Tau-functions in Strebel combinatorial model of $M_{n, g}$ and Kontsevich-Witten cycles

Dmitry Korotkin

Concordia University, Montreal
"Russian-Chinese conference on integrable systems", St.Petersburg, August 22, 2018

References

- M.Bertola, D.Korotkin, "Bergman tau-function, combinatorial cycles and tautological classes on moduli spaces"; "Discriminant circle bundles over local models of Strebel graphs", arXiv:1701.07714 and 1804.02495
- D.Korotkin and P.Zograf, "Tau-function and moduli of differentials", Math. Res. Lett., 18 447-458 (2011)
- A.Kokotov, D.Korotkin, P.Zograf, "Isomonodromic tau function on the space of admissible covers", Adv. in Math. 227 586-600 (2011)
- D.Korotkin, P.Zograf, "Tau-functions and Prym class", Contemporary Math. (2013)

Combinatorial model $\bar{M}_{g, n}^{\text {comb }}[\mathbf{p}]$ of $\bar{M}_{g, n}$ based on

 Jenkins-Strebel differentialsThe model depends on the choice of vector $\mathbf{p} \in \mathbb{R}_{+}^{n}$. Definition of JS quadratic differential Q : second order poles at n marked points $\left\{y_{j}\right\}$ and all periods of v on canonical cover \widehat{C}

$$
v^{2}=Q
$$

of genus $\hat{g}=4 g-3+n$ are real; near y_{j}

$$
Q(x)=-\frac{p_{i}^{2}}{4 \pi^{2}} \frac{(d x)^{2}}{x^{2}}
$$

Ribbon graph Γ on C : vertices at zeros of Q, edges - horizontal trajectories, each face contains 1 marked point.
Generic stratum W of $\bar{M}_{g, n}^{\text {comb }}[\mathbf{p}]$: all vertices are 3-valent (zeros of Q are simple); consists of cells labeled by topologically different 3-valent Γ. Other strata are obtained by degeneration of edges.

Combinatorial model: continuation

Witten-Kontsevich cycles: some vertices of Γ have odd valency different from 3 (if some vertices have even valencies - these are not cycles). For WK cycles all zeros of Q are branch points of \widehat{C}.
In real codimension 2 there are two WK cycles:

- $W_{1,1}$ - Kontsevich boundary (2 simple poles of Q i.e. 2 one-valent vertices of Γ). Obtained by collapsing two edges with two common endpoints.
- W_{5} - Witten's cycle (one 5 -valent vertex i.e one triple zero of Q). Obtained by collapsing two edges with one common endpoint.
Denote by \tilde{W} the union of all cells of codimension 0 and 1 . The fundamental group of \tilde{W} is generated by paths around $W_{1,1}$ (combinatorial Dehn's twists) and W_{5} (pentagon moves).

Pentagon move

Combinatorial Dehn's twist

Figure: Action of combinatorial Dehn twist along non-separating loop on a pair of canonical cycles from $H_{1}(C)$.

Orientation of cycles, Kontsevich and homological symplectic forms

Kontsevich's symplectic form:

$$
\Omega=\sum_{f \in F(\Gamma)} \eta_{f}, \quad \eta_{f}=p_{f}^{2} \omega_{f}=\sum_{\substack{e_{j}, e_{k} \in \partial t \\ 1 \leq j<k<n_{f}}} \mathrm{~d} \ell_{j} \wedge \mathrm{~d} \ell_{k}
$$

$e_{1}, \ldots e_{n_{f}}$ are the edges bounding face f ordered counter clockwise (the form is independent of the choice of the "first" edge on each face), and ℓ_{j} denotes the length of the edge e_{j} (form w_{f} represents the corresponding ψ-class). Theorem.

$$
\Omega=\sum_{j=1}^{g_{-}} d A_{j} \wedge d B_{j}
$$

where $\left(A_{j}, B_{j}\right)$ are periods of v over symplectic basis in $H_{-}(\widehat{C})$.

Main result: relations between tautological classes from tau-functions

In $\operatorname{Pic}\left(\bar{M}_{g, n}^{c o m b}[\mathbf{p}], \mathbb{Q}\right)$:

$$
\begin{aligned}
& \lambda_{1}+\frac{1}{12} \sum_{i=1}^{n} \psi_{i}=\frac{1}{144} W_{5}+\frac{13}{144} W_{1,1} \\
& \lambda_{2}^{(n)}+\frac{1}{12} \sum_{i=1}^{n} \psi_{i}=\frac{13}{144} W_{5}+\frac{25}{144} W_{1,1}
\end{aligned}
$$

implying

$$
\lambda_{2}^{(n)}-13 \lambda_{1}=\sum_{i=1}^{n} \psi_{i}-W_{1,1}
$$

where $W_{1,1}$ - "Kontsevich’s boundary".

