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Outline

• factorized representation R = L−11 L2 of the recursion operators
with weak non-localities

• method for constructing the operators L1 and L2

• operators L1 and L2 and the Lax pairs



The problem of constructing the recursion operators for the integrable
equations has been investigated by many authors. Several methods
are worked out to study the task. Some of them use the Lax
representation. This way is very effective when the Lax pair is known.
If it is not the case then it is reasonable to study directly the defining
equation d

dtR = [F ∗, R], where R is the recursion operator and F ∗ is
the linearization operator. To solve the equation the most authors use
the multi-Hamiltonian approach. Their basic goal is to find two
Hamiltonian operators H1 and H2 to the given equation. Then the
recursion operator is given by the following formula R = H2H

−1
1 .

In the present article we concentrate on the alternative method for
constructing the recursion operator which is based on the symmetries
and the formula R = L−11 L2



We begin with an integrable evolutionary type equation

ut = f(u, u1, u2, ..., uk), uj = Dj
xu. (1)

admitting a hierarchy of the symmetries

uτ = g(u, u1, u2, ..., un). (2)

Symmetry means that d
dτ f = d

dtg. Assume that Eq. (1) admits a
weakly non-local recursion operator of the form (Maltsev A Ya and
Novikov S P 2001 Phys. D 156(1-2) 53–80 )

R = R0 +

m∑
i=1

g(ki)D−1x h(i) (3)

where R0 is a differential operator. The non-local part consists of the
combinations of the generators of the symmetries uτj = g(j) and the

variational derivatives h(j) of the conserved densities.



Recall that operator R converts a symmetry into another symmetry.
Theorem. Recursion operator

R = R0 +

m∑
i=1

g(ki)D−1x h(i)

is represented as a ratio
R = L−11 L2

of two differential operators L1 and L2.
As L1 we take a differential operator such that the fundamental set of
solutions to the equation L1g = 0 coincides with g(k1), g(k2), ..., g(km)

Then it is easily proved that L2 := L1R is a differential operator.



We call the symmetries g(k1), g(k2), ..., g(km) defining the non-local part
of the recursion operator

R = R0 +

m∑
i=1

g(ki)D−1x h(i)

the seed symmetries.
Below we give the set of seed symmetries for some equations
1) KdV equation S =

{
g(1) = ux

}
2) Kaup-Kupershmidt type equations S =

{
g(1) = ux, g

(2) = ut
}

3) Krichever-Novikov Eq. for R1, S =
{
g(1) = ux, g

(2) = ut
}

4) Krichever-Novikov Eq. R2, S =
{
g(1) = ux, g

(2) = ut, g
(3) = uτ

}
5) Harry Dym equation S =

{
g(2) = ut

}
Thus we have only four different possible choices for S. And therefore
four choices for the operator L1.



Having S we can easily find the operator L1 up to some additional
factor. It is given by the following determinant

L1U = ρ

∣∣∣∣∣∣∣∣
Dm
x g

(k1) Dm−1
x g(k1) . . . g(k1)

. . . . . . . . . . . .

Dm
x g

(km) Dm−1
x g(km) . . . g(km)

Dm
x U Dm−1

x U . . . U

∣∣∣∣∣∣∣∣ , (4)

where ρ is a function of the dynamical variables u, u1, . . . .
As soon as L1 is found we can start to search L2. It can be verified
that the order of the operator L2 is determined as follows

m2 = m+ ord g(km+1) − ord g(k1). (5)

where m is the order of the operator L1.



Recursion operator R for the equation

ut = f(u, u1, u2, ..., uk)

satisfies the equation
d

dt
R = [F ∗, R] ,

where F ∗ is the linearization operator

F ∗ =
∂f

∂u
+

∂f

∂u1
Dx +

∂f

∂u2
D2
x + ...+

∂f

∂uk
Dk
x.

Therefore by using R = L−11 L2 we derive the equation

d

dt
L−11 L2 =

[
F ∗, L−11 L2

]
which implies



d

dt
(L2)L

−1
2 + L2F

∗L−12 =
d

dt
(L1)L

−1
1 + L1F

∗L−11 =: A.

Lemma. Operator A defined due to the formula

A =
d

dt
(L1)L

−1
1 + L1F

∗L−11

is a differential operator.
Actually the operators L1 and L2 satisfy one and the same equation

d

dt
(Lj) = ALj − LjF ∗, j = 1, 2.

