Six vertex model: Exact results and open problems

Giuliano Ribeiro and Vladimir Korepin

C.N. Yang Institute for Theoretical Physics Stony Brook University

2014

Model Phases Critical exponents

Problem

In statistical physics people believe that in thermodynamic limit the bulk free energy and correlations should not depend on boundary conditions. This is often true, but there are counterexamples.

1

Model Phases Critical exponents

Six vertex model

Statistical mechanics (classical) model on a square lattice.

Ice model has atoms on vertices and hydrogen bonds on edges [Pauling J Am Chem Soc 1935, Slater J Chem Phys 1941].

Allowed configurations follow arrow conservation (ice rule).

Model Phases Critical exponents

Boltzmann weights (zero-field model)

イロト イポト イヨト イヨト

3 5

Model Phases Critical exponents

Periodic boundary conditions (torus)

We consider here an $N \times N$ lattice.

Model Phases Critical exponents

Partition function

$$Z = \sum_{\substack{\text{arrow} \\ \text{config.}}} \prod_{\text{vertices}} W, \qquad W \in \{a, b, c\}$$

Bulk free energy $f = -T \ln Z^{1/N^2}$, as $N \to \infty$.

Calculated by Lieb [PRL, 1967], Sutherland [PRL, 1967]. Baxter [Exactly solved models in statistical mechanics, 1982].

∃ → < ∃</p>

Model Phases Critical exponents

Phases

Control parameter is
$$\Delta = \frac{a^2 + b^2 - c^2}{2ab} = -\cos 2\mu = -\cosh 2\lambda.$$

Free energy has different analytic forms when

- $\Delta > 1$ (ferroelectric).
- $-1 < \Delta < 1$ (disordered).
- $\Delta < -1$ (anti-ferroelectric).

1

Model Phases Critical exponents

Phase diagram

- Phase I (ferroelectric).
- Phase II (ferroelectric).
- Phase III (disordered).
- Phase IV (anti-ferroelectric).

1

Model Phases Critical exponents

Phases I and II (ferroelectric)

 $\Delta>1.$

No entropy in the ground state. Correlations are classical.

nar

Model Phases Critical exponents

Phase III (disordered)

$$a, b, c < \frac{1}{2}(a + b + c) \text{ or } -1 < \Delta < 1.$$

$$f = \varepsilon_1 - T \int_{-\infty}^{\infty} \frac{\sinh[2(\mu + \omega)x]\sinh[(\pi - 2\mu)x]}{2x\sinh(\pi x)\cosh(2\mu x)} \, dx.$$

Includes infinite temperature case (a = b = c = 1) where

$$Z^{1/N^2} = (4/3)^{3/2}, \quad N \to \infty$$
 [Lieb PRL, 1967].

Entropy of ground state.

Correlation decay as power law. Conformal field theory can be used to describe asymptotic of correlations.

< <p>I > < A</p>

Model Phases Critical exponents

Phase IV (anti-ferroelectric)

c > a + b or $\Delta < -1$.

$$f = \varepsilon_1 - T \left[(\lambda + v) + \sum_{m=1}^{\infty} \frac{e^{-2m\lambda} \sinh[2m(\lambda + v)]}{m \cosh(2m\lambda)} \right].$$

< D > < A

Model Phases Critical exponents

Ferroelectric I and disordered phase III

Critical temperature T_c occurs at b + c - a = 0. $(2\mu \rightarrow \pi \text{ and } 2w \rightarrow -\pi)$

With $\theta = (b + c - a)/a \propto T - T_{\rm c}$ near critical line:

$$\label{eq:theta} \theta \approx \tfrac{1}{2}(\pi-2\mu)(\mu+\omega) \text{ as } \theta \to 0^+.$$

- Free energy f is **continuous** at $\theta = 0$.
- Critical exponent for specific heat $\alpha = 1$ (step discontinuity).
- Phase transition is **first-order**.
- Correlation length is zero in ferroelectric phase and infinite in disordered phase.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Model Phases Critical exponents

Ferroelectric II and disordered phase III

Same as previous ferroelectric I-disordered phase transition with:

- \bullet $a \leftrightarrow b$.
- $\blacksquare \ \mathsf{Phase} \ \mathsf{I} \leftrightarrow \mathsf{Phase} \ \mathsf{II}.$
- Corresponds to $\pi/2$ rotation of lattice.

