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Let {Xn, n ≥ 0} be a time homogeneous Markov chain with values in R+.

Denote by ξ(x) a random variable corresponding to the jump of the chain at point x, that

is,

P(ξ(x) ∈ B) = P(Xn+1 −Xn ∈ B|Xn = x) = Px(X1 ∈ x+B).

Let mk(x) denote the kth moment of the chain at x, i.e.,

mk(x) := Eξk(x).

We consider the case of the asymptotically zero drift:

m1(x)→ 0 as x→∞.



Recurrence, positive recurrence and transience were studied by Lamperti(1960, 1963):

• If 2xm1(x) +m2(x) ≤ −ε, then the chain is positive recurrent;

• If 2xm1(x)
m2(x)

< 1− ε, then the chain is recurrent;

• If 2xm1(x)
m2(x)

> 1 + ε, then the chain is transient.



Critical Lamperti problem

We shall assume that

m1(x) ∼
−µ
x

and m2(x) ∼ b.

Then we have

• If µ > b/2 then the chain is positive recurrent;

• If−b/2 < µ < b/2 then the chain is null recurrent;

• If µ < −b/2 then the chain is transient.



Was can be said about stationary measures in the recurrent case?



Examples of chains with calculable stationary measures.

• Diffusion with the drift m1(x) and the diffusion coefficient m2(x).

The invariant density function solves the Kolmogorov forward equation

0 = − d

dx
(m1(x)p(x)) +

1

2

d2

dx2
(m2(x)p(x)),

which has the following solution:

p(x) =
C

m2(x)
exp

{∫ x

0

2m1(y)

m2(y)
dy

}
.



• Markov chains on Z+ with |ξ(x)| ≤ 1.

Set p−(x) = P(ξ(x) = −1), p+(x) = P(ξ(x) = 1) and

1− p−(x)− p+(x) = P(ξ(x) = 0).

Then the stationary probabilities π(x), x ∈ Z+ satisfy

π(x) = π(x− 1)p+(x− 1)+π(x)(1− p−(x)− p+(x))+π(x+1)p−(x+1).

Consequently,

π(x) = π(0)
x∏
k=1

p+(k − 1)

p−(k)
.



• Random walks with delay.

Let ξ1, ξ2, . . . be independent identically distributed random variables with zero mean.

Then the random walk Sn = ξ1 + ξ2 + . . .+ ξn is oscillating. This, in its turn,

implies that the chain

Xn = (Xn−1 + ξn)
+

is recurrent. For its stationary measure we then have

π(dx) =

∞∑
n=1

P0(Xn ∈ dx, τ0 > n) =

∞∑
n=1

P0

(
Sn ∈ dx,min

k≤n
Sk > 0

)

=
∞∑
k=1

P(χ1 + χ2 + . . .+ χk ∈ dx) = H(dx).



Therefore, Xn is null-recurrent for every oscillating random walk Sn and

π(0, x] = H(0, x].

If, for example, Eξ2 <∞, then Eχ <∞ and, consequently,

π(0, x] ∼ x

Eχ
, as x→∞.



Menshikov and Popov (1995) investigated Markov chains on Z+ with bounded jumps: For

every ε > 0 there exist constants c±(ε) such that

c−(ε)x
−2µ/b−ε ≤ π({x}) ≤ c+(ε)x−2µ/b+ε.

Korshunov (2011) has shown that if {(ξ+(x))2+γ , x ≥ 0} and {(ξ−(x))2, x ≥ 0} are

uniformly integrable, then the moment of order γ of the distribution π is finite for

γ < 2µ/b− 1, and infinite for γ > 2µ/b− 1. Consequently, for every ε > 0 there exists

c(ε) such that

π(x,∞) ≤ c(ε)x−2µ/b+1+ε.



Denisov, Korshunov and Wachtel (2013) have considered posiive recurrent chains

satisfying
2m1(x)

m2(x)
= −r(x) +O(x−2−δ).

for some r(x) > 0 such that r′(x) ∼ − 2µ
bx2 .

It has been shown that if

sup
x

E|ξ(x)|3+δ <∞, E[ξ2µ/b+3+δ(x); ξ(x) ≥ Ax] = O(x2µ/b)

and

m3(x)→ m3 ∈ (−∞,∞)

then there exists a constant c > 0 such that

π(x,∞) ∼ cxe−
∫ x
0
r(y)dy = cx−2µ/b+1`(x).



Define

m
[s(x)]
k (x) := E[ξk(x); |ξ(x)| ≤ s(x)]

and assume that

m
[s(x)]
1 (x) ∼ −µ

x
and m

[s(x)]
2 (x) ∼ b

for some b > 0 and µ > −b/2.