From this equation we find L2. Its order m2 is given by the formula
m2 = m+ ord g(km+1) − ord g(k1).
Finally we obtain the recursion operator R = L−11 L2.
Remark. For incorrect choice of the set of seed symmetries S the
appropriate L2 does not exist.



Examples

Note that the discussed method does not use the Lax representation.
As an illustrative example we take the KdV equation

ut = u3 + uu1. (6)

Among the potential values of the parameter m we first choose m = 1
and take S = {ux}. Thus the first pretender for L1 is as follows

L1U = ρ

∣∣∣∣ u2 u1
U1 U

∣∣∣∣ . (7)

For the sake of simplicity we put ρ = −1, thus

L1 = u1Dx − u2. (8)



Find the linearization operator

F ∗ = D3
x + uDx + u1 (9)

Evaluate the operator A due to formula A = d
dt(L1)L

−1
1 + L1F

∗L−11

The answer is

A = D3
x −

3u2
u1

D2
x +

(
u+

3u22
u21

)
Dx + 3

(
u4
u1

+ u1 −
u2u3
u21

)
. (10)

According to the formula for the orders

m2 = m+ ord g(km+1) − ord g(k1) = 1 + 3− 1 = 3

the corresponding operator L2 should be of the third order



L2 = β(3)D3
x + β(2)D2

x + β(1)Dx + β(0). (11)

We find the unknown coefficients from the equation

d

dt
(L2) = AL2 − L2F

∗, (12)

The answer is:

L2 = u1D
3
x − u2D2

x +
2

3
uu1Dx + u21 −

2

3
uu2. (13)

Thus we get well-known (Gardner, Greene, Kruskal and Miura, 1974)
R = L−11 L2 = D2

x + 2
3u+ 1

3u1D
−1
x .

Recall that the usual representation of R through the Hamiltonian
operators H1 = Dx, H2 = D3

x + 4uDx + 2u1 is as follows

R = H2H
−1
1 . (14)



Example 2

As the second illustrative example we consider the
Kaup-Kupershmidt equation

ut = u5 + 10uu3 + 25u1u2 + 20u2u1. (15)

In what follows we will need in its linearization operator

F ∗ = D5
x + 10uD3

x + 25u1D
2
x +

(
25u2 + 20u2

)
Dx + 10u3 + 40uu1.

(16)

In order to find the set S of the seed symmetries for the equation (15)
we have to examine the possible cases S1 = {ux}, S2 = {ut},
S3 = {ux, ut}, S4 = {ux, ut, uτ}, where uτ = g(3) is the next symmetry
of the Kaup-Kupershmidt equation, it is of the seventh order.



Examine the possible cases S1 = {ux}, S2 = {ut}, S3 = {ux, ut},
S4 = {ux, ut, uτ}. We started with the case S = S1. For the
corresponding L1 we found the operator A, then since
m2 = 1 + 5− 1 = 5 we searched a fifth order differential operator L2

satisfying the equation d
dtL2 = AL2 − L2F

∗ and observed that such
operator does not exist. In a similar way we have verified that the
case S = S2 also does not fit.
Then we passed to the case S = S3 and succeeded. Operator L1 is
found from the relation

L1U =

∣∣∣∣∣∣
u3 u2 u1
u2t u1t ut
U2 U1 U

∣∣∣∣∣∣ (17)

and is of the form

L1 = αD2
x + βDx + γ, (18)



L1 = αD2
x + βDx + γ,

where

1 α = u2u5 + 10uu2u3 − u1u6 − 35u21u3 − 10uu1u4 − 40uu31,

2 β = 10uu1u5 − u3u5 + 45u21u4 − 10uu23 + 120uu21u2 + 40u41 +
60u1u2u3 + u1u7,

3 γ = −120uu1u
2
2 − 10uu2u5 + u3u6 + 35u1u

2
3 − 60u22u3 −

40u31u2 − u2u7 + 10uu3u4 + 40uu21u3 − 45u1u2u4.