< <p>I > < A</p>

-

Anti-ferroelectric IV and disordered phase III

Critical temperature T_{c} occurs at a + b - c = 0. ($\lambda, v \to 0^+$)

$$\bullet \ \theta \approx \tfrac{1}{2}(v^2 - \lambda^2) \text{ as } \theta \to 0^-.$$

• Free energy is singular as $\theta \to 0^-$:

$$f_{\mathsf{c}} \propto e^{-\pi^2/2\lambda} \sim e^{-\operatorname{const}/|\theta|^{1/2}}, \quad (\operatorname{const} \ > 0).$$

- All temperature derivatives of f are continuous at $\theta = 0$.
- Phase transition is infinite-order.
- Inverse correlation length $\xi^{-1} \propto f_c^{1/2}$ also singular as $\theta \to 0^-$. Correlation length does not diverge as a power law.

Other boundary conditions

Free boundaries.

[Owczarek and Baxter JPA, 1989]

Antiperiodic boundaries.
[Batchelor, Baxter, O'Rourke, Yung JPA, 1995]

In thermodynamic limit the bulk free energy and correlations are **identical** to periodic case.

Can the bulk free energy and correlations depend on boundary conditions in thermodynamics limit?

Ferroelectric boundary conditions

Ferroelectric-*a* boundary conditions.

-

Ferroelectric boundary conditions

Only one arrow configuration in the bulk is compatible with these boundary conditions.

One can prove this by induction in the lattice size.

$$f = -T\ln a = \varepsilon_1$$

Ferroelectric boundary conditions

- There are **no** phase transitions. Entropy is zero.
- One can tune Boltzmann weights into disordered phase. Correlations in the center of the lattice are pure classical. No power law, no conformal filed theory. Unlike periodic boundary conditions.
- This proves that the bulk free energy can depend on boundary conditions in thermodynamic limit.

Model and partition function Phases Phase transitions

Domain wall boundary conditions

Korepin CMP, 1982; Korepin and Zinn-Justin JPA, 2000 [cond-mat/0004250]; Zinn-Justin PRE, 2000.

Model and partition function Phases Phase transitions

Partition function (ferroelectric phase)

Derivation by **Bethe ansatz**.

Izergin-Korepin formula

$$Z_N(t) = \frac{\left[\sinh(t+\gamma)\sinh(t-\gamma)\right]^{N^2}}{\left(\prod_{n=0}^{N-1}n!\right)^2}\,\tau_N(t),\quad (N\times N \text{ lattice}).$$

Hankel determinant

$$\tau_N(t) = \det\left[\left(\frac{d}{dt}\right)^{i+k-2}\phi(t)\right], \quad \phi(t) = \frac{\sinh(2\gamma)}{\sinh(t+\gamma)\sinh(t-\gamma)}$$

Model and partition function Phases Phase transitions

Partition function

Toda (Hirota) equation

$$\tau_N \tau_N'' - (\tau_N')^2 = \tau_{N+1} \tau_{N-1}, \quad \forall N \ge 1, \quad \tau_0 = 1, \tau_1 = \phi(t).$$

In the thermodynamic limit $N \to \infty$, use the ansatz:

$$T \ln Z_N(t) = -N^2 f(t) + \mathcal{O}(N).$$

Bulk free energy is f(t).

Model and partition function Phases Phase transitions

Free energy (ferroelectric phase)

Define
$$f(t)/T \equiv -g(t) - \ln[\sinh(t+\gamma)\sinh(t-\gamma)]$$
.

Equation and solution for g(t)

$$g'' = e^{2g}, \qquad e^{g(t)} = \frac{k}{\sinh[k(t-t_0)]}.$$

with solution parameters k and t_0 .

