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We explore logarithmic L2-small deviation proba-

bilities

log
[
P
( ∫

T
|Y (t)|2m(dt) ≤ ε2

)]
, as ε→ 0

where (Y (t))t∈T is a stationary Gaussian process, m

is a measure on T . Our goal is to relate the asymp-

totics of small deviation probabilities with that of

the spectrum.

Our results are tightly related with those on frac-

tional Brownian motion and its relatives.
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In terms of such processes with stationary incre-

ments our message is that the spectral asymptotics

is relevant to the small deviation behavior but the

self-similarity is not.



We find logarithmic asymptotics of L2-small devia-
tion probabilities for weighted stationary Gaussian
processes having power-type spectrum:

• periodic processes;

• processes with continuous spectrum;

• stationary sequences.

Our results are based on the spectral theory of
pseudo-differential operators with anisotropic-ho-
mogeneous symbols.
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The spectral results that we use are not sensible to
the symmetry of the spectral measure. Therefore,
it is very natural to apply them to the complex-
valued processes. In this context proper Gaussian
processes are particularly convenient because their
distributions are determined by the spectra of the
corresponding covariance operators.



1. Periodic stationary processes

Let X = {X(t), t ∈ R} be a complex-valued 2π-
periodical centered second order mean-square con-
tinuous stationary process. Then its covariance
function admits a spectral representation

KX(s) := cov(X(·), X(·+ s)) =
∑
k∈Z

µk e
iks, s ∈ R,

where µ := (µk)k∈Z is a finite measure on Z called
the spectral measure of X.

We are interested in the small ball behavior of the
weighted L2-norm∫ 2π

0
q(t)|X(t)|2dt = ||√qX||22

with some weight q ∈ L1[0,2π]. The covariance
operator admits decomposition

K√qX = QDDQ =: T ∗T , T = DQ,

where Q stands for the operator of multiplication
by
√
q ∈ L2[0,2π], D can be interpreted as a con-

volution operator with the kernel

D(s) :=
1√
2π

∑
k∈Z

√
µk e

iks.



For the study of logarithmic asymptotics of small

deviation probabilities, we need to know the one-

term asymptotic behavior of eigenvalues of K√qX
that coincide with its singular values sn(K√qX).

From now on we assume that the spectral measure

has a power-like decay

µk ∼M±|k|−r, as k → ±∞,

with some r > 1 and M± ≥ 0, M+ + M− > 0.

This assumption is typical of the literature on small

deviations of Gaussian processes.

We study the asymptotics at zero of the distribu-

tion function of singular values

NK√qX(λ) := #{n : sn(K√qX) ≥ λ}.

This is indeed an equivalent setting because

NK√qX(λ) ∼∆ · λ−
1

r , λ→ 0+ ⇔ sn(K√qX) ∼∆r · n−r, n→∞.

We can consider K√qX as an operator in L2(R)

(K√qXu)(s) = b(s)
∫
R

KX(s− t)b(t)u(t) dt,

where b =
√
q · 1[0,2π].



To apply the results of [BS] we need to eliminate

the singularities of the covariance out of diagonal

s = t. To do this, we introduce the cut-off function

h(s) = h(−s) equals to one on [−π, π] and vanishes

outside of the interval [−3π
2 ,

3π
2 ]. We decompose

the kernel and the operator

KX(s) = KX(s)
[
h(s)+(1−h(s))

]
=: K1(s)+K2(s)

K√qX = K1 +K2

and prove that limλ→0+
λ

1
r · NK2

(λ) = 0. On the

other hand, the function K1 satisfies

FK1(ξ) ∼M±|ξ|−r as ξ → ±∞,

where FK1 denotes the Fourier transform of K1.

According to [BS], this implies

∆1
r

:= lim
λ→0+

λ
1
rNK1

(λ) =
M

1
r
−+M

1
r
+

(2π)
r−1
r

2π∫
0

q(t)
1
r dt.

By the classical Weyl Theorem, we obtain

NK√qX(λ) ∼ NK1
(λ) ∼∆1

r
λ−

1
r , as λ→ 0+.

This gives the asymptotics of sn(K√qX) = λn(K√qX).



Let the spectral measure of X be as above, and let
q ∈ L1[0,2π]. Then

λn(K√qX) ∼

M 1

r

− +M
1

r

+

2π

2π∫
0

q(t)
1

r dt

r

2π

nr
, as n→∞.

provided that λn are numbered in the non-increasing
order, according to their multiplicities.