Basic notations

C - Riemann surface of genus g; $\left(a_{\alpha}, b_{\alpha}\right)$ - canonical basis in $H_{1}(C, \mathbb{Z}), \alpha=1, \ldots, g ; v_{\alpha}$ - normalized basis of holomorphic 1-forms: $\oint_{a_{\alpha}} v_{\beta}=\delta_{\alpha \beta}$.
Canonical bimeromorphic differential $B(x, y)$; normalization $\oint_{a_{\alpha}} B(\cdot, y)=0$. Bergman projective connection: as $y \rightarrow x$,

$$
B(x, y)=\left(\frac{1}{(\xi(x)-\xi(y))^{2}}+\frac{1}{6} S_{B}(\xi(x))+\ldots\right) d \xi(x) d \xi(y)
$$

Warm-up example: spaces of holomorphic differentials

- $H_{g}\left(m_{1}, \ldots, m_{n}\right)$ with $m_{1}+\cdots+m_{n}=2 g-2$ - space of pairs (C, w) where w-holomorphic 1-form with zeros of multiplicity m_{1}, \ldots, m_{n}. Dimension is $2 g+n-1$; for $n=2 g-2$ dimension equals $4 g-3$.
- Homological coordinates on $H_{g}\left(m_{1}, \ldots, m_{n}\right): \oint_{a_{\alpha}} w, \oint_{b_{\alpha}} w$; $\int_{l_{i}} w, I_{i}=\left[x_{1}, x_{i}\right]$. Here $\left(a_{\alpha}, b_{\alpha}, l_{i}\right)$ - basis in relative homologies $H_{1}\left(C,\left\{x_{k}\right\}\right)$.
- Dual basis in $H_{1}\left(C \backslash\left\{x_{k}\right\}\right):\left(b_{\alpha},-a_{\alpha}, s_{k}\right)$. Here s_{k} - small positively oriented contour around x_{m}.

Variational formulas

- For basic holomorphic differentials:

$$
\frac{\partial v_{\alpha}(x)}{\partial\left(\int_{c_{i}} w\right)}=\int_{c_{i}^{*}} \frac{v_{\alpha}(y) B(x, y)}{w(y)}
$$

- For canonical bimeromorphic differential:

$$
\frac{\partial B(x, y)}{\partial\left(\int_{c_{i}} w\right)}=\frac{1}{2 \pi i} \int_{c_{i}^{*}} \frac{B(x, y) B(x, z)}{w(z)}
$$

- For Bergman projective connection:

$$
\frac{\partial S_{B}(x)}{\partial\left(\int_{c_{i}} w\right)}=\frac{1}{12 \pi i} \int_{c_{i}^{*}} \frac{B^{2}(x, z)}{w(z)}
$$

Bergman tau-function

- Introduce another projective connection:

$$
S_{w}=\frac{w^{\prime \prime}}{w}-\frac{3}{2}\left(\frac{w^{\prime}}{w}\right)^{2}
$$

- Define tau-function $\tau\left(C, w,\left\{a_{\alpha}, b_{\alpha}\right\}\right)$:

$$
\frac{\partial \log \tau(C, w)}{\partial\left(\int_{c_{i}} w\right)}=-\frac{2}{\pi i} \int_{C_{i}^{*}} \frac{S_{B}-S_{w}}{w}
$$

Compatibility follows from variational formulas for S_{B}.

- Meaning of $\tau: \tau=Z^{24}$, where Z - chiral partition function of free bosons on C.

Properties of the tau-function

- Under transformation of canonical basis of cycles by symplectic matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \tau$ transforms as follows:

$$
\tau\left(C, w,\left\{a_{\alpha}^{\prime}, b_{\alpha}^{\prime}\right\}\right)=\operatorname{det}^{24}(C \mathbf{B}+D) \tau\left(C, w,\left\{a_{\alpha}, b_{\alpha}\right\}\right)
$$

where \mathbf{B} - matrix of b-periods of C.

