Tau-functions in Strebel combinatorial model of $M_{n,g}$ and Kontsevich-Witten cycles

Dmitry Korotkin

Concordia University, Montreal

"Russian-Chinese conference on integrable systems", St.Petersburg, August 22, 2018

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References

- M.Bertola, D.Korotkin, "Bergman tau-function, combinatorial cycles and tautological classes on moduli spaces"; "Discriminant circle bundles over local models of Strebel graphs", arXiv:1701.07714 and 1804.02495
- D.Korotkin and P.Zograf, "Tau-function and moduli of differentials", Math. Res. Lett., 18 447-458 (2011)
- A.Kokotov, D.Korotkin, P.Zograf, "Isomonodromic tau function on the space of admissible covers", Adv. in Math.
 227 586-600 (2011)

(ロ) (同) (三) (三) (三) (○) (○)

 D.Korotkin, P.Zograf, "Tau-functions and Prym class", Contemporary Math. (2013)

Combinatorial model $\overline{M}_{g,n}^{comb}[\mathbf{p}]$ of $\overline{M}_{g,n}$ based on Jenkins-Strebel differentials

The model depends on the choice of vector $\mathbf{p} \in \mathbb{R}^n_+$. Definition of JS quadratic differential *Q*: second order poles at *n* marked points $\{y_i\}$ and all periods of *v* on canonical cover \widehat{C}

$$v^2 = Q$$

of genus $\hat{g} = 4g - 3 + n$ are real; near y_i

$$Q(x) = -\frac{p_i^2}{4\pi^2} \frac{(dx)^2}{x^2}$$

Ribbon graph Γ on *C*: vertices at zeros of *Q*, edges - horizontal trajectories, each face contains 1 marked point.

Generic stratum *W* of $\overline{M}_{g,n}^{comb}[\mathbf{p}]$: all vertices are 3-valent (zeros of *Q* are simple); consists of cells labeled by topologically different 3-valent Γ . Other strata are obtained by degeneration of edges.

Combinatorial model: continuation

Witten-Kontsevich cycles: some vertices of Γ have odd valency different from 3 (if some vertices have even valencies - these are not cycles). For WK cycles all zeros of Q are branch points of \hat{C} .

In real codimension 2 there are two WK cycles:

- W_{1,1} Kontsevich boundary (2 simple poles of Q i.e. 2 one-valent vertices of Γ). Obtained by collapsing two edges with two common endpoints.
- ► W₅ Witten's cycle (one 5-valent vertex i.e one triple zero of *Q*). Obtained by collapsing two edges with one common endpoint.

Denote by \tilde{W} the union of all cells of codimension 0 and 1. The fundamental group of \tilde{W} is generated by paths around $W_{1,1}$ (combinatorial Dehn's twists) and W_5 (pentagon moves).

Pentagon move

Combinatorial Dehn's twist

Figure: Action of combinatorial Dehn twist along non-separating loop on a pair of canonical cycles from $H_1(C)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Orientation of cycles, Kontsevich and homological symplectic forms

Kontsevich's symplectic form:

$$\Omega = \sum_{f \in F(\Gamma)} \eta_f , \qquad \eta_f = p_f^2 \omega_f = \sum_{\substack{e_j, e_k \in \partial f \\ 1 \leq j < k < n_f}} d\ell_j \wedge d\ell_k$$

 $e_1, \ldots e_{n_f}$ are the edges bounding face *f* ordered counter clockwise (the form is independent of the choice of the "first" edge on each face), and ℓ_j denotes the length of the edge e_j (form w_f represents the corresponding ψ -class). **Theorem.**

$$\Omega = \sum_{j=1}^{g_-} dA_j \wedge dB_j$$

where (A_j, B_j) are periods of *v* over symplectic basis in $H_-(\widehat{C})$.

Main result: relations between tautological classes from tau-functions

In
$$Pic(\overline{M}_{g,n}^{comb}[\mathbf{p}], \mathbb{Q})$$
:

$$\lambda_1 + \frac{1}{12} \sum_{i=1}^n \psi_i = \frac{1}{144} W_5 + \frac{13}{144} W_{1,1}$$

$$\lambda_{2}^{(n)} + \frac{1}{12} \sum_{i=1}^{n} \psi_{i} = \frac{13}{144} W_{5} + \frac{25}{144} W_{1,1}$$

implying

$$\lambda_2^{(n)} - 13\lambda_1 = \sum_{i=1}^n \psi_i - W_{1,1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $W_{1,1}$ - "Kontsevich's boundary".