If X is a real-valued Gaussian process, we have the
Karhunen–Loève expansion

||√qX||22 =
∞∑
n=1

λn(K√qX) |ξn|2 ,

where (ξn)n∈N are i.i.d. standard Gaussian r.v’s.
Notice that the spectral measure is symmetric, i.e.
M+ = M− =: M . Using the eigenvalues asymp-
totics and well-known Zolotarev’s result we obtain
the following Theorem.

Let {X(t), t ∈ R} be a 2π-periodical real centered
mean-square continuous stationary Gaussian pro-
cess. Assume that its spectral measure satisfies

µk ∼M |k|−r, as |k| → ∞,
with some r > 1,M > 0. Let q be a summable
weight. Then we have, as ε→ 0,

logP
(∫ 2π

0

q(t)|X(t)|2dt ≤ ε2
)
∼ −
(

M
1
r

r sin(π/r)

∫ 2π

0

q(t)
1
r dt

) r
r−1 (r − 1)(2π)

1
r−1

2 ε
2
r−1

.



Proper complex processes

If X is a complex-valued centered Gaussian process then we
still have the Karhunen–Loève expansion but, unfortunately,
unlike the real case, the variables ξn need not be indepen-
dent, although they are uncorrelated. By this reason, we
need to restrict the consideration to an important subclass
of the variables and processes where uncorrelated variables
are independent.

A complex-valued random process (X(t))t∈T is called centered
proper (or circularly) Gaussian if
• The coordinate vector

(
X(re)(t1), X(im)(t1), . . . , X(im)(tn)

)
is

a centered Gaussian vector in R2n for any t1, . . . , tn ∈ T ;
• EX(t1)X(t2) = 0 for all t1, t2 ∈ T .
We clearly have EX(t) = 0, ∀t ∈ T . Moreover, EX(t)2 = 0
yields that the distribution of X(t) in the complex plane is
spherically symmetric.

For a proper Gaussian process X, the Karhunen–Loève ex-
pansion reads as follows:

||√qX||22 =
1

2

∞∑
n=1

λn(K√qX)
(
ξ2
n,1 + ξ2

n,2

)
,

where (ξn)n∈N are i.i.d. standard Gaussian r.v’s. Using the
eigenvalues asymptotics and Zolotarev’s result we obtain the
following Theorem.

Let {X(t), t ∈ R} be a 2π-periodical complex centered mean-
square continuous stationary proper Gaussian process. As-
sume that its spectral measure has power-like decay with
some r > 1. Let q be a summable weight. Then we have, as
ε→ 0,

logP
(∫ 2π

0

q(t)|X(t)|2dt ≤ ε2
)

∼ −
( M 1

r

− +M
1
r

+

2r sin(π/r)

∫ 2π

0

q(t)
1
r dt

) r
r−1 (r − 1)(2π)

1
r−1

ε
2
r−1

.



2. Stationary sequences
Let a real stationary centered Gaussian sequence (Uk)k∈Z ad-
mit a representation

Uk =
∞∑

m=−∞
amXk−m,

where (am) ∈ `2(Z), and (Xj) are i.i.d. standard Gaussian
(this representation exists iff (Uk) has a spectral density).
Let the coefficients (dk)k∈Z have the asymptotics

dk ∼ d± |k|−p, for some p >
1

2
, k → ±∞,

where at least one of the numbers d± is strictly positive.
Then, as ε→ 0,

logP
(∑
k∈Z

d2
kU

2
k ≤ ε2

)
∼ −

( d
1

p

− + d
1

p

+

4 p sin
(
π
2p

) ∫ 2π

0
|a(t)|

1

p dt
) 2p

2p−1 2p− 1

2 ε
2

2p−1

,

where a(t) =
∑

k∈Z ak e
i kt.

Sketch of the proof: We have to study the norm of the
random vector Z ∈ `2(Z) defined by its coordinates Zk = dkUk,
k ∈ Z. It turns out that the corresponding covariance operator
KZ is unitary equivalent to

KZ = DAA∗D,
where A stands for the multiplication by a ∈ L2[0,2π] while
D is a convolution with the kernel D(s) := 1√

2π

∑
k∈Z dk e

iks.

We see that the elements of decomposition of KZ are the
same as in the previous problem but the order of use of oper-
ators is different. However, a well-known theorem in opera-
tor theory implies the coincidence of non-zero eigenvalues for
operators T T ∗ and T ∗T for any bounded linear operator T .
This implies that spectral asymptotics of the same type holds
for the operator KZ (with the natural replacement r → 2p,
M± → d2

±,
√
q → a). �



3. Stationary processes with continu-
ous spectra

Let X(t), t ∈ R, be a centered second order complex
stationary process on R. Then

KX(s) := cov(X(·), X(·+ s)) =
∫
R
eius µ(du), s ∈ R,

where µ is the spectral measure of X.