Then we look for the operator

A =

5∑
j=0

A(j)Dj
x (19)

from the equation:

d

dt
(L1) = AL1 − L1F

∗. (20)



At the next step we look for the eighth order differential operator L2,
m2 = m+ord g(km+1)−ord g(k1) = 2+ord g(3)−ord g(1) = 2+7−1 = 8

L2 =

8∑
k=0

b(k)Dk
x (21)

from the equation d
dt(L2) = AL2 − L2F

∗. It turned out that such
operator does exist. Omitting the computations we give only the
answer:



L2 =

8∑
k=0

b(k)Dk
x, L1 = αD2

x + βDx + γ

1 b(8) = α, b(7) = β, b(6) = 12uα+ γ, b(5) = 60u1α+ 12uβ,

2 b(4) = (133u2 + 36u2)α+ 48u1β + 12uγ,

3 b(3) = (169u3 + 264uu1)α+ (85u2 + 36u2)β + 36u1γ,

4 b(2) = (132u4 + 394uu2 + 381u21 + 32u3)α+ (84u3 + 192uu1)β +
(49u2 + 36u2)γ,

5 b(1) = (63u5 + 304uu3 + 852u1u2 + 240u2u1)α + (48u4 +
202uu2 + 189u21 + 32u3)β + (35u3 + 120uu1)γ,

6 b(0) = (17u6 + 122uu4 + 444u1u3 + 324u22 + 192u2u2 +
368uu21)α + (15u5 + 102uu3 + 272u1u2 + 144u2u1)β +
(13u4 + 82uu2 + 69u21 + 32u3)γ.



Let us find the required recursion operator R. We know that the
order of its differential part is 6 = m2 −m and it has two non-local
terms, therefore it is of the form:

R =

6∑
j=0

r(j)Dj
x + u1D

−1
x h(1) + utD

−1
x h(2). (22)

The relation L1R = L2 allows us to find all of the functional
parameters in (22):

1 r(6) = 1, r(5) = 0, r(4) = 12u,

2 r(3) = 36u1, r(2) = 49u2 + 36u2,

3 r(1) = 35u3 + 120uu1, r(0) = 13u4 + 82uu2 + 69u21 + 32u3,

4 h(1) = 2u2 + 8u2, h(2) = 2.

So we have the final form of R coinciding with that found earlier by
Gürses M, Karasu A and Sokolov V V (1999):

R = D6
x + 12uD4

x + 36u1D
3
x +

(
49u2 + 36u2

)
D2
x +

+ (35u3 + 120uu1)Dx + 13u4 + 82uu2 + 69u21 +

+32u3 + u1D
−1
x (2u2 + 8u2) + 2utD

−1
x .



Example 3
The next example is connected with the Krichever-Novikov equation

ut = u3 −
3

2

u22
u1

+
P (u)

u1
with P ′′′′′(u) = 0. (23)

The set S for the equation (23) consists of the generators of two
classical symmetries g(1) = ux and g(2) = ut. Hence m = 2 and the
operator L1 is defined by

L1U =

∣∣∣∣∣∣
u3 u2 u1
u2t u1t ut
U2 U1 U

∣∣∣∣∣∣ . (24)

A =
3∑
j=0

A(j)Dj
x, L2 =

6∑
k=0

b(k)Dk
x

The coefficients of the operators A and L2 are found from equations

d

dt
(L1) = AL1 − L1F

∗ d

dt
(L2) = AL2 − L2F

∗



Thus we obtain the final form of the operator R

R = D4
x − 4u2

u1
D3
x +

(
6u22
u21
− 2u3

u1
− 4P (u)

3u21

)
D2
x

+
(
8u2u3
u21
− 2u4

u1
− 6u32

u31
+ 4P (u)u2

u31
− 2P ′(u)

3u1

)
Dx + u5

u1
− 4u2u4

u21

−2u23
u21

+
8u22u3
u31
− 3u42

u41
+

4P (u)u22
3u41

+ 4P (u)2

9u41
− 8P ′(u)u2

3u21
+ 10

9 P
′′(u)

+u1D
−1
x K

+utD
−1
x

(
4u2u3
u31
− u4

u21
− 3u32

u41
− P ′(u)

u21
+ 2P (u)u2

u41

)
where K = 6u2u5

u31
− u6

u21
− 5

9P
′′′(u) + 5P ′′(u)u2

3u21
− 10P (u)2u2

9u61

−10u2(4u1u3−5u22)P (u)

3u61
− 15u2(2u1u3−u22)(2u1u3−3u22)

2u61

+
5(2P (u)+12u1u3−27u22)(3u4+P ′(u))

18u41
. It coincides with R found earlier in

Sokolov V V 1984 On the Hamiltonian property of the
Krichever-Novikov equation Sov. Math. Dokl. 30:1 44-46.



