Six vertex model:
Exact results and open problems

Giuliano Ribeiro and Vladimir Korepin

C.N. Yang Institute for Theoretical Physics
Stony Brook University

2014

&

V. E. Korepin Six vertex model with DWBC



Periodic boundary conditions

exponents

Problem

In statistical physics people believe that in thermodynamic limit the
bulk free energy and correlations should not depend on boundary
conditions. This is often true, but there are counterexamples.
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Periodic boundary conditions

ponents

Six vertex model

Statistical mechanics (classical) model on a square lattice.

Ice model has atoms on vertices and hydrogen bonds on edges
[Pauling J Am Chem Soc 1935, Slater J Chem Phys 1941].

Allowed configurations follow arrow conservation (ice rule).

b b e
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Periodic boundary conditions Model
Phases

Critical exponents

Boltzmann weights (zero-field model)

a =exp(—¢,/T) b = exp(—&y/T) c = exp(—&;/T)
FE a = sinh(¢—y) b = sinh(t+y) ¢ = sinh(2y)

DIS  a=sin(u-w) b = sin(u+w) ¢ =sin(2u)
AFE  a=sinh(1-v) b = sinh(1+0) ¢ = sinh(21)
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Periodic boundary conditions

ponents

Periodic boundary conditions (torus)

We consider here an N x N lattice.
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Periodic boundary conditions Model
Phases

Critical exponents

Partition function

Z = Z H W, W e {a,b,c}

arrow yertices
config.

Bulk free energy f = —T1n ZUN? a5 N — .

Calculated by Lieb [PRL, 1967], Sutherland [PRL, 1967].
Baxter [Exactly solved models in statistical mechanics, 1982].
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Periodic boundary conditions Model
Phases
Critical exponents

Phases

2 4 p2 _ 2
Control parameter is A = 614’271)0 = —cos 2 = — cosh 2)\.
a

Free energy has different analytic forms when

m A > 1 (ferroelectric).
m —1 <A <1 (disordered).
m A < —1 (anti-ferroelectric).
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Periodic boundary conditions Model
Phases
Critical exponents

Phase diagram

blc

alc
Phase | (ferroelectric).
Phase Il (ferroelectric).
Phase Il (disordered).

Phase IV (anti-ferroelectric).
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Periodic boundary conditions Model
Phases
Critical exponents

Phases | and Il (ferroelectric)

A > 1.
Phase I: Phase 1I:
, \ \ \ \ , A A A A
SUA A AT YN
! L A A A ! A A A A
A AT T oA A A A
N Y Y Y SR U U T T
f=-Tlha=¢ f=-Tlnb=¢,

No entropy in the ground state. Correlations are classical.
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Periodic boundary conditions Model
Phases
Critical exponents

Phase Il (disordered)

a,bc < 3(a+b+ec)or -1 <AL

_ * sinh[2(p + w)z]| sinh[(7 — 2u)z]
f=a-T /_OO 2z sinh(mx) cosh(2ux) dr.

Includes infinite temperature case (a = b= c = 1) where

ZYN? = (4/3)%%, N — oo [Lieb PRL, 1967].
Entropy of ground state.

Correlation decay as power law. Conformal field theory can be used
to describe asymptotic of correlations.
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Periodic boundary conditions Model
Phases
Critical exponents

Phase IV (anti-ferroelectric)

c>a+bor A< —1.

f=€1—T[()\+v)+Z

m=1

e~2mA sinh[2m(\ + v)]
m cosh(2m\)
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Periodic boundary conditions

exponents

Ferroelectric | and disordered phase Il|

Critical temperature T occurs at b+c¢—a =0. (2u — 7 and
2w — —m)

With 6 = (b+ ¢ —a)/a < T — Tt near critical line:

0~ (m—2u)(p+w)as § — 0.
Free energy f is continuous at § = 0.

[
[
m Critical exponent for specific heat & = 1 (step discontinuity).
m Phase transition is first-order.

