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Problem

In statistical physics people believe that in thermodynamic limit the
bulk free energy and correlations should not depend on boundary
conditions. This is often true, but there are counterexamples.
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Six vertex model

Statistical mechanics (classical) model on a square lattice.

Ice model has atoms on vertices and hydrogen bonds on edges
[Pauling J Am Chem Soc 1935, Slater J Chem Phys 1941].

Allowed configurations follow arrow conservation (ice rule).
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Boltzmann weights (zero-field model)

a = sinh(t‒γ)

a = sinh(λ‒υ)

a = sin(μ‒ω)

b = sinh(t+γ)

b = sinh(λ+υ)

b = sin(μ+ω)

c = sinh(2γ)

c = sinh(2λ)

c = sin(2μ)

FE

DIS

AFE

p
h
as

e

a = exp(‒ε1/T) b = exp(‒ε2/T) c = exp(‒ε3/T)
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Periodic boundary conditions (torus)

We consider here an N ×N lattice.
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Partition function

Z =
∑

arrow
config.

∏

vertices

W, W ∈ {a, b, c}

Bulk free energy f = −T lnZ1/N2
, as N → ∞.

Calculated by Lieb [PRL, 1967], Sutherland [PRL, 1967].
Baxter [Exactly solved models in statistical mechanics, 1982].
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Phases

Control parameter is ∆ =
a2 + b2 − c2

2ab
= − cos 2µ = − cosh 2λ.

Free energy has different analytic forms when

∆ > 1 (ferroelectric).

−1 < ∆ < 1 (disordered).

∆ < −1 (anti-ferroelectric).
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Phase diagram

b/c

a/c

1

1

I

II

III

IV

Phase I (ferroelectric).

Phase II (ferroelectric).

Phase III (disordered).

Phase IV (anti-ferroelectric).
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Phases I and II (ferroelectric)

∆ > 1.

Phase I: Phase II:

f = ‒T ln a = ε1 f = ‒T ln b = ε2

No entropy in the ground state. Correlations are classical.
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Phase III (disordered)

a, b, c < 1
2(a+ b+ c) or −1 < ∆ < 1.

f = ε1 − T

∫ ∞

−∞

sinh[2(µ + ω)x] sinh[(π − 2µ)x]

2x sinh(πx) cosh(2µx)
dx.

Includes infinite temperature case (a = b = c = 1) where

Z1/N2
= (4/3)3/2, N → ∞ [Lieb PRL, 1967].

Entropy of ground state.

Correlation decay as power law. Conformal field theory can be used
to describe asymptotic of correlations.
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Phase IV (anti-ferroelectric)

c > a+ b or ∆ < −1.

f = ε1 − T

[

(λ+ v) +
∞
∑

m=1

e−2mλ sinh[2m(λ+ v)]

m cosh(2mλ)

]

.
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Ferroelectric I and disordered phase III

Critical temperature Tc occurs at b+ c− a = 0. (2µ → π and

2w → −π)

With θ = (b+ c− a)/a ∝ T − Tc near critical line:

θ ≈ 1
2 (π − 2µ)(µ + ω) as θ → 0+.

Free energy f is continuous at θ = 0.

Critical exponent for specific heat α = 1 (step discontinuity).

Phase transition is first-order.

Correlation length is zero in ferroelectric phase and infinite in
disordered phase.
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Ferroelectric II and disordered phase III

Same as previous ferroelectric I–disordered phase transition with:

a ↔ b.

Phase I ↔ Phase II.

Corresponds to π/2 rotation of lattice.
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Anti-ferroelectric IV and disordered phase III

Critical temperature Tc occurs at a+ b− c = 0. (λ, v → 0
+)

θ ≈ 1
2 (v

2 − λ2) as θ → 0−.

Free energy is singular as θ → 0−:

fc ∝ e−π2/2λ ∼ e−const/|θ|1/2 , (const > 0).

All temperature derivatives of f are continuous at θ = 0.

Phase transition is infinite-order.

Inverse correlation length ξ−1 ∝ f
1/2
c also singular as θ → 0−.

Correlation length does not diverge as a power law.
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Other boundary conditions

Free boundaries.
[Owczarek and Baxter JPA, 1989]

Antiperiodic boundaries.
[Batchelor, Baxter, O’Rourke, Yung JPA, 1995]

In thermodynamic limit the bulk free energy and correlations are
identical to periodic case.
Can the bulk free energy and correlations depend on boundary
conditions in thermodynamics limit?
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Ferroelectric-a boundary conditions.
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Ferroelectric boundary conditions

Only one arrow configuration in the bulk is compatible with these
boundary conditions.