Basic notations

C - Riemann surface of genus *g*; (a_{α}, b_{α}) - canonical basis in $H_1(C, \mathbb{Z}), \alpha = 1, ..., g; v_{\alpha}$ - normalized basis of holomorphic 1-forms: $\oint_{a_{\alpha}} v_{\beta} = \delta_{\alpha\beta}$. Canonical bimeromorphic differential B(x, y); normalization $\oint_{a_{\alpha}} B(\cdot, y) = 0$. Bergman projective connection: as $y \to x$,

$$B(x,y)=\left(\frac{1}{(\xi(x)-\xi(y))^2}+\frac{1}{6}S_B(\xi(x))+\ldots\right)d\xi(x)d\xi(y)$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Warm-up example: spaces of holomorphic differentials

- ► H_g(m₁,...,m_n) with m₁ + ··· + m_n = 2g 2 space of pairs (C, w) where w holomorphic 1-form with zeros of multiplicity m₁,...,m_n. Dimension is 2g + n 1; for n = 2g 2 dimension equals 4g 3.
- Homological coordinates on H_g(m₁,...,m_n): ∮_{a_α} w, ∮_{b_α} w; ∫_{l_i} w, l_i = [x₁, x_i]. Here (a_α, b_α, l_i) - basis in relative homologies H₁(C, {x_k}).
- Dual basis in H₁(C \ {x_k}): (b_α, −a_α, s_k). Here s_k small positively oriented contour around x_m.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Variational formulas

For basic holomorphic differentials:

$$\frac{\partial v_{\alpha}(x)}{\partial (\int_{c_{i}} w)} = \int_{c_{i}^{*}} \frac{v_{\alpha}(y)B(x,y)}{w(y)}$$

For canonical bimeromorphic differential:

$$\frac{\partial B(x,y)}{\partial (\int_{c_i} w)} = \frac{1}{2\pi i} \int_{c_i^*} \frac{B(x,y)B(x,z)}{w(z)}$$

For Bergman projective connection:

$$\frac{\partial S_B(x)}{\partial (\int_{C_i} w)} = \frac{1}{12\pi i} \int_{C_i^*} \frac{B^2(x,z)}{w(z)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bergman tau-function

Introduce another projective connection:

$$S_w = rac{w''}{w} - rac{3}{2}\left(rac{w'}{w}
ight)^2$$

• Define tau-function $\tau(C, w, \{a_{\alpha}, b_{\alpha}\})$:

$$\frac{\partial \log \tau(\boldsymbol{C}, \boldsymbol{w})}{\partial (\int_{\boldsymbol{C}_i} \boldsymbol{w})} = -\frac{2}{\pi i} \int_{\boldsymbol{C}_i^*} \frac{\boldsymbol{S}_B - \boldsymbol{S}_{\boldsymbol{w}}}{\boldsymbol{w}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Compatibility follows from variational formulas for S_B .

• Meaning of τ : $\tau = Z^{24}$, where Z - chiral partition function of free bosons on C.

Properties of the tau-function

► Under transformation of canonical basis of cycles by symplectic matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \tau$ transforms as follows:

$$\tau(\boldsymbol{C}, \boldsymbol{w}, \{\boldsymbol{a}_{\alpha}', \boldsymbol{b}_{\alpha}'\}) = \det^{24}(\boldsymbol{C}\boldsymbol{B} + \boldsymbol{D}) \tau(\boldsymbol{C}, \boldsymbol{w}, \{\boldsymbol{a}_{\alpha}, \boldsymbol{b}_{\alpha}\})$$

where **B** - matrix of *b*-periods of *C*.