- Under rescaling of w :

$$
\left.\tau(C, \epsilon W)=\epsilon^{2\left(2 g-2+n-\sum_{k=1}^{n} \frac{1}{m_{k}+1}\right.}\right) \tau(C, w)
$$

- Therefore, on open part of projectivized moduli space τ is a section of line bundle

$$
\left.\lambda^{24} \otimes L^{-2\left(2 g-2+n-\sum_{k=1}^{n} \frac{1}{m_{k}+1}\right.}\right)
$$

where λ - Hodge line bundle, L-tautological line bundle

Explicit formula for tau-function

$$
\begin{gathered}
\tau\left(C, w,\left\{a_{\alpha}, b_{\alpha}\right\}\right)=\frac{\left(\left.\left(\sum_{i=1}^{g} v_{i}(\zeta) \frac{\partial}{\partial s_{i}}\right)^{g} \theta(s ; \mathbf{B})\right|_{s=K \zeta}\right)^{16}}{W(\zeta)^{16}} \\
\times \frac{\prod_{k<1} E\left(x_{k}, x_{1}\right)^{4 m_{k} m_{l}}}{\prod_{k} E\left(\zeta, x_{k}\right)^{8(g-1) m_{k}}} w^{8(g-1)}(\zeta)
\end{gathered}
$$

where K^{ζ} - vector of Riemann constants, $E(x, y)$ - prime-form, W - Wronskian determinant of normalized holomorphic differentials.
For genus 1 the tau-function coincides with Dedekind eta-function:

$$
\tau(A, B)=\eta^{48}(B / A)
$$

where A and B are periods of w.

Tau-function on compactification of $H_{g}(1, \ldots, 1)$

Boundary components of $H_{g}(1, \ldots, 1)$:

- $D_{\text {deg }}$ - two zeros of w merge to form zero of second order
- Component D_{0} of Deligne-Mumford boundary - pinching of C along homologically non-trivial cycle
- Components D_{j} of Deligne-Mumford boundary, $j=1, \ldots,[g / 2]$ - pinching of C along homologically trivial cycle to get two Riemann surfaces of genera j and $g-j$.
Asymptotics of τ near all boundary components can be found explicitly, which gives the formula for Hodge class in terms of classes of bondary divisors and tautological class ψ in rational Picard group of projectivization of $H_{g}(1, \ldots, 1)$:

$$
\lambda=\frac{g-1}{4} \psi+\frac{1}{24} \delta_{d e g}+\frac{1}{12} \delta_{0}+\frac{1}{8} \sum_{j=1}^{[g / 2]} \delta_{j}
$$

Spaces of holomorphic quadratic differentials

- $H_{g, 2}$ - space of pairs (C, q), where q - holomorphic quadratic differential with simple zeros.
- $\operatorname{dim} H_{g, 2}=6 g-6$
- For fixed C, dimension of linear vector space V_{2} of holomorphic quadratic differentials equals $3 g-3$. Denote corresponding vector bundle over moduli space of Riemann surfaces by Λ_{2}.
Determinant line bundle: $\lambda_{2}=\operatorname{det} \Lambda_{2}$.
- Relations between classes of λ_{2} and λ_{1} (Mumford 1977):

$$
\lambda_{2}-13 \lambda_{1}=-\Delta
$$

where $\Delta=\sum_{j=0}^{[g / 2]} D_{j}$.

Canonical covering

- \hat{C} - double covering of C; on \hat{C} we have that $w=q^{1 / 2}$ is a well-defined holomorphic 1 -form. Branch points of \hat{C} zeros $x_{i}(i=1, \ldots, 4 g-4)$ of W. Genus \hat{g} of \hat{C} equals $4 g-3$
- w - holomorphic 1 -form on \hat{C} with zeros of order 2 at x_{i} : $w \in H_{\hat{g}}(2, \ldots, 2)$.
- Denote the involution on \hat{C} by $*$. Under the action of $*$ we have the splitting of homologies

$$
H_{1}=H_{+} \oplus H_{-}
$$

where $\operatorname{dim} H_{+}=2 g$ and $\operatorname{dim} H_{-}=6 g-6$.

Isomorphizm between H^{-}and V_{2}

- Holomorphic part of cohomologies:

$$
H^{(1,0)}=H^{+} \oplus H^{-}
$$

where $\operatorname{dim} \mathrm{H}^{+}=g$ and $\operatorname{dim} H^{-}=3 g-3$.

- Isomorphizm between V_{2} and H_{-}:

$$
q \in V_{2} \quad \text { then } \quad v=\frac{q}{w} \in H^{-}
$$

- The link between corresponding determinant line bundles: λ_{2} and λ_{-}:

$$
\lambda_{-}=\lambda_{2}-\frac{3}{2}(g-1) \psi
$$

Tau-functions on spaces of quadratic differentials

- $\hat{B}(x, y)$ - canonical bimeromorphic differential on \hat{C};

$$
B_{ \pm}(x, y)=\hat{B}(x, y) \pm \hat{B}\left(x, y^{*}\right) .
$$

- Corresponding projective connections $S_{B}^{ \pm}$
- Homological coordinates: $\int_{s} w$ for $s \in H_{-}$(exactly $6 g-6$ independent).
- Tau-functions $\tau_{ \pm}$:

$$
\frac{\partial \log \tau_{ \pm}(C, q)}{\partial\left(\int_{s} w\right)}=-\frac{2}{\pi i} \int_{s^{*}} \frac{S_{B}^{ \pm}-S_{w}}{w}
$$

where s^{*} - cycle dual to s.