We shall also assume that there exist a dereasing diffrentiable function r(x) and a

decreasing integrable function p(x) such that

2m
[s(x)]
1 (x)

m
[s(x)]
2 (x)

= −r(x) +O(p(x)).

Obviously,

r(x) ∼ 2µ

bx
.



Define a monotone function

R(x) :=

∫ x

0

r(y)dy, x > 0,

R(x) = 0 for x ≤ 0. Since xr(x)→ 2µ/b > −1,

R(x)

log x
→ 2µ

b
> −1 as x→∞.

Define also

U(x) :=

∫ x

0

eR(y)dy → ∞ as x→∞.

According to our assumptions,

r(x) =
2µ

b

1

x
+
ε(x)

x
,

where ε(x)→ 0 as x→∞. Then there exists a slowly varying at infinity function `(x)

such that eR(x) = xρ−1`(x) and U(x) ∼ xρ`(x)/ρ where ρ = 2µ/b+ 1 > 0.



Theorem 1. Let Xn be a recurrent Markov chain and let π(·) be its stationary measure.

Let π have right-unbounded support, that is, π(x,∞) > 0 for all x. Assume that, for

some increasing s(x) = o(x),

P{ξ(x) < −s(x)} = o(p(x)/x),

E
{
U(x+ ξ(x)); ξ(x) > s(x)

}
= o(p(x)/x)U(x),

E
{
|ξ(x)|3; |ξ(x)| ≤ s(x)

}
= o(x2p(x)) as x→∞.

Then

π(x1, x2] ∼ c

∫ x2

x1

y

U(y)
dy

as x1, x2 →∞ in such a way that

1 < lim inf
x2
x1
≤ lim sup

x2
x1

<∞.



Corollary 2. If Xn is positive recurrent, 2µ > b, and conditions of Theorem 1 hold, then

π(x,∞) ∼ c

ρ− 2

x2

U(x)
as x→∞.

If Xn is null recurrent, 2µ ∈ (−b, b), and conditions of Theorem 1 hold, then

π(0, x) ∼ c

2− ρ
x2

U(x)
as x→∞.

Corollary 3. Assume that the conditions of Theorem 1 are valid. Then the integrability of

y/U(y) is necessary and sufficient for the Markov chain Xn on R+ to be positive

recurrent.



Let B = [0, x0] be such that π(B) > 0 and set τB := min{k ≥ 1 : Xk ∈ B}. For

the measure π we have

π(dx) =

∫
B

π(dz)

∞∑
n=1

Pz(Xn ∈ dx, τB > n), x > x0.



If we find a positive function V (x) such that V (x) = Ex[V (X1), τB > 1], then we can

perform the following change of measure:

π(dx) =
1

V (x)

∫
B

π(dz)V (z)

∞∑
n=1

Pz(X̂n ∈ dx) =: c0
H(dx)

V (x)
,

where X̂n is a Markov chain with the following transition kernel

Px(X̂1 ∈ dy) =
V (y)

V (x)
Px(X1 ∈ dy, τB > 1)

and initial distribution

P(X̂0 ∈ dz) =
1

c0
π(dz)V (z), z ∈ B.



This function has been constructed in Denisov, Korshunov and Wachtel (2013). It was also

shown there that V (x) ∼ U(x). But this is not enough to study asymptotic properties of

X̂n, one needs also to obtain an asymptotic expansion

V (x) = U(x) + (c+ o(1))
U(x)

x
.

For this representation one has to assume the convergence of third moments m3(x).



Let us perform of a measure change by a smooth Lyapunov function, which is almost

harmonic.

The main advantage of this approach is the fact that this function can chosen as smooth as

one wishes. As a compensation we get a non-probabilistic transition kernel and we have to

control total masses.



Consider

Rp(x) =

∫ x

0

(r(y)− p(y))dy and Up(x) =

∫ x

0

eRp(y)dy.

Then one can show that

−(2µ+ b)
p(x)

x
≤ EUp(x+ ξ(x))− Up(x)

Up(x)
≤ 0, x ≥ x0.

Therefore, the measure

Q(x, dy) :=
Up(y)

Up(x)
Px(X1 ∈ dy, τB > 1)

is substochastic and

q(x) := − logQ(x,R+) = O(p(x)/x).



Let X̂n be a Markov chain with transition kernel Q(x, dy)/Q(x,R+). Then

π(dx) =
∫
B
π(dz)

∑∞
n=1

Up(x)
Up(x)

Ez

[
e−

∑n−1
j=0 q(X̂j); X̂n ∈ dx

]
≈ 1

Up(x)

∫
B
π(dz)Up(z)f(z)

∑∞
n=1 Pz(X̂n ∈ dx)

Having this representation it remains to prove that

∞∑
n=1

Pz(X̂n ≤ x) ∼ cx2.


