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Let {X,,, n > 0} be a time homogeneous Markov chain with values in R .

Denote by 6(:6) a random variable corresponding to the jump of the chain at point @, that
is,
P(f(x) S B) = P(Xn+1 — X, € B\Xn = a:) = Pm(Xl cx+ B).

Let my () denote the kth moment of the chain at x, i.e.,
my,(z) := B (z).
We consider the case of the asymptotically zero drift:

mi(zx) - 0 asx — oc.



Recurrence, positive recurrence and transience were studied by Lamperti(1960, 1963):

o If 2xmy(x) + mo(xz) < —¢, then the chain is positive recurrent;

If 2xm1 (x)

— < 1 — ¢, then the chain is recurrent;
2(x)

o If 2xmi(x)

ma(z) > 1 T & then the chain is transient.



Critical Lamperti problem

We shall assume that

Then we have
e If ;1 > b/2 then the chain is positive recurrent;
o If —b/2 < p < b/2 then the chain is null recurrent;

e If 1 < —b/2 then the chain is transient.



Was can be said about stationary measures in the recurrent case?



Examples of chains with calculable stationary measures.

e Diffusion with the drift m1 (x) and the diffusion coefficient ms ().
The invariant density function solves the Kolmogorov forward equation

d 1 d?

0= ———(mi(2)p(@)) + 5~ (ma(2)p(2)),

which has the following solution:




e Markov chains on Z, with |£(z)| < 1.
Setp_ (i) = P(¢(x) = —1), py (x) = P(E(x) = 1) and
1= p_(2) - ps(2) = P(E(x) = 0).
Then the stationary probabilities (), x € Z, satisfy

m(x) = m(r—1)py(z—1)+7m(x)(1—p_(z) —ps(x)) +7m(x+1)p_(z+1).

Consequently,
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e Random walks with delay.
Let &1, &9, . . . be independent identically distributed random variables with zero mean.
Then the random walk S,, = &1 + & + ... + &, is oscillating. This, in its turn,
implies that the chain

Xn — (Xn—l + fn)_l_

is recurrent. For its stationary measure we then have

m(dzr) = Z Po(X,, € dx,79 >n) = ZPO (Sn € d:c,ll;n<i2 Sk > O)
n=1 -
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Therefore, X, is null-recurrent for every oscillating random walk .S, and
(0, 2] = H(0, x].

If, for example, E£€? < oo, then Ey < 0o and, consequently,

(0, x] ~ Eix’ as T — 00.



Menshikov and Popov (1995) investigated Markov chains on Z_ with bounded jumps: For

every £ > () there exist constants ¢ (¢) such that

c_(e)x™ 2= < w({x}) < cy(e)x™2H/b*e,

Korshunov (2011) has shown that if { (£ (2))?T7, 2 > 0} and {(£~ (x))%, 2 > 0} are
uniformly integrable, then the moment of order ~y of the distribution 7 is finite for

v < 24/b— 1, and infinite for v > 21 /b — 1. Consequently, for every € > 0 there exists

c(e) such that

m(x,00) < c(e)m_%/bﬂﬁ.



Denisov, Korshunov and Wachtel (2013) have considered posiive recurrent chains

satisfying
2mq (x)

= —r(x 17279,

for some r(x) > 0 such that /() ~ —Ii—*;.

It has been shown that if
sup E|¢(2)]*T < o0, E[E/PT3(2);¢(z) > Ax] = O(a®*/)
X
and
ms(x) — m3 € (—00, 00)
then there exists a constant ¢ > 0 such that

m(z,00) ~ cxe” Jo TWW = cqm2/0F 1 p (g,



Define

and assume that

m[ls(x)](a:) ~ —% and m[;(x)](ac) ~ b

for some b > 0 and > —b/2.

We shall also assume that there exist a dereasing diffrentiable function 7(x) and a

decreasing integrable function p(x) such that

= —r(z) + O(p(x)).

ngs(x)] (x)
miy ()

Obviously,



Define a monotone function

R(z) := /09C r(y)dy, x>0,

R(x) = 0forxz < 0. Since xr(x) — 2u/b > —1,

R 2
(:1:) s H > —1 asxz — 0.
log x b

Define also

U(x) ::/ efWdy — 0o asz — 0.
0

According to our assumptions,

2ul  e(x)
)= et T

where £(z) — 0 as x — 0. Then there exists a slowly varying at infinity function ¢(x)
such that e(®) = 2°=1¢(z) and U(x) ~ x4(x)/p where p = 2u/b + 1 > 0.



Theorem 1. Let X, be a recurrent Markov chain and let 7(+) be its stationary measure.
Let 7 have right-unbounded support, that is, 7w(x, 00) > 0 for all . Assume that, for

some increasing s(x) = o(x),

P{i(r) < —s(z)} = o(p(z)/x),
B{U(x+£()); &) > s(0)} = o(p(a)/2)U(w),
E{lé@)P; [€@) < s()} = o(a’p(x)) asz - oo.

Then

w(xy,xa] ~ c/mzi Y

as ri, ro — OC in such a way that

R . X
1 < liminf =2 < hmsup—2 < 00.
L1 L1



Corollary 2. If X, is positive recurrent, 2 > b, and conditions of Theorem 1 hold, then

C 5132

m(x,00) ~ as xr — 00.

p—2U(z)

If X,, is null recurrent, 24 € (—b, b), and conditions of Theorem 1 hold, then

C 562

(0, x) ~ as r — 00.

2—pU(x)

Corollary 3. Assume that the conditions of Theorem 1 are valid. Then the integrability of
y/U (y) is necessary and sufficient for the Markov chain X,, on R to be positive

recurrent.



Let B = [0, xg] be such that m(B) > 0 and set 75 := min{k > 1 : X € B}. For

the measure 7™ we have

m(dz) = / m(dz) ZPZ(Xn €dxr,Tg > n), r > xg.
B

n=1



If we find a positive function V' () such that V (z) = E,[V(X1), 75 > 1], then we can

perform the following change of measure:

1
V()

m(dzr) = /BW(dZ)V(Z) ZPz(Xn € dr) =: co V(z) '

where )?n is a Markov chain with the following transition kernel

N V
P,.(X1 edy) = %Px(Xl € dy,7p > 1)

and initial distribution

-~ 1
P(Xyedz) = —n(d2)V(z), z € B.

Co



This function has been constructed in Denisov, Korshunov and Wachtel (2013). It was also

shown there that V' (x) ~ U (x). But this is not enough to study asymptotic properties of
X,,, one needs also to obtain an asymptotic expansion

U(m)

X

Viz)=U(x)+ (c+ o(1))

For this representation one has to assume the convergence of third moments mg(CC).



Let us perform of a measure change by a smooth Lyapunov function, which is almost

harmonic.

The main advantage of this approach is the fact that this function can chosen as smooth as
one wishes. As a compensation we get a non-probabilistic transition kernel and we have to

control total masses.



Consider

Then one can show that

() _ EUy(a +E(x) — Uy(a)

—(2 b < 0, >
s T g e
Therefore, the measure
U
Q. dy) == WP (X, € dy,7s > 1)

Up(z)

IS substochastic and

q(z) = —log Q(z,Ry) = O(p(x)/x).



Let X, be a Markov chain with transition kernel Q(z, dy)/Q(z, R..). Then

m(dz) = [ ) oo, gE B, [em Dm0 050 X, € da
R ﬁ [ m(d2)Up(2)f(2) >, -1 P(X,, € da)

Having this representation it remains to prove that

ZPZ()?n <)~ cx?
n=1