-

Model and partition function Phases Phase transitions

Phase diagram

- Phase boundaries identical for PBC and DWBC.
- Phases I & II (ferroelectric), III (disordered), and IV (anti-ferroelectric).

Control parameter
$$\Delta = \frac{a^2 + b^2 - c^2}{2ab} = -\cos 2\mu = -\cosh 2\lambda$$
.

-

Model and partition function Phases Phase transitions

Ferroelectric phases I and II

$$(\Delta = \cosh 2\gamma) > 1.$$

Bulk free energy

$$e^{-f/T} = \sinh(t + |\gamma|) = \max(a, b).$$

Same free energy as ferroelectric phase with PBC.

 This was later rigorously proven by Bleher and Liechty, Commun. Math Phys 2009

$$Z_N = (1 - e^{-4\gamma}) \left[\sinh\left(t + |\gamma|\right)\right]^{N^2} e^{N(\gamma - 1)} (1 + O(e^{-N^{1 - \epsilon}})), \forall \epsilon > 0$$

Model and partition function Phases Phase transitions

Disordered phase III

$$-1 < (\Delta = -\cos 2\mu) < 1.$$

Bulk free energy

$$e^{-f/T} = \sin(\mu - \omega)\sin(\mu + \omega)\frac{\pi}{2\mu}\frac{1}{\cos(\pi\omega/2\mu)}$$

Free energy with DWBC always greater than PBC case.

 This was later rigorously proven by Bleher and Fokin, Commun. Math Phys 2006

$$Z_N = C(\mu) \left(N \cos\left(\pi\omega/2\mu\right) \right)^{\kappa} \left[\frac{\pi \sin(\mu - \omega) \sin(\mu + \omega)}{2\mu \cos(\pi\omega/2\mu)} \right]^{N^2} \left(1 + O(N^{-\epsilon}) \right)^{\kappa}$$

where $\kappa = \frac{1}{12} - \frac{2\mu^2}{3\pi(\pi - 2\mu)}$ and $C(\mu) > 0$ is unknown.

Model and partition function Phases Phase transitions

Entropy in disordered phase

Consider infinite temperature a = b = c = 1.

Entropy with DWBC

$$S_{\text{DWBC}} = \frac{1}{2}N^2 \ln(27/16) \approx 0.26N^2.$$

Entropy with PBC

$$S_{\text{PBC}} = \frac{3}{2}N^2 \ln(4/3) \approx 0.43N^2.$$

Entropy with FE

$$S_{\mathsf{FE}} = 0$$

Entropy of other boundary conditions is bounded by PBC and FE:

 $S_{FE} \leq S$ other $\leq S_{PBC}$

200

26/38

Model and partition function Phases Phase transitions

Anti-ferroelectric phase IV with domain wall boundary conditions

 $(\Delta = -\cosh 2\lambda) < -1.$

Bulk free energy

$$e^{-f/T} = \sinh(\lambda - v)\sinh(\lambda + v)\frac{\pi}{2\lambda}\frac{\vartheta_1'(0)}{\vartheta_2(\pi v/2\lambda)}$$

 $\vartheta_n(z)$ are Jacobi theta functions with elliptic modulus $q=e^{-\pi^2/2\lambda}$

Free energy with DWBC **different** from PBC case. Derived by Paul Zinn-Justin.

 This was again rigorously proven by Bleher and Liechty, Commun Pure Appl Math 2010

$$Z_N = C(\lambda) [e^{-f/T}]^{N^2} \vartheta_4(N(\lambda+v)\pi/2\lambda) (1+O(N^{-1})),$$

Ferroelectric and disordered phase III

Let $\theta \propto (T/T_c) - 1$.

- Free energy f is **continuous** at $\theta = 0$.
- Specific heat $\sim \theta^{1/2}$ in disordered phase $\theta \to 0^+$. Critical exponent $\alpha = -1/2$ ($\alpha = 1$ for PBC).
- Phase transition is second-order (first-order for PBC).

◆ □ ▶ ◆ 合型

3 3

Anti-ferroelectric IV and disordered phase III

Phase transition reached as $\lambda, v \to 0$.

