
Real Normalized Differentials:
Degenerations and Applications

I.Krichever

Columbia University, Skoltech, HSE, Landau Institute

Algebraic Geometry and its Applications
May 28 - June 2, St. Petersburg, Russia



Plan and introduction

The goal of the talk is to present some results and
conjectures that have arisen in the framework of an
ongoing project (in part jointly with S.Grushevsky) devoted
to applications of Whitham perturbation theory of the
soliton equations to the study of geometry of the moduli
spacesMg,n = {Γ,Pα} of smooth genus g algebraic
curves with punctures
Much of the recent progress in the study of tautological
ring R∗(Mg,n) has been motivated by Faber’s conjectures
inspired by breakthrough in the intersection theory of
Mumford-Morita classes (Witten, Kontsevich, Okounkov).
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Algebraic-geometrical solutions of soliton equations.

General algebraic geometrical integration of soliton equations
based on a concept of the Baker-Akhiezer functions was
proposed at the end of seventies and is based on early theory
of finite-gap solutions of the KdV equations (Novikov, Dubrovin,
Matveev, Its, Lax, McKean,.....)
It can be seen as a map from the set of algebraic-geometrical
data to solutions of soliton equations

M̂g,n = {Γ,Pα, zα} × J(Γ) 7−→ u(t)

n = 1 7−→ 3
4

uyy = (ut −
3
2

uux +
1
4

uxxx )x (KP)

n = 2 7−→ 2D Toda, n = 3 7−→ BDHE
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For the KP equation the solutions have the form

u(x , y , t) = 2∂2
x ln θ(Ux + Vy + Wt + Z |B), (1)

where B = {Bij = Bji , ImB > 0 is the matrix of b-periods of
normalized holomorphic differentials on Γ and

θ(z|B) =
∑

m∈Zg

e2πi(z,m)+πi(m,Bm), z = (z1, . . . , zg)



Known algebraic-geometrical applications

Famous Novikov’s conjecture:

that an indecomposable symmetric matrix B with positive
definite imaginary part is the matrix of a smooth genus g
algebraic curve if and only if there exist vectors U ( 6= 0), V and
W such that u given by (1) satisfies the KP equation.

proven by Shiota (86) until recently has remained the most
effective solution of the classical Riemann-Schottky problem on
characterization of Jacobians of algebraic curves.



Much stronger characterization was conjectured by Welter’s :
undecomposable principally polarized abelain variety X is the
Jacobian of a smooth genus g algebraic curve iff its Kummer
variety K (X ) admits one (!) trisecant line.

Trisecant is a projective line intersecting Kummer variety
K (B) at three points.
For any B the corresponding Kummer variety is defined as
image of the, so-called Kummer map

X = Cg/(n + Bm) 7−→ K (X ) ⊂ CP2g−1

Three particular cases of the Welter’s conjecture was
proved (Kr 2005-2008) using three basic soliton equations
(KP,2D Toda,BDHE)
Characterization problem of Prym varieties has required to
introduce a new integrable equation – discrete analog of
Novikov-Veselov equation (Grushevsky-Kr, 2008)



A perturbation theory

In any perturbation theory integrals become adiabatic
integrals
The universal Whitham hierarchy describes slow
modulations of integrals of soliton equations, i.e. a
hierarchy of commuting flows on M̂g,n.
They are integrable by generalized hodograph transform,
i.e. their solutions are given explicitly in the implicit function
form
Example: Riemann-Hopf equation ut = uux , whose
solutions are given by the equation u = f (x + ut),
(f (x) is an arbitrary function of one variable.
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Vanishing properties ofMg,k

The moduli spacesMg,k of smooth genus g Riemann surfaces
with punctures have curious vanishing properties.

Diaz’ theorem (1986):
There does not exist a complete (complex) cycle inMg of
dimension greater than g − 2

Note, that is the upper bound. The know constructions give
complete cycles of dimension of order log3 g, only.

Looijenga theorem (1995):
The tautological ring R∗(Mg,k ) vanishes in dimensions
greater then g − 2 + k

The tautological ring R∗(Mg,k ) is generated by classes

ψi = c1(Li), κi = p∗(ψi+1
1 ) ∈ H∗(Mg).

