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Combinatorial model W;?,Tb[p] of M, , based on

Jenkins-Strebel differentials
The model depends on the choice of vector p € R!. Definition

of JS quadratic differential Q: second order poles at n marked
points {y;} and all periods of v on canonical cover C

v =Q
of genus g = 4g — 3 + n are real; near y;

P (dx)?

Q) = - 472 X2

Ribbon graph I on C: vertices at zeros of Q, edges - horizontal

trajectories, each face contains 1 marked point.

Generic stratum W of MCO,T b[p] all vertices are 3-valent (zeros

of Q are simple); consists of cells labeled by topologically
different 3-valent I'. Other strata are obtained by degeneration
of edges.



Combinatorial model: continuation

Witten-Kontsevich cycles: some vertices of [ have odd valency
different from 3 (if some vertices have even valencies - these
are not cycles). For WK cycles all zeros of Q are branch points
of C.

In real codimension 2 there are two WK cycles:

» W, 1 - Kontsevich boundary (2 simple poles of Qi.e. 2
one-valent vertices of I'). Obtained by collapsing two
edges with two common endpoints.

» Ws - Witten’s cycle (one 5-valent vertex i.e one triple zero
of Q). Obtained by collapsing two edges with one common
endpoint.

Denote by W the union of all cells of codimension 0 and 1. The

fundamental group of W is generated by paths around Wi 1
(combinatorial Dehn’s twists) and Ws (pentagon moves).



Pentagon move




Combinatorial Dehn’s twist

Figure: Action of combinatorial Dehn twist along non-separating loop
on a pair of canonical cycles from H;(C).



Orientation of cycles, Kontsevich and homological
symplectic forms

Kontsevich’s symplectic form:

Q= Z N, M= Prwp = Z déj A dly

feF r) ej,ekeaf
1<j<k<ng

ey, ... en, are the edges bounding face f ordered counter
clockwise (the form is independent of the choice of the "first"
edge on each face), and ¢; denotes the length of the edge ¢;
(form ws represents the corresponding -class).

Theorem.

g
Q= Z dAj AN dBj
j=1

where (A;, B;) are periods of v over symplectic basis in H_(a).



Main result: relations between tautological classes
from tau-functions

comb

In Pic(Mg,»[P], Q):

13
A“L*Zw’_ 144 51 344"

25
Z‘“‘ 144 T 1ag

implying
A —13) = Zl/h Wi 1

where W; 4 - "Kontsevich’s boundary .



Basic notations

C - Riemann surface of genus g; (a., b,) - canonical basis in
Hi(C,Z), a«=1,...,9; v, - normalized basis of holomorphic
1-forms: ¢, Vs = dap.

Canonical bimeromorphic differential B(x, y); normalization
faa B(-,y) = 0. Bergman projective connection: as y — x,

1 S+ %Sg(g(x)) +. > dg(x)ds(y)

Blx.y) = <(s(x) ~)



Warm-up example: spaces of holomorphic differentials

» Hg(my,...,my) with my +---+ m, =2g — 2 - space of
pairs (C, w) where w - holomorphic 1-form with zeros of
multiplicity my, ..., m,. Dimension is 2g + n— 1; for
n = 2g — 2 dimension equals 4g — 3.

» Homological coordinates on Hg(my, ..., mp): §, W, ¢, w;
f,f w, l; = [x1, Xj]. Here (aa, b, ;) - basis in relative
homologies H;(C, {xk}).

» Dual basis in Hi(C \ {xx}): (ba, —aa, Sk)- Here sx - small
positively oriented contour around Xp.



Variational formulas

» For basic holomorphic differentials:

). _ [ 1aB(y)
oyw) Jo wiy)

» For canonical bimeromorphic differential:

0B(x,y) 1 / B(x,y)B(x, z)

of,w) ~ 2mi w(z)

» For Bergman projective connection:

oSp(x) 1 B?(x, 2)
a([,w) 12ni /C,* w(z)




Bergman tau-function

» Introduce another projective connection:

1" I\ 2
sW:W_3<W)
w 2\ w

» Define tau-function 7(C, w,{a,, b }):

dlog7(C,w) _2/ Sg— Sy
fpw) — wie w
Compatibility follows from variational formulas for Sg.

» Meaning of 7: 7 = Z?*, where Z - chiral partition function
of free bosons on C.



Properties of the tau-function

» Under transformation of canonical basis of cycles by
. . A B )
symplectic matrix cp)T” transforms as follows:
7(C,w,{d,,b,}) = det?*(CB + D) 7(C, w, {an, ba})

where B - matrix of b-periods of C.
» Under rescaling of w:

(C,ew) = 2282l ) Lo w)

» Therefore, on open part of projectivized moduli space 7 is
a section of line bundle

224 | 2(20- 20T 5 l)

where \ - Hodge line bundle, L-tautological line bundle



Explicit formula for tau-function

(w0 8) o)l )
w(¢)'e

T(C,w,{an, bn}) =

[y ECr X)™™ oo
H:<El(§ Xl;) Ig 1)me wB9-1(¢)

where K¢ - vector of Riemann constants, E(x,y) - prime-form,
W - Wronskian determinant of normalized holomorphic
differentials.