Leading singularity of free energy is

$$f_{\rm c} \sim e^{-\pi^2/\lambda}$$

Let $\theta \propto (T/T_c) - 1$.

- Like in PBC case $f_{c} \propto e^{-\operatorname{const}/|\theta|^{1/2}}$ as $\theta \to 0^{-}$.
- Phase transition is also infinite-order.

Correlations for domain wall boundary conditions

- No results for bulk correlation function
- Boundary correlation function (determinant formula, multiple integral):
 - one-point: Bogoliubov,Pronko,Zvonarev, J PHYS A, 2002
 - two-point: Colomo, Pronko, JSTAT 2005

e.g one-point boundary correlation:

$$H_N^{(r)} = Z_N^{-1} \langle \psi | B(\lambda_N) \cdots B(\lambda_{r+1}) P_{\downarrow} B(\lambda_r) P_{\uparrow} B(\lambda_{r-1}) \cdots B(\lambda_1) | \uparrow \rangle$$

$$H_N^{(r)} = \frac{(N-1)!\sinh\left(2\eta\right)}{[\sinh\left(t+\eta\right)]^r [\sinh\left(t-\eta\right)]^{N-r+1}} \frac{\tilde{\tau}(t)}{\tau(t)},$$

where $\tau(t) = \det(M_{ik})$ and $\tilde{\tau}(t) = \det(\widetilde{M}_{ik})$. \widetilde{M}_{ik} differs from $M_{ik} = \left(\frac{d}{dt}\right)^{i+k-2} \phi(t)$ only in the first column:

$$\widetilde{M}_{i,1} = \left(\frac{d}{d\epsilon}\right)^{i-1} \left\{ \frac{[\sinh\epsilon]^{N-r} [\sinh(\epsilon-2\eta)]^{r-1}}{[\sinh(\epsilon+t-\eta)]^{N-1}} \right\} \Big|_{\epsilon=0}.$$

V. E. Korepin Six vertex model with DWBC

Correlations for domain wall boundary conditions

 Emptiness formation probability EFP (introduced by Korepin 1988): Colomo, Pronko, NPB 2008

By means of orthogonal polynomials techniques, the EFP can be written as

31/38

Correlations for domain wall boundary conditions

 Emptiness formation probability EFP (introduced by Korepin 1988): Colomo, Pronko, NPB 2008

By means of orthogonal polynomials techniques, the EFP can be written as

32/38

Artic curve: spatial phase separation

This curve separates the ferroelectric and the disordered phases.

• $\Delta = 0$: Artic circle (Elkies, Kuperberg, Larsen, Propp, J Algebraic Combin, 1992)

$$(2x-1)^2 + (2y-1)^2 = 1$$

- $\Delta \rightarrow -\infty$: straigh line (Zinn-Justin PRE 2000)
- $\Delta = \frac{1}{2}$: ellipse describes the limit shape of alternating sign matrix (Colomo, Pronko SIAM J Discrete Math, 2010)

$$(2x-1)^2 + (2y-1)^2 - 4xy = 1$$

• $\Delta = -\frac{1}{2}$: algebraic equation of sixth order

Model and partition function Phases Phase transitions

Artic curve: spatial phase separation

■ Taking the scaling limit of EFP $(N, r, s \rightarrow \infty)$, such that x = r/N and y = s/N) in the saddle-point approximation: Colomo,Pronko, J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

 $-1 \leq \Delta < 1$ (disordered)

$$x = \frac{\varphi'(\zeta + \eta)\Psi(\zeta) - \varphi(\zeta + \eta)\Psi'(\zeta)}{\varphi(\zeta + \lambda)\varphi'(\zeta + \eta) - \varphi(\zeta + \eta)\varphi'(\zeta + \lambda)},$$
$$y = \frac{\varphi(\zeta + \lambda)\Psi'(\zeta) - \varphi'(\zeta + \lambda)\Psi(\zeta)}{\varphi(\zeta + \lambda)\varphi'(\zeta + \eta) - \varphi(\zeta + \eta)\varphi'(\zeta + \lambda)}.$$