Here Lj are canonical line bundles overMg,k .
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Conjectural geometric explanations

Widely accepted by experts "geometric explanation" of
vanishing properties ofMg,k is the existence of its stratification
by certain number of affine strata or the existence of a cover of
Mg,k by certain number of open affine sets.

Historically, Arbarello first realized that a stratification ofMg
could be useful for a study of its geometrical properties. He
studied the stratification (known already for Rauch)

W2 ⊂ W3 ⊂ · · · ⊂ Wg−1 ⊂ Wg =Mg ,

whereWn if the locus of curves having a Weierstrass point of
order at most n.

The proofs of all the results above use similar type
stratifications.
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Alternative geometric explanation

An alternative approach for geometrical explanation of the
vanishing properties ofMg,k was proposed by S. Grushevsky
and the author. It was motivated by certain constructions of the
Whitham perturbation theory of integrable systems. The key
elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with fixed singular parts of
meromorphic differentials of order n` + 1 and pure
imaginary residues at the marked points p` is the total
space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;

onM( n )
g, k there is an ordered set of (dimR L) continuous

functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.



Alternative geometric explanation

An alternative approach for geometrical explanation of the
vanishing properties ofMg,k was proposed by S. Grushevsky
and the author. It was motivated by certain constructions of the
Whitham perturbation theory of integrable systems. The key
elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with fixed singular parts of
meromorphic differentials of order n` + 1 and pure
imaginary residues at the marked points p` is the total
space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;

onM( n )
g, k there is an ordered set of (dimR L) continuous

functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.



Alternative geometric explanation

An alternative approach for geometrical explanation of the
vanishing properties ofMg,k was proposed by S. Grushevsky
and the author. It was motivated by certain constructions of the
Whitham perturbation theory of integrable systems. The key
elements of the alternative geometrical explanation are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with fixed singular parts of
meromorphic differentials of order n` + 1 and pure
imaginary residues at the marked points p` is the total
space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;

onM( n )
g, k there is an ordered set of (dimR L) continuous

functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.



Recall that:
the singular part of a meromorphic differential at a point p on a
Riemann surface C is the equivalence class of meromorphic
differentials ω in a neighborhood of p, with the equivalence
ω ∼ ω′ if and only if ω′ − ω is holomorphic at p.

The datum of a singular part with no residue is equivalent to the
datum of a jet of a local coordinate, in which the meromorphic
differential can be written in the standard form as z−nα−1dz.



Results

Proof of Arbarello’s conjecture

Theorem
Any compact complex cycle inMg of dimension g − n must
intersectWn.

New upper bound for dimensions of complete (complex)
cycles in the moduli spaceMct

g of stable curves of
compact type.

Theorem

There do not exist complete complex subvarieties ofMct
g

having non empty intersection withMg of dimension greater
than g − 1.
For g ≥ 2 the maximum dimension of complete complex
subvarieties inMct

g is 3
2 g − 2.
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Previously known bounds

Diaz:
there is no compact cycle inMct

g of dimension greater that
2g − 3.
Keel and Sadun:
for g ≥ 3 there do not exist complete complex subvarieties
ofMct

g of dimension greater than 2g − 4.

The proof is by easy induction arguments starting from the
base g = 3. The proof of the base statement is a corollary of
remarkable vanishing result:

there do not exist a complete complex subvarieties of the
moduli space Ag of principally polarized abelian varieties
of codimension g.
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Real normalized differentials

The foliation structure arises through identification ofM( n )
g, k with

the moduli space of curves with fixed real-normalized
meromorphic differential. By definition a real normalized
meromorphic differential is a differential whose period over any
cycle on the curve is real.

As easily follows from the positive-definiteness of the imaginary
part of the period matrix

Lemma

For any X ∈M( n )
g, k there exists a unique meromorphic

differential ΨX ∈ H0(C,KC +
∑

`(n` + 1)p`) with prescribed
singular part σ` at p`, and with all periods real.



Foliation

Definition

A leaf L of the foliation onM( n )
g, k defined to be the locus along

which the periods of the corresponding differentials remain
(covariantly) constant.