One can prove this by induction in the lattice size.
f = −T ln a = ε1

V. E. Korepin Six vertex model with DWBC 17/38



Periodic boundary conditions
Other boundary conditions

Domain wall boundary conditions

Ferroelectric boundary conditions

b/c

a/c

FE

There are no phase transitions. Entropy is zero.

One can tune Boltzmann weights into disordered phase.
Correlations in the center of the lattice are pure classical. No
power law, no conformal filed theory. Unlike periodic
boundary conditions.

This proves that the bulk free energy can depend on boundary
conditions in thermodynamic limit.
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Domain wall boundary conditions

Korepin CMP, 1982; Korepin and Zinn-Justin JPA, 2000
[cond-mat/0004250]; Zinn-Justin PRE, 2000.
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Partition function (ferroelectric phase)

Derivation by Bethe ansatz.

Izergin-Korepin formula

ZN (t) =
[sinh(t+ γ) sinh(t− γ)]N

2

(
∏N−1

n=0 n!
)2 τN (t), (N ×N lattice).

Hankel determinant

τN (t) = det

[(

d

dt

)i+k−2

φ(t)

]

, φ(t) =
sinh(2γ)

sinh(t+ γ) sinh(t− γ)
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Partition function

Toda (Hirota) equation

τNτ ′′N − (τ ′N )2 = τN+1τN−1, ∀N ≥ 1, τ0 = 1, τ1 = φ(t).

In the thermodynamic limit N → ∞, use the ansatz:

T lnZN (t) = −N2f(t) +O(N).

Bulk free energy is f(t).
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Free energy (ferroelectric phase)

Define f(t)/T ≡ −g(t)− ln[sinh(t+ γ) sinh(t− γ)].

Equation and solution for g(t)

g′′ = e2g, eg(t) =
k

sinh[k(t− t0)]
.

with solution parameters k and t0.
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Phase diagram

b/c

a/c

1

1

I

II

III

IV

Phase boundaries identical for PBC and DWBC.

Phases I & II (ferroelectric), III (disordered), and IV
(anti-ferroelectric).

Control parameter ∆ =
a2 + b2 − c2

2ab
= − cos 2µ = − cosh2λ.
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Ferroelectric phases I and II

(∆ = cosh 2γ) > 1.

Bulk free energy

e−f/T = sinh(t+ |γ|) = max(a, b).

Same free energy as ferroelectric phase with PBC.

This was later rigorously proven by Bleher and Liechty,
Commun. Math Phys 2009

ZN = (1− e−4γ) [sinh (t+ |γ|)]N
2

eN(γ−1)(1 +O(e−N1−ǫ
)),∀ǫ > 0
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Disordered phase III

−1 < (∆ = − cos 2µ) < 1.

Bulk free energy

e−f/T = sin(µ− ω) sin(µ+ ω)
π

2µ

1

cos(πω/2µ)
.

Free energy with DWBC always greater than PBC case.

This was later rigorously proven by Bleher and Fokin,
Commun. Math Phys 2006

ZN = C(µ) (N cos (πω/2µ))κ
[

π sin(µ− ω) sin(µ+ ω)

2µ cos(πω/2µ)

]N2

(1+O(N−ǫ))

where κ = 1
12 − 2µ2

3π(π−2µ) and C(µ) > 0 is unknown.
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Entropy in disordered phase

Consider infinite temperature a = b = c = 1.

Entropy with DWBC

SDWBC = 1
2N

2 ln(27/16) ≈ 0.26N2.

Entropy with PBC

SPBC = 3
2N

2 ln(4/3) ≈ 0.43N2.

Entropy with FE

SFE = 0

Entropy of other boundary conditions is bounded by PBC and FE:

SFE ≤ Sother ≤ SPBC
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Anti-ferroelectric phase IV with domain wall boundary
conditions

(∆ = − cosh 2λ) < −1.

Bulk free energy

e−f/T = sinh(λ− v) sinh(λ+ v)
π

2λ

ϑ′
1(0)

ϑ2(πv/2λ)
.

ϑn(z) are Jacobi theta functions with elliptic modulus q = e−π2/2λ

Free energy with DWBC different from PBC case.
Derived by Paul Zinn-Justin.

