 implies the following result.

Theorem (4)

Put δ̄ = (s̄2/s̄1)1/%. (We assume that 0/0 = 0.) Let m∗ be a
natural number such that 2 6 m∗ 6 n and xm∗−1 6 δ̄ < xm∗ . For
δ̄ = 0 and δ̄ = xn, put m∗ = n.
Then

p0 6 1− s̄1

x%m∗ − x%m∗−1

(
δ̄% − x%m∗−1

xa
m∗

+
x%m∗ − δ̄%

xa
m∗−1

)
6 1−

s̄
(a+%)/%
1

s̄
a/%
2

.

p0 is the probability of the first jump of d.f.



5. First jump of d.f. and Hölder’s inequality.
Let p > 1 and q > 1 be numbers such that 1

p + 1
q = 1.

Theorem (5)

For every α,β ∈ Rn with α > 0n, β > 0n and ‖α‖p = ‖β‖q = 1,
there exist a natural number n̄ 6 n and ᾱ, β̄ ∈ Rn̄ such that
ᾱ > 0n̄, β̄ > 0n̄, ‖ᾱ‖p = ‖β̄‖q = 1, ᾱT β̄ = αTβ and

x1 < x2 < · · · < xn̄ provided n̄ > 1, where xi = ᾱi β̄
−q/p
i for

1 6 i 6 n̄.
Assume that n̄ > 1. Put s̄1 = αTβ.
Then there exists unique m∗ with 2 6 m∗ 6 n̄ such that

1> s̄1
xp
m∗−xp

m∗−1

xm∗xm∗−1(xp−1
m∗ −xp−1

m∗−1)
− xm∗−xm∗−1

xm∗xm∗−1(xp−1
m∗ −xp−1

m∗−1)
> s̄

p/(p−1)
1 . (9)

s̄
p/(p−1)
1 6 1 is Hölder’s inequality. The first inequality in (9) is

n∑
i=1

αiβi 6
xm∗xm∗−1(xp−1

m∗ − xp−1
m∗−1) + xm∗ − xm∗−1

xp
m∗ − xp

m∗−1

.



5. First jump of d.f. and Hölder’s inequality.

In the proof of Theorem 5, the procedure of constructing of xi is
described.
For p = 2, there is an example in which there are two different
bounds, better than that from Hölder’s inequality.



6. Representations of P(Un).
Numbers ri in Theorem 1 may be chosen in any way to satisfy
P(Un) =

∑
ri . Every representation of P(Un) as a sum of

non-negative numbers gives new bound.
Put Bi = {ξn = i}, J0 = {0} and
Jr = {j = (j1, . . . , jr ) : jk ∈ N and 1 6 jk 6 n for all 1 6 k 6 r}
for r > 1. Then

IUn =
n∑

i=1

IBi
=

n∑
i=1

ξrn
i r

IBi
=

n∑
i=1

∑
j∈Jr

1

i r
IBiAj1

...Ajr
.

Lemma
Fix integer r with 0 6 r 6 n. For r > 1, put pi ,j = P(BiAj1 . . .Ajr ),
j ∈ Jr . For r = 0, put pi ,j = P(Bi ) for all j ∈ J0.
Then

P(Un) =
n∑

i=1

∑
j∈Jr

1

i r
pi ,j =

∑
j∈Jr

Rj .

Theorem 1 yield bounds for every Rj .



7. Further lower bounds for P(Un).
Put r = 1. Denote rik = pi ,j/i and

s̄k(j) =
n∑

i=1

ia+(k−1)%rij , 1 6 k 6 `, j = 1, 2, . . . , n.

Theorem (7)

Put ` = 2, δ̄j = (s̄2(j)/s̄1(j))1/%, θj = δ̄j − [δ̄j ] and
θ̄j = (δ̄%j − (δ̄j − θj)%)/((δ̄j + 1− θj)% − (δ̄j − θj)%) ∈ [0, 1), where
j = 1, 2, . . . , n.
Then

P(Un)>
n∑

j=1

 θ̄j s̄
(a+%)/%
1 (j)(

s̄
1/%
2 (j)+(1−θj)s̄

1/%
1 (j)

)a +
(1− θ̄j)s̄

(a+%)/%
1 (j)(

s̄
1/%
2 (j)−θj s̄

1/%
1 (j)

)a
 .(10)

For a = % = 1, Theorem 7 implies a result of Kuai, Alajaji and
Takahara (2000) which generalizes that of de Caen (1997).



7. Further lower bounds for P(Un).

For ` = 3, a formula is large. No earlier results. The same is for
upper bounds.
The case r > 2 did not considered earlier.



8. Lower bounds for P(Un|A).
Let A be a σ-field of events. The above method works for P(Un|A)
as well. For example, we have an analogue of previous theorem.