The leaves L of the foliation can be regarded as a
generalization of the Hurwitz spaces of P1 covers.

It is basic fact of the Whitham theory:

Theorem (Kr-Phong 1995)

A leaf L is a smooth complex subvariety of real codimension
2g.
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Coordinates along a leaf

A set of holomorphic coordinates onM( n )
g, k are "critical" values

of the corresponding abelian integral F (p) = c +
∫ p

Ψ, p ∈ Γ:

At the generic point, where zeros qs of Ψ are distinct, the
coordinates on L are the evaluation of F at these critical points:

ϕs = F (qs), Ψ(qs) = 0, s = 0, . . . ,d = dimL, (2)

normalized by the condition
∑

s ϕs = 0.



A direct corollary of the real normalization is the statement that:

imaginary parts fs = =ϕs of the critical values depend only
on labeling of the critical points

They can be arranged into decreasing order

f0 ≥ f1 ≥ · · · ≥ fd−1 ≥ fd .

After that fj can be seen as a well-defined continuous function
onM( n )

g, k , which restricted onto L is a piecewise harmonic
function. Moreover, f0 restricted onto L is a subharmonic
function, i.e, f0 has no local maximum on L unless it is constant.



Elliptic families of solutions of the KP equation

LetM≤n,τ
g,1 := {C,Ψ,Ψ1} be the moduli space of smooth genus

g algebraic curves C with a pair of real normalized differentials
having pole of order at most n + 1 at one marked point p0,
whose singular parts σ and σ1 satisfy the equation σ = τσ1 with
τ ∈ C, Im τ > 0.

The (local) period map is defined as

Π :M≤n,τ
g,1 →

(∮
γi

Ψ,

∮
γi

Ψ1

)
∈ R2g ⊕ R2g

Note, that if Π(C,Ψ,Ψ1) ∈ Z2g ⊕ Z2g then the holomorphic
differential dz = Ψ− τΨ1 defines (N : 1) map

z : C → Eτ = C/(1, τ)

where

N =

g∑
i=1

∮
ai

Ψ

∮
bi

Ψ1 −
∮

ai

Ψ1

∮
bi

Ψ
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Idea of the proof.

For any Y ⊂Mg the preimage of Y under the forgetful map
M≤n,τ

g,1 →Mg will be denoted by Y≤n,τ . It is of dimension
dim Y + n + 1

Lemma

Let Z be a complete cycle inMct
g of dimension g − 1, then for

any τ the period map

Π :
(
Z ∩Mg

)≤g,τ → R2g ⊕ R2g

fails to be injective at every point.
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If the statement of the theorem holds for g′ ≤ g − 1, then simple
dimension counting shows that a complete cycle Z ⊂Mct

g has
dimension at most g.

If Z is of dimension g, then by Diaz’ theorem it intersects at
least one of the divisorsMi,1 ×Mg−i,1 ⊂Mct

g .

Lemma

Let Z ∈Mct
g be a complete cycle of dimension g. Then the

period map

Π : (Z ∩Mi,1)≤i,τ × (Z ∩Mg−i,1)≤g−i,τ → R2g ⊕ R2g

is injective at a generic point.

Then by the lemma above

dim Z = dim(Z∩Mi,1)+dim(Z∩Mg−i,1) ≤ (i−1)+(g−i−1)+1 = g−1

Contradiction !
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Limits of real-normalized differentials

In the recent paper by S.Grushevsky, C. Norton and Kr a
"compactification" of the moduli spacesM :=M≤n

g,k was
constructed:

Theorem (Rougth version)

For any sequence of Xk = (Ck ,Ψk ) ∈M such that Ck
converges to a stable curve C, there exists a subsequence
along which there is a non-zero ! multi-scale limit of Ψk on each
irreducible component Cv of the normalization C̃ of C.