For genus 1 the tau-function coincides with Dedekind
eta-function:

7(A, B) = 1*8(B/A)
where A and B are periods of w.



Tau-function on compactification of Hy(1,...,1)

Boundary components of Hy(1,...,1):
> Dyeg - two zeros of w merge to form zero of second order

» Component Dy of Deligne-Mumford boundary - pinching of
C along homologically non-trivial cycle

» Components D; of Deligne-Mumford boundary,
j=1,...,[9/2] - pinching of C along homologically trivial
cycle to get two Riemann surfaces of genera j and g — j.

Asymptotics of 7 near all boundary components can be found
explicitly, which gives the formula for Hodge class in terms of
classes of bondary divisors and tautological class ) in rational
Picard group of projectivization of Hy(1,...,1):

[9/2]
Lottt 18
A= ¢+245deg+1250+8j2216,



Spaces of holomorphic quadratic differentials

» Hyo - space of pairs (C, q), where q - holomorphic
quadratic differential with simple zeros.

» For fixed C, dimension of linear vector space V, of
holomorphic quadratic differentials equals 3g — 3. Denote
corresponding vector bundle over moduli space of
Riemann surfaces by A,.

Determinant line bundle: > = detA,.

» Relations between classes of A\> and Ay (Mumford 1977):
A2 — 13\ = -A

where A = Z/[,g:/OZ] D;.



Canonical covering

> C - double covering of C; on C we have that w = g'/2is a
well-defined holomorphic 1-form. Branch points of C -
zeros x; (i=1,...,49 — 4) of W. Genus g of C equals

49 -3
» w - holomorphic 1-form on € with zeros of order 2 at x;:
w e Hg(2,,2)

» Denote the involution on C by x. Under the action of x we
have the splitting of homologies

Hy=H, & H-

where dimH; = 2g and dimH_ = 6g — 6.



Isomorphizm between H~ and V>

» Holomorphic part of cohomologies:
H(1,0) — H+ @ H—

where dimH* = g and dimH~ = 3g — 3.
» Isomorphizm between V, and H_:

_9 -
qg € W then v_W e H

» The link between corresponding determinant line bundles:
Ao and A_:

A= o(g- 1)



Tau-functions on spaces of quadratic differentials

B(x, y) - canonical bimeromorphic differential on C;

B.(x,y) = B(x,y) £ B(x,y") .

v

v

Corresponding projective connections Sz

Homological coordinates: [, w for s € H_ (exactly 6g — 6
independent).

Tau-functions 7:

v

v

dlogT+(C,q) 2 [ S;—Sw

fsw) — wi)s w

where s* - cycle dual to s.



Properties of Hodge (7. ) and Prym (7_) tau-fuctions

» Relation with 7:

A

o =72(C, w)

where 7 - tau-function on Hg(2,.. ., 2).
» On open part of M, 4 the tau-function 7. is a section of line
bundle
Ay @ L+
where k. =5/36(g — 1) ; k- =11/36(g—1)and Lis
the tautological line bundle.



Line bundle A_ on compactification of Qg

» Boundary of Qg: 1. (pullback of) Deligne-Mumford
boundary Apy of Mg; 2. Dyeq Where two zeros of g merge.

» Asymptotics of 7 near different boundary components

implies
5(g — 1 1 1
(g )U) =+ *5deg + ﬁCSDM

(—1)

)Ur:

1
)\7 - '(,ZJ + 5deg + 5

12
» Excluding dgeg We get

3(g—1)
2

A — 13\ = —dpy — n

» Using the link between A_ and X,: Mumford’s relation

A2 — 13X\ = —dpm



Resolution of 5-valent vertex of Strebel graph

Figure: The Riemann surface C** obtained by replacing the
five-valent vertex with three regular vertices and two new edges of
length o and 8 between them with appropriate adjustment of the
lengths of the original fatgraph. As «, 8 — 0 we recover the original
Riemann surface.






Resolution of a pair of 1-valent vertices ("Kontsevich
boundary")

Figure: Resolution of a double point x1°72 on C by insertion of an
annulus with two simple zeros x; and xo



Resolution of Kontsevich’s boundary in plumbing
picture

Plumbing

R

Figure: A Riemann sphere with two three-valent vertices is glued
between one-valent vertices by introducing two plumbing zones

[m]

=



Moduli of curves from OF(-7)

0 ~ 940.34 1728

Figure: Left: The space Qf(—7) is fibered over the blue curve. Right:
the same set in the plane of J-invariant.



Moduli or curves from Q5 ([—3]?)

1728

NERY

Figure: Left: the space QF([—3]?) is fibered over the blue curve in the
moduli space of elliptic curves with the fiber R, . Right: the same
curve in the plane of J-invariant.



Traversing a cell of OF(—7)




Traversing a cell of Q% ([—3]?)
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Relations between classes on My,

Known relations:

n
A 18 =" v — dpm

i=1

n
K = 12>\+Z?/)i*5DM
i—1
K1 = )\gn) —

Hyperbolic combinatorial model (Penner)

1261 = WP + WP

Tau-functions provide analogs of these relations in JS
combinatorial model!