Semi-discrete equations

For integrable lattices

un,t = f(un+k, un+k−1, . . . , un−k),
∂f

∂un+k

∂f

∂un−k
6= 0

weakly non-local recursion operators are of the form

R = R0 +

m∑
j=1

g(kj)(Dn − 1)−1h(j) (25)

Theorem 2. Let R be a weakly nonlocal difference operator of the
form (25). Then there exist difference operators L1 and L2

L1 = α(0)Dm
n + α(1)Dm−1

n + · · ·+ α(m), (26)

L2 = β(p)Dp
n + β(p−1)Dp−1

n + · · ·+ β(−q)D−qn , p > m, q > 0 (27)

such that the following condition is satisfied L1R = L2.



The natural numbers m, p and q in the formulas

R = R0 +

m∑
j=1

g(kj)(Dn − 1)−1h(j)

L1 = α(0)Dm
n + α(1)Dm−1

n + · · ·+ α(m),

L2 = β(p)Dp
n + β(p−1)Dp−1

n + · · ·+ β(−q)D−qn , p > m, q > 0

are related to each other by the formulas

p = m+ q, q = ord g(km+1) − ord g(k1). (28)

Therefore if m is given then p and q are uniquely determined.



By using this representation L1R = L2 we can construct recursion
operator R for integrable lattices as well. For instance, for the
Volterra lattice

d

dt
un = un(un+1 − un−1)

we have

L1Un = − 1

un,tun+1,t

∣∣∣∣ un+1,t un,t
Un+1 Un

∣∣∣∣ (29)

or, the same L1 = (Dn − 1) 1
un,t

. We find L2

L2 =
1

un+2 − un
D2
n +

(
un+2 + un+1

un+1(un+2 − un)
− 1

un+1 − un−1

)
Dn+

1

un+2 − un
− un + un−1
un(un+1 − un−1)

− 1

un+1 − un−1
D−1n .



A non-autonomous example

Here we consider the following non-autonomous lattice of the
relativistic Toda type

un,t = hnhn−1(anun+2 − an−1un−2) (30)

where hn = un+1un − 1 and the coefficient an is an arbitrary periodic
function of the period 2, an+2 = an. This lattice has been found by
(Garifullin and Yamilov, 2012, JPA). In (Garifullin R N, Mikhailov
A V and Yamilov R I 2014, TMPh) the recursion operator for the
non-autonomous lattice (30) is constructed by reducing it to an
autonomous system found by Tsuchida, for which the recursion
operator has already been found earlier. Actually the known
recursion operator for the Tsuchida system was recalculated to the
scalar form in an appropriate way.
Here we derive the recursion operator directly using the symmetry
algorithm discussed above.



As it has been observed in (Garifullin R N, Mikhailov A V and
Yamilov R I 2014, TMPh) the lattice (30) possesses a rather large
hierarchy of the symmetries. Since the lattice is not autonomous then
the set S of the seed symmetries obviously might also contain
non-autonomous symmetries. The first two members of the symmetry
hierarchy are as follows

1. un,τ1 = (−1)nun,

2. un,τ2 = hnhn−1(cnun+2 − cn−1un−2), cn+2 = cn,

where cn is an arbitrary periodic function of n with period equal to
two.
As potential sets of seed symmetries, consider the following three sets:

S1 = {un,τ1} , S2 = {un,τ2} , S3 = {un,τ1 ;un,τ2} . (31)

We checked that the first two sets do not fit, but the latest is surely
the required set of seed symmetries.



The operator L1 corresponding to S3 is given by

L1Un =

∣∣∣∣∣∣
D2
n(un,τ1) Dn(un,τ1) un,τ1

D2
n(un,τ2) Dn(un,τ2) un,τ2
Un+2 Un+1 Un

∣∣∣∣∣∣ (32)

As a result we have

L1 = αD2
n + βDn + γ, (33)

where

1 α = (−1)n+1hnun+1hn−1(cnun+2 − cn−1un−2)+
+(−1)n+1hnunhn+1(cn−1un+3 − cnun−1),

2 β = (−1)n+1un+2hnhn−1(cnun+2 − cn−1un−2)−
−(−1)n+1unhn+1hn+2(cnun+4 − cn−1un),

3 γ = (−1)nhn+1un+1hn+2(cnun+4 − cn−1un)+
+(−1)nhn+1un+2hn(cn−1un+3 − cnun−1).