The multi scale limit means the following:
(i) C̃ = C(0) ∪ C(1) · · · ∪ C(L);
(ii) there is a set of decreasing scales limµ

(λ+1)
k /µ

(λ)
k → 0;

on each irreducible component Cv ∈ C(λ) there is a
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Plumbing construction

Let q1,q2 ∈ C (with C a possibly disconnected Riemann
surface) be two distinct points. Let z1, z2 be local coordinates
on C near q1,q2 such that zj(qj) = 0 and the nighborhooods
Vj := {|zj | < 1} ⊂ C of qj . are disjoint. Then for any s ∈ C with
|s| < 1 we denote Uj = Us

j := {|zj | <
√
|s |} ⊂ Vj the

corresponding disks, and denote γj := ∂Uj their boundary
circles, which we orient negatively with respect to Uj . The
standard plumbing Cs with parameter s is the Riemann surface

Cs := [C \ (U1 t U2)] /(γ1 ∼ γ2)

where γ1 is identified with γ2 via the diffeomorphism
I(z1) := s/z1. The structure of a Riemann surface on Cs is
defined by saying that a function on Cs is holomorphic, if it is
holomorphic on the complement of the seam γ (the image of γ1
and γ2) and continuous along the seam.



Plumbing coordinates

For a stable curve C ∈Mg , its dual graph Γ has vertices v that
correspond to normalizations Cv of irreducible components of
C, edges |e| that correspond to nodes q|e| of C, oriented edges
e that correspond to preimages qe of the nodes (as points on
the normalization C̃ of C). So Ev is the set of all preimages of
the nodes that are contained in Cv , and qe and q−e are the two
preimages on C̃ of a node q|e| of C.

The plumbing coordinates in the neighborhood of C are
coordinates u on the Cartesian product of the moduli spaces
for (Cv , {qe,e ∈ Ev}) together with a set of gluing parameters
s|e| for each node.



The jump problem

The jump problem is posed on Ĉu,s — a Riemann surface with
#E boundary components. The initial data is a set φ of
complex-valued smooth 1-forms φe on γe, which we call jumps.
The jumps are required to satisfy φe = −I∗e(φ−e) and

∫
γe
φe = 0

for all e ∈ E . The jump problem is to find a holomorphic 1-form
ωs on the interior of Ĉu,s that extends continuously to every
boundary component γe of Ĉu,s, and such that the boundary
extensions have jumps φe, i.e. satisfy for any e the equation

ωs|γe − I∗e
(
ωs|γ−e

)
= φe.



Theorem

There exists a constant t independent of u, such that for any
|s| < t and any φ, the jump problem has a unique solution ωs on
Ĉu,s satisfying∫

γe
ω = 0 for any e;∫

γ ω ∈ R for any cycle γ ∈ H1(Cu,Z).

Moreover, if the initial data are of the form φe := (fe − I∗e f−e) |γse
e

where fedze is a 1-forms in Ve, then there exists a constant M
such that

||ωs||Ĉv
s
≤ M|f |(

√
|sv |)ord f+1, |sv | := max

e∈Ev
|se|



Approximation versus gluing

A meromorphic differential Φ on Ĉs (which is the shorthand for
a collection of meromorphic differentials Φv on Ĉv

s ) glues to
define a meromorphic differential on Cs if and only if

Φv(e)
∣∣∣
γe

= I∗e

(
Φv(−e)

∣∣∣
γ−e

)
(3)

for all e.
Of course not every differential Φ on Ĉs satisfies (3) and glues
to a differential on Cs. One standard setup is for differentials
with simple poles at preimages of the nodes, with opposite
residues. Choosing coordinate ze near qe such that locally
Φv(e) = aedze/ze, with ae = −a−e, and performing plumbing in
these coordinates, one constructs a glued differential on Cs.
However, since the local coordinates ze depend on the
differential, it is hard to ensure from this viewpoint that all
suitable differentials on all smooth Riemann surfaces in a
neighborhood can be obtained in this way.
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Our approach is direct and analytic. We start with any
collection of fixed local coordinates ze near qe (for any u), and
thus with fixed plumbing coordinates on the moduli space.
Given any Φ on Ĉs, we will subtract from it another differential ω
on Ĉs such that their difference satisfies (3), and thus defines a
differential on Cs. The condition for ω must then be that its
“jumps” on γe are the same as for Φ, and we construct it by
explicitly solving the jump problem.