[

Correlation length is zero in ferroelectric phase and infinite in
disordered phase.
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Periodic boundary conditions

ritical exponents

Ferroelectric Il and disordered phase Il|

Same as previous ferroelectric I-disordered phase transition with:

ma<<b.
m Phase | < Phase Il

m Corresponds to 7/2 rotation of lattice.
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Periodic boundary conditions

ritical exponents

Anti-ferroelectric IV and disordered phase Il

Critical temperature T occurs at a +b—c=0. (A\,v — 0")

m O~ (0P —A%)asf— 0.

m Free energy is singular as § — 0~:

2 _ 1/2
feox e ™/ gmeenst/I0E  (const > 0).

All temperature derivatives of f are continuous at 6 = 0.

Phase transition is infinite-order.

. _ 1/2 . _
Inverse correlation length ¢! o fc/ also singular as 6 — 0.
Correlation length does not diverge as a power law.
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Other boundary conditions

Other boundary conditions

m Free boundaries.
[Owczarek and Baxter JPA, 1989]

m Antiperiodic boundaries.
[Batchelor, Baxter, O'Rourke, Yung JPA, 1995]

In thermodynamic limit the bulk free energy and correlations are

identical to periodic case.
Can the bulk free energy and correlations depend on boundary
conditions in thermodynamics limit?
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Other boundary conditions

Ferroelectric boundary conditions

A A A A
A A A A

Ferroelectric-a boundary conditions.
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Other boundary conditions

Ferroelectric boundary conditions

A A A A
Ak
N
Ak
Ak

Only one arrow configuration in the bulk is compatible with these
boundary conditions.
One can prove this by induction in the lattice size.
f=-Tlha=¢
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Other boundary conditions

Ferroelectric boundary conditions

blc

FE

alc

m There are no phase transitions. Entropy is zero.

m One can tune Boltzmann weights into disordered phase.
Correlations in the center of the lattice are pure classical. No
power law, no conformal filed theory. Unlike periodic
boundary conditions.

m This proves that the bulk free energy can depend on boundary
conditions in thermodynamic limit.
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Model and partition function
Ph
Domain wall boundary conditions Ph

Domain wall boundary conditions

Y Y Y V¥
YUY

Korepin CMP, 1982; Korepin and Zinn-Justin JPA, 2000
[cond-mat/0004250]; Zinn-Justin PRE, 2000.
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Model and partition function
Pt
Domain wall boundary conditions Pt ansitions

Partition function (ferroelectric phase)

Derivation by Bethe ansatz.

Izergin-Korepin formula

2

[sinh(t + ~) sinh(t — )]V

Zn(t) = (Hﬁ;_ol n!)Q

5 (t), (N x N lattice).

Hankel determinant

g\ itk2 sinh(27v)
TN (t) = det [(@) W)] o) = sinh(¢ + ~) sinh(¢t — 7)
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and partition function

Domain wall boundary conditions ransitions

Partition function

Toda (Hirota) equation
INTh — (TN)? = Tnp1Tn—1, YN >1, 719=1,71 = ¢(t).

In the thermodynamic limit N — oo, use the ansatz:

TlnZn(t) = —N2f(t) + O(N).

Bulk free energy is f(t).
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Model and partition function
Pt
Domain wall boundary conditions Pt

Free energy (ferroelectric phase)

Define f(t)/T = —g(t) — In[sinh(¢ + ~) sinh(t — v)].

Equation and solution for g(t)

k

no__ 629 g(t) — ]
sinh[k:(t — to)]

g - 9

with solution parameters k and .
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Domain wall boundary conditions

Phase diagram

blc

| I

! alc

m Phase boundaries identical for PBC and DWBC.

m Phases | & Il (ferroelectric), 1l (disordered), and IV
(anti-ferroelectric).

2 2 _ 2
Control parameter A = a—}—27bc = —cos2pu = —cosh 2.
a

V. E. Korepin Six vertex model with DWBC



Domain wall boundary conditions Phase transitions

Ferroelectric phases | and Il

(A =cosh2y) > 1.

Bulk free energy
e~ /T = sinh(t + |y|) = max(a, b). J

Same free energy as ferroelectric phase with PBC.

m This was later rigorously proven by Bleher and Liechty,
Commun. Math Phys 2009

Zn = (1—e ) [sinh (t + |[7)]V 0D+ 0N 7)), Ve >0
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Mod
Phases
Domain wall boundary conditions Phase transitions

Disordered phase Il

—1< (A =—cos2u) < 1.