Find the linearization of the lattice (30)

Un,t = F ∗Un, (34)

where

F ∗ = anhnhn−1D
2
n + unhn−1(anun+2 − an−1un−2)Dn +

(un+1hn−1 + un−1hn)(anun+2 − an−1un−2) +

unhn(anun+2 − an−1un−2)D−1n − an−1hnhn−1D−2n .

In order to find the operator

A = A(2)D2
n +A(1)Dn +A(0) +A(−1)D−1n +A(−2)D−2n . (35)

We use the equation

d

dt
L1 = AL1 − L1F

∗, (36)



When A is found we can look for the operator L2 which has to be of
the form

L2 = b(4)D4
n + b(3)D3

n + b(2)D2
n + b(1)Dn + b(0) + b(−1)D−1n + b(−2)D−2n .

Indeed due to the formulas for the orders we have p = m+ l, q = l
where m = 2, l = 2.
We substitute the ansatz into the defining equation

d

dt
L2 = AL2 − L2F

∗

and find consecutively the unknown coefficients b(j).



Finally we find the recursion operator

R = cnhnhn−1D
2
n +

ungn
hn

Dn +
un−1gn − ungn−1

hn−1
+ cnhn−1hn+1+

+cn−1hnhn−2 + sn −
ungn
hn−1

D−1n + cn−1hnhn−1D
−2
n +

+un,τ1(Dn − 1)−1(−1)n+1

(
gn−1
hn−1

+
gn+1

hn

)
+

+un,τ2(Dn − 1)−1
(
un−1
hn−1

+
un+1

hn

)
.

where gn = hnhn−1(cnun+2 − cn−1un−2), the factors un,τ1 and un,τ2
are generators of the symmetries. We denoted sn = (−1)n+1s

(1)
n − s(2)n .

Obviously in the formula for R function sn is considered as an
arbitrary function satisfying the periodicity condition sn = sn+2.
Recursion operator found in (Garifullin R N, Mikhailov A V and
Yamilov R I 2014, TMPh) can be reduced to this one with sn = 0.



Operators L1, L2 and the Lax pairs

The operators L1 and L2 from the representation R = L−11 L2 are
connected with the Lax pairs. A pair of the equations

L2U = λL1U, Ut = F ∗U

defines the Lax pair for the equation

ut = f(u, u1, u2, ..., uk).

This Lax pair does not coincide with the usual one, since it is of
higher order, but by appropriate transformation reduces to the usual
form.



Examples
For the KdV equation operators L1 and L2 given above

L1 = u1Dx − u2,

L2 = u1D
3
x − u2D2

x +
2

3
uu1Dx + u21 −

2

3
uu2

Equation
(L2 − λL1)U = 0

is a third order ODE for U . Its order is reduced by one

Uxx =
uxUx

2(u+ λ)
− 2

3
(u+ λ)U +

ux
√

9U2
x + 6(u+ λ)(U2 + c)

6(u+ λ)

where c is the constant of integration, set c = 0. Linearized Eq.
Ut = F ∗U turns into

Ut =
uxx
√

9U2
x + 6(u+ λ)U2

6(u+ λ)
+

(
uxx

2(u+ λ)
+
u− 2λ

3

)
Ux.



Thus we obtain a nonlinear Lax pair, containing a square root. To get
rid the root we change the variables in such a way that U and Ux are
some quadratic forms of the new variables ϕ and ψ

U =
2√
6
ϕψ, Ux =

1

3

√
u+ λ(ϕ2 − ψ2).

Then we arrive at a linear system for the new variables
ϕx =

ux
4(u+ λ)

ϕ− 1√
6

√
u+ λψ,

ψx =
1√
6

√
u+ λϕ− ux

4(u+ λ)
ψ,

(37)



Time evolution is linear as well
ϕt = Kϕ−

√
6

18
(u− 2λ)

√
u+ λψ,

ψt =

(
uxx√

6
√
u+ λ

+

√
6

18
(u− 2λ)

√
u+ λ

)
ϕ−Kψ.

(38)

where K = 3uxxx+ux(u−2λ)
12(u+λ)

Changing the variables ϕ = αp, φ = α−1q where α = (u+ λ)1/4 we get
px = − 1√

6
q,

qx =
1√
6

(u+ λ)p.

(39)

and finally we obtain the well-known Lax pair

pxx = −1

6
(u+ λ)p, pt =

1

3
(u− 2λ)px −

1

6
uxp.