This was again rigorously proven by Bleher and Liechty,
Commun Pure Appl Math 2010

ZN = C(λ)[e−f/T ]N
2
ϑ4(N(λ+ v)π/2λ)(1 +O(N−1)),

V. E. Korepin Six vertex model with DWBC 27/38



Periodic boundary conditions
Other boundary conditions

Domain wall boundary conditions

Model and partition function
Phases
Phase transitions

Ferroelectric and disordered phase III

Let θ ∝ (T/Tc)− 1.

Free energy f is continuous at θ = 0.

Specific heat ∼ θ1/2 in disordered phase θ → 0+.
Critical exponent α = −1/2
(α = 1 for PBC).

Phase transition is second-order
(first-order for PBC).
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Anti-ferroelectric IV and disordered phase III

Phase transition reached as λ, v → 0.

Leading singularity of free energy is

fc ∼ e−π2/λ.

Let θ ∝ (T/Tc)− 1.

Like in PBC case fc ∝ e−const/|θ|1/2 as θ → 0−.

Phase transition is also infinite-order.
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Correlations for domain wall boundary conditions

No results for bulk correlation function

Boundary correlation function (determinant formula, multiple
integral):

one-point: Bogoliubov,Pronko,Zvonarev, J PHYS A, 2002
two-point: Colomo, Pronko, JSTAT 2005

e.g one-point boundary correlation:

H
(r)
N = Z

−1
N 〈⇓|B(λN ) · · ·B(λr+1)P↓B(λr)P↑B(λr−1) · · ·B(λ1) |⇑〉 ,

H
(r)
N

=
(N − 1)! sinh (2η)

[sinh (t + η)]r[sinh (t − η)]N−r+1

τ̃(t)

τ(t)
,

where τ(t) = det (Mik) and τ̃(t) = det (M̃ik). M̃ik differs from

Mik =
(

d
dt

)i+k−2
φ(t) only in the first column:

M̃i,1 =

(
d

dǫ

)i−1
{

[sinh ǫ]N−r[sinh (ǫ − 2η)]r−1

[sinh (ǫ + t − η)]N−1

} ∣∣∣
ǫ=0

.
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Correlations for domain wall boundary conditions

Emptiness formation probability EFP (introduced by Korepin
1988): Colomo, Pronko, NPB 2008

s

r

By means of orthogonal polynomials techniques, the EFP can be written as

F
(r,s)
N

=
(−1)s(s+1)/2Zs

s!(2πi)sas(s−1)cs

∮

C0

· · ·

∮

C0

s∏

j=1

[(t2 − 2∆t)zj + 1]s−1

zrj (zj − 1)s

×

s∏

j,k=1
j 6=k

1

t2zjzk − 2∆tzj + 1

∏

1≤j<k≤s

(zk − zj)
2

×hN,s(z1, . . . , zs)hs,s(u1, . . . , us) dz1 · · · dzs,

where uj = −
zj−1

(t2−2∆t)zj+1
and

hN,s(z1, . . . , zs) =
s∏

i,j=1
i<j

1

zj − zi
det

(
z
s−i
k

(zk − 1)
i−1

hN−s+i(zk)
)
,

hN (z): generating function of H
(r)
N

(hN (z) =
∑N

r=1 H
(r)
N

zr−1).
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Correlations for domain wall boundary conditions

Emptiness formation probability EFP (introduced by Korepin
1988): Colomo, Pronko, NPB 2008

s

r

By means of orthogonal polynomials techniques, the EFP can be written as

F
(r,s)
N

=
(−1)s(s+1)/2Zs

s!(2πi)sas(s−1)cs

∮

C0

· · ·

∮

C0

s∏

j=1

[(t2 − 2∆t)zj + 1]s−1

zrj (zj − 1)s

×

s∏

j,k=1
j 6=k

1

t2zjzk − 2∆tzj + 1

∏

1≤j<k≤s

(zk − zj)
2

×hN,s(z1, . . . , zs)hs,s(u1, . . . , us) dz1 · · · dzs,

where uj = −
zj−1

(t2−2∆t)zj+1
and

hN,s(z1, . . . , zs) =
s∏

i,j=1
i<j

1

zj − zi
det

(
z
s−i
k

(zk − 1)
i−1

hN−s+i(zk)
)
,

hN (z): generating function of H
(r)
N

(hN (z) =
∑N

r=1 H
(r)
N

zr−1).
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Artic curve: spatial phase separation

This curve separates the ferroelectric and the disordered phases.