Properties of Hodge $\left(\tau_{+}\right)$and Prym (τ_{-}) tau-fuctions

- Relation with $\hat{\tau}$:

$$
\tau_{+} \tau_{-}=\hat{\tau}^{2}(\hat{C}, w)
$$

where $\hat{\tau}$ - tau-function on $H_{\hat{g}}(2, \ldots, 2)$.

- On open part of $M_{2, g}$ the tau-function $\tau_{ \pm}$is a section of line bundle

$$
\lambda_{ \pm} \otimes L^{\kappa_{ \pm}}
$$

$$
\text { where } \kappa_{+}=5 / 36(g-1) ; \quad \kappa_{-}=11 / 36(g-1) \text { and } L \text { is }
$$ the tautological line bundle.

Line bundle λ_{-}on compactification of Q_{g}

- Boundary of Q_{g} : 1. (pullback of) Deligne-Mumford boundary $\Delta_{D M}$ of M_{g}; 2. $D_{d e g}$ where two zeros of q merge.
- Asymptotics of $\tau_{ \pm}$near different boundary components implies

$$
\begin{aligned}
& \lambda_{+}=\frac{5(g-1)}{36} \psi+\frac{1}{72} \delta_{d e g}+\frac{1}{12} \delta_{D M} \\
& \lambda_{-}=\frac{11(g-1)}{36} \psi+\frac{13}{72} \delta_{d e g}+\frac{1}{12} \delta_{D M}
\end{aligned}
$$

- Excluding $\delta_{\text {deg }}$ we get

$$
\lambda_{-}-13 \lambda_{+}=-\delta_{D M}-\frac{3(g-1)}{2} \psi
$$

- Using the link between λ_{-}and λ_{2} : Mumford's relation

$$
\lambda_{2}-13 \lambda_{1}=-\delta_{D M}
$$

Resolution of 5-valent vertex of Strebel graph

Figure: The Riemann surface $\mathcal{C}^{\alpha, \beta}$ obtained by replacing the five-valent vertex with three regular vertices and two new edges of length α and β between them with appropriate adjustment of the lengths of the original fatgraph. As $\alpha, \beta \rightarrow 0$ we recover the original Riemann surface.

Plumbing picture

Resolution of a pair of 1 -valent vertices ("Kontsevich boundary")

Figure: Resolution of a double point $x_{1,2}^{0}$ on \mathcal{C} by insertion of an annulus with two simple zeros x_{1} and x_{2}

Resolution of Kontsevich's boundary in plumbing picture

Figure: A Riemann sphere with two three-valent vertices is glued between one-valent vertices by introducing two plumbing zones

Moduli of curves from $\mathcal{Q}_{0}^{\mathbb{R}}(-7)$

Figure: Left: The space $\mathcal{Q}_{0}^{\mathbb{R}}(-7)$ is fibered over the blue curve. Right: the same set in the plane of J-invariant.

Moduli or curves from $\mathcal{Q}_{0}^{\mathbb{R}}\left([-3]^{2}\right)$

Figure: Left: the space $\mathcal{Q}_{0}^{\mathbb{R}}\left([-3]^{2}\right)$ is fibered over the blue curve in the moduli space of elliptic curves with the fiber \mathbb{R}_{+}. Right: the same curve in the plane of J-invariant.

Traversing a cell of $\mathcal{Q}_{0}^{\mathbb{R}}(-7)$

Traversing a cell of $\mathcal{Q}_{0}^{\mathbb{R}}\left([-3]^{2}\right)$

Relations between classes on $\bar{M}_{g, n}$

Known relations:

$$
\begin{gathered}
\lambda_{2}^{(n)}-13 \lambda=\sum_{i=1}^{n} \psi_{i}-\delta_{D M} \\
\kappa_{1}=12 \lambda+\sum_{i=1}^{n} \psi_{i}-\delta_{D M} \\
\kappa_{1}=\lambda_{2}^{(n)}-
\end{gathered}
$$

Hyperbolic combinatorial model (Penner)

$$
12 \kappa_{1}=W_{5}^{h y p}+W_{1,1}^{\text {hyp }}
$$

Tau-functions provide analogs of these relations in JS combinatorial model!