We applied the algorithm above to the following two KdV type
equations found by Svinolupov and Sokolov in 1982

ut = uxxx +
1

2
u3x −

3

2
ux sin2 u, (40)

uτ = uyyy −
3uyu

2
yy

2(1 + u2y)
+

1

2
u3y, (41)

Consider the first one. We constructed the operators

L1 = Dx −
uxx
ux

L2 = D3
x −

uxx
ux

D2
x + (u2x − sin2 u)Dx +

uxx sin2 u− 3u2x sinu cosu

ux

by using the scheme.



Now we can find the recursion operator

R := L−11 L2 = D2
x + u2x − sin2 u− uxD−1x (sinu cosu+ uxx)

Thus we have the Lax pair of the form

L2U = λL1U, Ut = F ∗U

Uxxx − uxx
ux
Uxx + (u2x − sin2 u)Ux + uxx sin2 u−3u2x sinu cosu

ux
U =

λ
(
Ux − uxx

ux
U
)
. The Lax pair admits a reduction in the order

Uxx =
ux sinu cosu

sin2 u+ k
Ux + (sin2 u+ k)U +

ux
√
k(k + 1)K

sin2 u+ k
,

Ut =

(
uxx sin 2u

2(sin2 u+ k)
− sin2 u− u2x

2
+ k

)
Ux +

uxx
√
k(k + 1)K

(sin2 u+ k)
.

Here K =
√

(sin2 u+ k)U2 − U2
x .



To get a linear Lax pair we change the variables by appropriate
quadratic forms chosen in such a way that the root in K is precisely
extracted

U = 2ϕ̃ψ̃, Ux =
√

sin2 u+ λ(ϕ̃2 + ψ̃2).

After some transformation we obtain the Lax pair

ϕxx =
(sinu cosu−

√
ξ − ξ2)ux

sin2 u− ξ
ϕx +

1

4
(sin2 u− ξ)ϕ, ξ = −λ

ϕt =

(
(sinu cosu−

√
ξ − ξ2)uxx

sin2 u− ξ
− 1

2
sin2 u+

1

2
u2x − ξ

)
ϕx+

+
1

2

√
ξ − ξ2uxϕ.



Consider now the other equation from Svinolupov-Sokolov list

uτ = uyyy −
3uyu

2
yy

2(1 + u2y)
+

1

2
u3y

Find the operators L1 and L2

L1 = Dy −
uyy
uy

L2 = D3
y −

(3u2y + 1)uyy

uy(1 + u2y)
D2
y −

(
uyuyyy
1 + u2y

−
3u2yu

2
yy

(1 + u2y)
2
− u2y

)
Dy

Therefore we have the recursion operator R = L−11 L2

R = D2
y −

2uyuyy
1 + u2y

Dy + uyD
−1
y

(
uyyy

1 + u2y
−

uyu
2
yy

(1 + u2y)
2

+ uy

)
Dy.



Thus we have a third order Lax pair

Uτ = Uyyy −
3uyuyy
1 + u2y

Uyy +
3

2

(
u2y +

(u2y − 1)u2yy
(u2y + 1)2

)
Uy. (42)

Uyyy −
(3u2y + 1)uyy

uy(1 + u2y)
Uyy

−

(
uyuyyy
1 + u2y

−
3u2yu

2
yy

(1 + u2y)
2
− u2y +

1

k

)
Uy +

uyy
kuy

U = 0, (43)

where k is a parameter.



We reduce the order of the equation (43)

Uyy =
uyuyy
1 + u2y

Uy +
1 + u2y
k

U − uyK

k
. (44)

where K =
√

(k + 1)((1 + u2y)U
2 − kU2

y ) + l
k (1 + u2y). Thus we have a

nonlinear Lax pair

Uτ = Uyyy −
3uyuyy
1 + u2y

Uyy +
3

2

(
u2y +

(u2y − 1)u2yy
(u2y + 1)2

)
Uy.

We reduce it to a linear one by the following change of the variables

U = 2
√
kϕ̃ψ̃, Uy =

√
1 + u2y(ϕ̃

2 + ψ̃2)



Finally we get

ϕyy =

(
uyuyy
1 + u2y

−
√

1− ξuy√
ξ

)
ϕy −

1 + u2y
4ξ

ϕ, ξ = −k,

ϕt =

(
uyuyyy
1 + u2y

−
(3u2y + 1)u2yy
2(1 + u2y)

2
+

√
1− ξuyy√
ξ(1 + u2y)

+
ξu2y − 2

2ξ

)
ϕy −

−
√

1− ξuy
2ξ3/2

ϕ.
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