Under rescaling of w:

$$\tau(\boldsymbol{C}, \epsilon \boldsymbol{w}) = \epsilon^{2\left(2g-2+n-\sum_{k=1}^{n} \frac{1}{m_{k}+1}\right)} \tau(\boldsymbol{C}, \boldsymbol{w})$$

Therefore, on open part of projectivized moduli space \(\tau\) is a section of line bundle

$$\lambda^{24} \otimes L^{-2\left(2g-2+n-\sum_{k=1}^{n} \frac{1}{m_{k}+1}\right)}$$

(ロ) (同) (三) (三) (三) (○) (○)

where λ - Hodge line bundle, *L*-tautological line bundle

Explicit formula for tau-function

$$\tau(\boldsymbol{C}, \boldsymbol{w}, \{\boldsymbol{a}_{\alpha}, \boldsymbol{b}_{\alpha}\}) = \frac{\left(\left(\sum_{i=1}^{g} v_{i}(\zeta) \frac{\partial}{\partial s_{i}}\right)^{g} \theta(\boldsymbol{s}; \mathbf{B})\big|_{\boldsymbol{s}=\boldsymbol{K}^{\zeta}}\right)^{16}}{W(\zeta)^{16}}$$

$$\times \frac{\prod_{k < l} \mathcal{E}(x_k, x_l)^{4m_k m_l}}{\prod_k \mathcal{E}(\zeta, x_k)^{8(g-1)m_k}} w^{8(g-1)}(\zeta)$$

where K^{ζ} - vector of Riemann constants, E(x, y) - prime-form, W - Wronskian determinant of normalized holomorphic differentials.

For genus 1 the tau-function coincides with Dedekind eta-function:

$$au(\mathbf{A},\mathbf{B}) = \eta^{48}(\mathbf{B}/\mathbf{A})$$

(ロ) (同) (三) (三) (三) (○) (○)

where A and B are periods of w.

Tau-function on compactification of $H_g(1, ..., 1)$

Boundary components of $H_g(1,...,1)$:

- ► *D*_{deg} two zeros of *w* merge to form zero of second order
- Component D₀ of Deligne-Mumford boundary pinching of C along homologically non-trivial cycle
- ► Components D_j of Deligne-Mumford boundary, j = 1,..., [g/2] - pinching of C along homologically trivial cycle to get two Riemann surfaces of genera j and g - j.

Asymptotics of τ near all boundary components can be found explicitly, which gives the formula for Hodge class in terms of classes of bondary divisors and tautological class ψ in rational Picard group of projectivization of $H_g(1, ..., 1)$:

$$\lambda = rac{g-1}{4}\psi + rac{1}{24}\delta_{deg} + rac{1}{12}\delta_0 + rac{1}{8}\sum_{j=1}^{[g/2]}\delta_j$$

Spaces of holomorphic quadratic differentials

- ► H_{g,2} space of pairs (C, q), where q holomorphic quadratic differential with simple zeros.
- dim $H_{g,2} = 6g 6$
- For fixed C, dimension of linear vector space V₂ of holomorphic quadratic differentials equals 3g – 3. Denote corresponding vector bundle over moduli space of Riemann surfaces by Λ₂.
 Determinant line bundle: λ₂ = detΛ₂.
- Relations between classes of λ_2 and λ_1 (Mumford 1977):

$$\lambda_2 - 13\lambda_1 = -\Delta$$

where $\Delta = \sum_{j=0}^{\lfloor g/2 \rfloor} D_j$.

Canonical covering

- ▶ Ĉ double covering of C; on Ĉ we have that w = q^{1/2} is a well-defined holomorphic 1-form. Branch points of Ĉ zeros x_i (i = 1,...,4g 4) of W. Genus ĝ of Ĉ equals 4g 3
- ▶ *w* holomorphic 1-form on \hat{C} with zeros of order 2 at x_i : $w \in H_{\hat{g}}(2,...,2)$.
- Denote the involution on Ĉ by *. Under the action of * we have the splitting of homologies

$$H_1 = H_+ \oplus H_-$$

where $\dim H_+ = 2g$ and $\dim H_- = 6g - 6$.

Isomorphizm between H^- and V_2

Holomorphic part of cohomologies:

$$H^{(1,0)}=H^+\oplus H^-$$

where $\dim H^+ = g$ and $\dim H^- = 3g - 3$.

Isomorphizm between V₂ and H₋:

$$q \in V_2$$
 then $v = \frac{q}{w} \in H^-$

The link between corresponding determinant line bundles: λ₂ and λ₋:

$$\lambda_{-}=\lambda_{2}-\frac{3}{2}(g-1)\psi$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tau-functions on spaces of quadratic differentials

• $\hat{B}(x, y)$ - canonical bimeromorphic differential on \hat{C} ;

$$B_{\pm}(x,y) = \hat{B}(x,y) \pm \hat{B}(x,y^*)$$
.