Theorem (8)

For j ∈ Jm, m > 0, define random variables

δ̄A(j) =

(
s̄A2 (j)

s̄A1 (j)

)1/%

, θA(j) = δ̄A(j)− [δ̄A(j)],

θ̄A(j) =
(δ̄A(j))% − (δ̄A(j)− θA(j))ρ

(δ̄A(j) + 1− θA(j))% − (δ̄A(j)− θA(j))ρ
,

Note that θ̄A(j) ∈ [0, 1) a.s. for all j ∈ Jm. Then w.p. 1

P(Un|A) >
∑
j∈Jm

( θ̄A(j)(s̄A1 (j))(a+%)/%(
(s̄A2 (j))1/% + (1− θA(j))(s̄A1 (j))1/%

)a
+

(1− θ̄A(j))(s̄A1 (j))(a+%)/%(
(s̄A2 (j))1/% − θA(j)(s̄A1 (j))1/%

)a).



8. Lower bounds for P(Un|A).

Taking the expectation from both sides of such bounds, we get
new bound for unconditional P(Un).

All previous techniques works for probabilities that at least p from
n events occur. (Conditional and ususal, upper and lower, with
similar representations).

Probability may be replaced by a measure or a measure with sign.



9. The Borel–Cantelli lemma.

Borel (1909).
Erdős and Rényi (1959):

Let {An} be a sequence of events such that
∞∑
n=1

P(An) =∞. Put

L = lim inf
n→∞

n∑
i ,j=1

P(AiAj)(
n∑

i=1
P(Ai )

)2
.

If L = 1, then P(An i .o.) = P(
∞⋂
n=1

∞⋃
k=n

Ak) = 1.

Kochen and Stone (1964) and Spitzer (1964) obtained the
following generalization of this result: P(An i .o.) > 1/L.



9. The Borel–Cantelli lemma.

Further generalizations: Kounias (1968), Móri and Székely (1983),
Martikainen and Petrov (1990), Petrov (2002, 2004), Andel and
Dupas (1989), Feng, Li and Shen (2009), Frolov (2012, 2015).

For m 6 n, put Umn =
n⋃

k=m

Ak . Since

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= lim

m→∞
lim
n→∞

P (Umn) ,

every new upper or lower bound allows us to derive new variant of
first or second part of the Borel–Cantelli Lemma.



9. The Borel–Cantelli lemma.

Theorem (9)

Let {Ai} be a sequence of events such that
∞∑
i=1

P(Ai ) =∞. Put

s1(n) =
n∑

i=1

P(Ai ), s2(n) = 2
∑

16i<j6n

P(AiAj), s3(n) = 6
∑

16i<j<k6n

P(AiAjAk),

δ1(n) = (n − 1)s1(n)− s2(n), δ2(n) = (n − 2)s2(n)− s3(n).
Assume that δ1(n)/n→∞ and s2(n) = o(δ1(n) + δ2(n)) as
n→∞.
Then

P(Ai i .o.) > lim sup
n→∞

(
(δ1(n))2

n(δ1(n) + δ2(n))
+

s1(n)

n

)
. (11)



9. The Borel–Cantelli lemma.
Theorem 9 is from Frolov (2012). The bound may be better than
those from previous generalizations. The proof uses Theorem 3.
From Theorem 7,

Theorem (10)

Denote ξn = IA1 + IA2 + · · ·+ IAn and ηn = n− ξn for all natural n.
Assume that

1

n

n∑
k=1

EηnIAk

EηnξnIAk

→ 0 as n→∞.

Then

P (An i.o.) > lim sup
n→∞

1

n

n∑
k=1

{
P (Ak) +

(EηnIAk
)2

EηnξnIAk

}
.

Here EηnIAk
=

n∑
i=1

P
(
AiAk

)
, EηnξnIAk

=
n∑

i=1

n∑
j=1

P
(
AiAjAk

)
.



9. The Borel–Cantelli lemma.

Conditional variants are obtained as well. This is a conditional
variant of a result in Petrov (2002).

Theorem (11)

Put D =

{
ω :

∞∑
k=1

P (Ak |A) =∞
}

. Assume that

P (AkAj |A) 6 ζnP (Ak |A)P (Aj |A) for almost all ω ∈ D and all
k 6= j , 1 6 k, j 6 n, where {ζn} is a sequence of random variables
such that ζn > 1 for almost all ω ∈ D and all n.
Then

P(lim sup An|A) > lim sup
n→∞

1

ζn

for almost all ω ∈ D.

For trivial A and degenerated ζn Theorem 11 turns to the result in
Petrov (2002).



The end.

Thank you for your attention.