$$\begin{split} \varphi(\zeta) &= \frac{\sin 2\eta}{\sin \left(\lambda - \eta\right) \sin \left(\lambda + \eta\right)},\\ \Psi(\xi) &= \cot \xi - \cot(\xi + \lambda + \eta) - \alpha \cot(\alpha \xi) + \alpha \cot \alpha (\xi + \lambda - \eta). \end{split}$$

where $\alpha = \pi/(\pi - 2\eta)$ and $\zeta \in [0, \pi - \lambda - \eta]$.

-

Model and partition function Phases Phase transitions

Artic curve: spatial phase separation

■ Taking the scaling limit of EFP $(N, r, s \rightarrow \infty)$, such that x = r/N and y = s/N) in the saddle-point approximation: Colomo,Pronko, J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

 $\Delta = -1 D$ $\Delta = -1/2$ $\Delta = -1/2$ $\Delta = -1/2$ $\Delta = -10$ $\Delta = -4$ $\Delta = -4$ $\Delta = -4$ $\Delta = -2$ $\Delta = -4$ $\Delta = -2$

 $-\infty < \Delta < -1$ (antiferroelectric)

$$\begin{aligned} x &= \frac{\varphi'(\zeta - \eta)\Psi(\zeta) - \varphi(\zeta - \eta)\Psi'(\zeta)}{\varphi(\zeta + \lambda)\varphi'(\zeta - \eta) - \varphi(\zeta - \eta)\varphi'(\zeta + \lambda)},\\ y &= \frac{\varphi(\zeta + \lambda)\Psi'(\zeta) - \varphi'(\zeta + \lambda)\Psi(\zeta)}{\varphi(\zeta + \lambda)\varphi'(\zeta - \eta) - \varphi(\zeta - \eta)\varphi'(\zeta + \lambda)}. \end{aligned}$$

$$\begin{split} \varphi(\zeta) &= \frac{\sinh 2\eta}{\sinh \left(\eta - \lambda\right) \sinh \left(\eta + \lambda\right)},\\ \Psi(\zeta) &= \coth \zeta - \coth(\zeta + \lambda - \eta) - \alpha \frac{\vartheta_1'(\alpha\zeta)}{\vartheta_1(\alpha\zeta)} + \alpha \frac{\vartheta_1'(\alpha(\zeta + \lambda + \eta))}{\vartheta_1(\alpha(\zeta + \lambda + \eta))} \end{split}$$

where $\alpha = \pi/2\eta$ and $\zeta \in [0, \eta - \lambda]$. Comment: algebraic curve in roots of unit cases; transcendent elsewhere.

Open problems

- Classification of boundary conditions into universality classes: describe all boundary conditions corresponding given entropy [in thermodynamic limit].
- Prove that the bulk free energy is the same for all boundary conditions in one universality class.
- Prove that for majority of boundary conditions the phase boundaries are the same as for periodic case [in the space of Boltzman weights].
- Prove that evaluation of the partition function for majority of boundary conditions are NP hard.
- Find new boundary conditions for which the model is exactly solvable.

< 🗆 ト < 🗇 ト

A = A = A = A = A = A

Model and partition function Phases Phase transitions

 Six vertex model was discovered in 1935. We learned a lot about the model, but there open problems.

< A

b 4 E

References

- **1** V Korepin, CMP, vol 86, page 361 (1982).
- V Korepin and P Zinn-Justin JPA 33, 7053 (2000); cond-mat/0004250.
- **3** P Zinn-Justin PRE **62**, 3411 (2000).
- R J Baxter Exactly solved models in statistical mechanics (AP, London, 1982).
- **5** V E Korepin, N M Bogoliubov, and A G Izergin *Quantum inverse scattering method and correlation functions* (CUP, Cambridge, 1993).
- 6 F Colomo and AG Pronko, J STAT PHYS, 138, 662 (2010).
- F Colomo, AG Pronko and P Zinn-Justin J STAT MECH, L03002 (2010).