Assume that µ has a density m ∈ L1(R). Then the
covariance operator admits decomposition

K√qX = T̃ ∗T̃ , T̃ =MFQ,

where M and Q stand for the multiplication by√
m ∈ L2(R) and

√
q ∈ L2(R), respectively, while F

is the Fourier transform.

Suppose that m has a power-like decay

m(u) ∼M±|u|−r, as u→ ±∞,

with some r > 1 and M± ≥ 0, M+ +M− > 0.

If q has bounded support then we again can apply
the results of [BS]. However, in general case we
should use subtle estimates of [BKS] and make
additional assumption on q.



We consider the sequence of operators T̃k =MFQk,
k ∈ N, where Qk is multiplication by compactly sup-
ported weight

bk(t) =
√
q(t) · 1[−k,k](t).

Operators Kk = T̃ ∗k T̃k satisfy the assumptions of
[BS]. This gives

∆(k)
1
r

:= lim
λ→0+

λ
1
rNKk(λ) =

M
1
r
−+M

1
r
+

(2π)
r−1
r

k∫
−k

q(t)
1
r dt.

Thus, we need to justify the passage to the limit as
k →∞. Following [BKS], for f ∈ L2(R) we define
the numerical sequence

v(f) = {v`(f)}`∈Z; v`(f) := ‖f‖2,[`,`+1].

Our assumption on m implies

sup
`∈Z

(
|`|

r
2 · v`(

√
m)

)
<∞

(in the notation of [BKS], v(
√
m) ∈ l2/r,w). Since

2
r < 2, Subsection 5.7 in [BKS] shows that

sup
n

(
n
r
2 · sn(T̃ ∗ − T̃ ∗k )

)
≤ C · sup

`∈Z

(
|`|

r
2 · v`(

√
m)

)
· ‖v(
√
q)− v(bk)‖l2/r.



Thus, if

‖v(
√
q)‖l2/r =

∑
`∈Z
‖q‖

1
r
1,[`,`+1] <∞, (∗)

we obtain

sup
n

(
n
r
2 · sn(T̃ ∗ − T̃ ∗k )

)
→ 0 as n→∞.

This implies

lim
λ→0+

λ
2
rNT̃ ∗k

(λ)→ lim
λ→0+

λ
2
rNT̃ ∗(λ) as k →∞.

Since λn(K√qX) = s2
n(T̃ ∗), this implies

∆(k)
1
r

→ lim
λ→0+

λ
1
rNK√qX(λ) as k →∞.

This gives the asymptotics of sn(K√qX) = λn(K√qX).

Let the spectral density of X be as above. Assume
that the weight q ∈ L1(R) satisfies (∗). Then

λn(K√qX) ∼

M 1

r

− +M
1

r

+

2π

∫
R

q(t)
1

r dt

r

2π

nr
, as n→∞.

provided that λn are numbered in the non-increasing

order, according to their multiplicities.

Notice that the final formula is quite similar to previous ones, although

intermediate technical details differ.



Let {X(t), t ∈ R} be a real centered mean-square

continuous stationary Gaussian process. Assume

that it has a spectral density satisfying

m(u) ∼M |u|−r, as |u| → ∞,
with some r > 1,M > 0. Let q be a summable
weight on R satisfying condition (∗). Then we
have, as ε→ 0,

logP
(∫

R

q(t)|X(t)|2dt ≤ ε2
)
∼ −
(

M
1
r

r sin(π/r)

∫
R

q(t)
1
r dt

) r
r−1 (r − 1)(2π)

1
r−1

2 ε
2
r−1

.

In particular, this result covers the earlier ones ob-

tained for concrete processes on bounded intervals.

Let {X(t), t ∈ R} be a complex centered mean-
square continuous stationary proper Gaussian pro-
cess. Assume that it has a spectral density having
a power-like decay with some r > 1. Let q be a
summable weight on R satisfying (∗). Then we
have, as ε→ 0,

logP
(∫

R

q(t)|X(t)|2dt ≤ ε2
)

∼ −
( M 1

r

− +M
1
r

+

2r sin(π/r)

∫
R

q(t)
1
r dt

) r
r−1 (r − 1)(2π)

1
r−1

ε
2
r−1

.

Besides the weight integration domain, the con-

stants in the limit are the same as in part 1.