∆ = 0: Artic circle (Elkies, Kuperberg, Larsen, Propp, J Algebraic
Combin, 1992)

(2x− 1)2 + (2y − 1)2 = 1

∆ → −∞: straigh line (Zinn-Justin PRE 2000)

∆ = 1

2
: ellipse describes the limit shape of alternating sign matrix

(Colomo, Pronko SIAM J Discrete Math, 2010)

(2x− 1)2 + (2y − 1)2 − 4xy = 1

∆ = − 1

2
: algebraic equation of sixth order

324(x
6
+ y

6
) + 1620(x

5
y + xy

5
) + 3429(x

4
y
2
+ x

2
y
4
) + 4254x

3
y
3
− 972(x

5
+ y

5
)

− 1458(x
4
y + xy

4
) − 2970(x

3
y
2
+ x

2
y
3
) − 6147(x

4
+ y

4
) − 9150(x

3
y + xy

3
) − 17462x

2
y
2

+ 13914(x
3
+ y

3
) + 24086(x

2
y + xy

2
)− 11511(x

2
+ y

2
)− 17258xy + 4392(x + y)− 648 = 0.
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Artic curve: spatial phase separation

Taking the scaling limit of EFP (N, r, s → ∞, such that x = r/N
and y = s/N ) in the saddle-point approximation: Colomo,Pronko,
J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

−1 ≤ ∆ < 1 (disordered)

x =
ϕ′(ζ + η)Ψ(ζ) − ϕ(ζ + η)Ψ ′(ζ)

ϕ(ζ + λ)ϕ′(ζ + η) − ϕ(ζ + η)ϕ′(ζ + λ)
,

y =
ϕ(ζ + λ)Ψ ′(ζ) − ϕ′(ζ + λ)Ψ(ζ)

ϕ(ζ + λ)ϕ′(ζ + η) − ϕ(ζ + η)ϕ′(ζ + λ)
.

ϕ(ζ) =
sin 2η

sin (λ − η) sin (λ + η)
,

Ψ(ξ) = cot ξ − cot(ξ + λ + η) − α cot(αξ) + α cot α(ξ + λ − η).

where α = π/(π − 2η) and ζ ∈ [0, π − λ − η].
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Artic curve: spatial phase separation

Taking the scaling limit of EFP (N, r, s → ∞, such that x = r/N
and y = s/N ) in the saddle-point approximation: Colomo,Pronko,
J STAT PHYS 2010, Colomo,Pronko, Zinn-Justin, JSTAT 2010

−∞ < ∆ < −1 (antiferroelectric)

x =
ϕ′(ζ − η)Ψ(ζ) − ϕ(ζ − η)Ψ ′(ζ)

ϕ(ζ + λ)ϕ′(ζ − η) − ϕ(ζ − η)ϕ′(ζ + λ)
,

y =
ϕ(ζ + λ)Ψ ′(ζ) − ϕ′(ζ + λ)Ψ(ζ)

ϕ(ζ + λ)ϕ′(ζ − η) − ϕ(ζ − η)ϕ′(ζ + λ)
.

ϕ(ζ) =
sinh 2η

sinh (η − λ) sinh (η + λ)
,

Ψ(ζ) = coth ζ − coth(ζ + λ − η) − α
ϑ
′

1(αζ)

ϑ1(αζ)
+ α

ϑ
′

1(α(ζ + λ + η))

ϑ1(α(ζ + λ + η))

where α = π/2η and ζ ∈ [0, η − λ].
Comment: algebraic curve in roots of unit cases; transcendent else-
where.

V. E. Korepin Six vertex model with DWBC 35/38



Periodic boundary conditions
Other boundary conditions

Domain wall boundary conditions

Model and partition function
Phases
Phase transitions

Open problems

Classification of boundary conditions into universality classes:
describe all boundary conditions corresponding given entropy
[in thermodynamic limit].

Prove that the bulk free energy is the same for all boundary
conditions in one universality class.

Prove that for majority of boundary conditions the phase
boundaries are the same as for periodic case [in the space of
Boltzman weights].

Prove that evaluation of the partition function for majority of
boundary conditions are NP hard.

Find new boundary conditions for which the model is exactly
solvable.
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Summary

Six vertex model was discovered in 1935. We learned a lot
about the model, but there open problems.
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