Bulk free energy

—FIT = sin(p — w) si o
e sin(p — w) SID(M+W)2M cos(mw/24) "

Free energy with DWBC always greater than PBC case.

m This was later rigorously proven by Bleher and Fokin,
Commun. Math Phys 2006

2
. [msin(p — w)sin(p+ w) 1Y _
Zny=C N 2 1+O(N~°
=l (N cos (o 2))* | gL | o)
where k = & — #_2%) and C(u) > 0 is unknown.
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Mod
Phases
Domain wall boundary conditions Phase transitions

Entropy in disordered phase

Consider infinite temperature a =b=c = 1.
Entropy with DWBC
Sowec = $N?1n(27/16) ~ 0.26N?2.
Entropy with PBC
Spec = 3N?1n(4/3) ~ 0.43N?.
Entropy with FE
Sre=0

Entropy of other boundary conditions is bounded by PBC and FE:

SrE < Sother < Spgc
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Model and partition function
Ph
Domain wall boundary conditions Phas

Anti-ferroelectric phase |V with domain wall boundary
conditions

(A = —cosh2)\) < —1.

Bulk free energy

_ . ) 91(0)
FIT — ginh(\ — h T _nv
e sinh(\ — v) sinh(\ + 0)2)\ Ta(mu/2N)

Yn(z) are Jacobi theta functions with elliptic modulus ¢ = e~ /2

Free energy with DWBC different from PBC case.
Derived by Paul Zinn-Justin.

m This was again rigorously proven by Bleher and Liechty,
Commun Pure Appl Math 2010

Zn = CV) e TTIN 9 (N(A + )1 /20) (1 + O(N 1)),
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partition function

Domain wall boundary conditions P ransitions

Ferroelectric and disordered phase IlI

Let 0 o (T'/T¢) — 1.
m Free energy f is continuous at § = 0.

m Specific heat ~ 0'/2 in disordered phase 6 — 0.
Critical exponent a = —1/2
(a =1 for PBC).

m Phase transition is second-order
(first-order for PBC).
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partition function

Domain wall boundary conditions P ransitions

Anti-ferroelectric IV and disordered phase Il

Phase transition reached as A\, v — 0.

Leading singularity of free energy is
Jer~ G_WQ/)\~
Let 0 o< (T'/T¢) — 1.

m Like in PBC case f. oc e=<omst/lo1V 35 9 5 0~

m Phase transition is also infinite-order.
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{

N
Phases
Domain wall boundary conditions Phase transitions

Correlations for domain wall boundary conditions

m No results for bulk correlation function

m Boundary correlation function (determinant formula, multiple
integral):
m one-point: Bogoliubov,Pronko,Zvonarev, J PHYS A, 2002
m two-point: Colomo, Pronko, JSTAT 2005

e.g one-point boundary correlation:

HG = 238 (W BOW) -+ By 1) Py B PrB(Ar—1) - - - B(A1) )

g (N — 1)!'sinh (27) m

N7 [sinh (t + n)]7[sinh (t — )N =+ (1)

where 7(t) = :l»e}f (]2\1,;1‘,) and 7(t) = det (ﬂlk) ]\\/I,k differs from
itk—
My, = (%)

A (i)i—l { [sinh e] N~ [sinh (e — 2n)]" ! }

[sinh (e +t — n)]N—1

¢(t) only in the first column:

e=0"
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N
F
Domain wall boundary conditions P transitions

Correlations for domain wall boundary conditions

m Emptiness formation probability EFP (introduced by Korepin
1988): Colomo, Pronko, NPB 2008

By means of orthogonal polynomials techniques, the EFP can be written as

gl _ (F)EFD27 7{ 7{ (82 — 2At)z; + 1]°~
le— ' -_
N (27\'7, ) ‘(‘71)6 Co Co j—1 Zj (2 — 1)
11 - I Gr-2)?
X _— Z — Zj
2 i J
gok=1 11EjEE = 28tz + 1 S o
i#k
XhN (21, 2s)hs s(u1, ..., us)dzy -+ - dzs,
S
h = i d
where 'LLJ = (‘f —2At)1J+l an
s .
hva(en,oze) = [] det (207 (2 = D' R Cagi(zn),s
ij=17%1 — %

i<j

h (2z): generating function of HZ(\:) (hn(2z) = Zi\[:l H](\’;)eril).
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N
F
Domain wall boundary conditions P transitions