- Corresponding projective connections S[±]_B
- Homological coordinates: ∫_s w for s ∈ H₋ (exactly 6g − 6 independent).
- Tau-functions \(\tau_{\pm}\):

$$\frac{\partial \log \tau_{\pm}(\boldsymbol{C}, \boldsymbol{q})}{\partial (\int_{\boldsymbol{S}} \boldsymbol{w})} = -\frac{2}{\pi i} \int_{\boldsymbol{S}^*} \frac{\boldsymbol{S}_{\boldsymbol{B}}^{\pm} - \boldsymbol{S}_{\boldsymbol{w}}}{\boldsymbol{w}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where s^* - cycle dual to s.

Properties of Hodge (τ_+) and Prym (τ_-) tau-fuctions

$$au_+ au_-=\hat{ au}^2(\hat{C},w)$$

where $\hat{\tau}$ - tau-function on $H_{\hat{g}}(2, \ldots, 2)$.

► On open part of M_{2,g} the tau-function τ_± is a section of line bundle

$$\lambda_{\pm} \otimes L^{\kappa_{\pm}}$$

where $\kappa_+ = 5/36(g-1)$; $\kappa_- = 11/36(g-1)$ and *L* is the tautological line bundle.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Line bundle λ_{-} on compactification of Q_{g}

- Boundary of Q_g: 1. (pullback of) Deligne-Mumford boundary Δ_{DM} of M_g; 2. D_{deg} where two zeros of q merge.
- ► Asymptotics of \(\tau_{\pm}\) near different boundary components implies

$$\lambda_{+} = \frac{5(g-1)}{36}\psi + \frac{1}{72}\delta_{deg} + \frac{1}{12}\delta_{DM}$$
$$\lambda_{-} = \frac{11(g-1)}{36}\psi + \frac{13}{72}\delta_{deg} + \frac{1}{12}\delta_{DM}$$

• Excluding δ_{deg} we get

$$\lambda_{-} - 13\lambda_{+} = -\delta_{DM} - rac{3(g-1)}{2}\psi$$

Using the link between λ₋ and λ₂: Mumford's relation

$$\lambda_2 - 13\lambda_1 = -\delta_{DM}$$

・ロト・西ト・モート ヨー シタぐ

Resolution of 5-valent vertex of Strebel graph

Figure: The Riemann surface $C^{\alpha,\beta}$ obtained by replacing the five-valent vertex with three regular vertices and two new edges of length α and β between them with appropriate adjustment of the lengths of the original fatgraph. As $\alpha, \beta \rightarrow 0$ we recover the original Riemann surface.

Plumbing picture

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Resolution of a pair of 1-valent vertices ("Kontsevich boundary")

Figure: Resolution of a double point $x_{1,2}^0$ on C by insertion of an annulus with two simple zeros x_1 and x_2

Resolution of Kontsevich's boundary in plumbing picture

Figure: A Riemann sphere with two three-valent vertices is glued between one-valent vertices by introducing two plumbing zones

Moduli of curves from $\mathcal{Q}_0^{\mathbb{R}}(-7)$

Figure: Left: The space $\mathcal{Q}_0^{\mathbb{R}}(-7)$ is fibered over the blue curve. Right: the same set in the plane of *J*-invariant.

Figure: Left: the space $\mathcal{Q}_0^{\mathbb{R}}([-3]^2)$ is fibered over the blue curve in the moduli space of elliptic curves with the fiber \mathbb{R}_+ . Right: the same curve in the plane of *J*-invariant.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Traversing a cell of $\mathcal{Q}_0^{\mathbb{R}}([-3]^2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Relations between classes on $\overline{M}_{g,n}$

Known relations:

$$\lambda_{2}^{(n)} - \mathbf{13}\lambda = \sum_{i=1}^{n} \psi_{i} - \delta_{DM}$$
$$\kappa_{1} = \mathbf{12}\lambda + \sum_{i=1}^{n} \psi_{i} - \delta_{DM}$$
$$\kappa_{1} = \lambda_{2}^{(n)} -$$

Hyperbolic combinatorial model (Penner)

$$12\kappa_1 = W_5^{hyp} + W_{1,1}^{hyp}$$

Tau-functions provide analogs of these relations in JS combinatorial model!