Correlations for domain wall boundary conditions

m Emptiness formation probability EFP (introduced by Korepin
1988): Colomo, Pronko, NPB 2008

By means of orthogonal polynomials techniques, the EFP can be written as

; gl _ (F)EFD27 7{ 7{ (82 — 2At)z; + 1]°~
< N (27\'7, ) ‘(‘71)6 Co Co j—1 Zj (2 — 1)
11 - T Gi-sp)?
X _— 2 — %
2 i J
gok=1 11EjEE = 28tz + 1 S o
J#k
XhN (21, 2s)hs s(u1, ..., us)dzy -+ - dzs,
S
h = i d
where 'LLJ = (‘f —2At)1J+1 an
s .
hyo(zezs) = ] det (207 (2 = D' R Cagi(zn),s
ij=17%1 — %

i<j

h (2z): generating function of HZ(\:) (hn(2z) = Zi\[:l H](\’;)eril).
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ition function

N
F
Domain wall boundary conditions Phase transitions

Artic curve: spatial phase separation

This curve separates the ferroelectric and the disordered phases.
m A = 0: Artic circle (Elkies, Kuperberg, Larsen, Propp, J Algebraic
Combin, 1992)
2z -1+ (2y—1)2=1
m A — —oo: straigh line (Zinn-Justin PRE 2000)

m A = 1: ellipse describes the limit shape of alternating sign matrix

5.
(Colomo, Pronko SIAM J Discrete Math, 2010)

(22 —1)2 4+ 2y — 1)* —day =1

m A = —3: algebraic equation of sixth order

324(z% + 45) + 1620(2®y + xy®) + 3429(2?y? + 22y?) + 425423y — 972(2® + ¢°)
— 1458(zty + ay?) — 2070(2%y? + 229%) — 6147(2? + y*) — 9150(23y + 2y®) — 17462222

+13914(z® + y3) + 24086(x2y + xy?) — 11511(2? + y?) — 17258y + 4392(x + y) — 648 = 0.

Six vertex model with DWBC
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d partition function

Domain wall boundary conditions transitions

Artic curve: spatial phase separation

m Taking the scaling limit of EFP (N, 7, s — oo, such that x = r/N
and y = s/N ) in the saddle-point approximation: Colomo,Pronko,
J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

1 <A 1 (disordered)

_ © ((+mMP(E) — e(¢ +m¥' ()
T e NN —eC M (CHN)]
o PEENTO =S CHNFEQ)
e(C+ N (C+m) — o(C+me' (C+A)

o () = sin 2n
® 7sin(A77])sin(A+7])"

W(€) =cot & — cot(§ + A+ 1) — acot(ag) + acot a(fé + X —n).

where « = 7 /(7w —2n) and ( € [0, 7 — X\ — 7).
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d partition function

Domain wall boundary conditions transitions

Artic curve: spatial phase separation

m Taking the scaling limit of EFP (N, 7, s — oo, such that x = r/N
and y = s/N ) in the saddle-point approximation: Colomo,Pronko,
J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

—oo < A < —1 (antiferroelectric)

B #'((=mPQ) — (¢ —mM¥'({)
T eCH N (C—n) — e —me' (C+ )
= P+ NP — @' (C+ NP '
P+ N (C—n) —e(C—me'(+N)

sinh 27
sinh (7 — A)sinh (n + A)

w(6) =

91(a0) | 9 (alC+A+m)

PO = coth¢ —coth(CH A =m) —a g S+ T At m)

where a = w/2n and ¢ € [0, — AL
Comment: algebraic curve in roots of unit cases; transcendent else-
where.
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1d partition function

Domain wall boundary conditions ransitions

problems

Classification of boundary conditions into universality classes:
describe all boundary conditions corresponding given entropy
[in thermodynamic limit].

Prove that the bulk free energy is the same for all boundary
conditions in one universality class.

Prove that for majority of boundary conditions the phase
boundaries are the same as for periodic case [in the space of
Boltzman weights].

Prove that evaluation of the partition function for majority of
boundary conditions are NP hard.

Find new boundary conditions for which the model is exactly
solvable.
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tion function

Domain wall boundary conditions

Summary

m Six vertex model was discovered in 1935. We learned a lot
about the model, but there open problems.
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