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Introduction

Basic concepts
The main problems to be solved
Choice of equations

Basic concepts

Evolutionary Hirota type 3+1-dimensional equations generalize
the famous heavenly equations which describe self-dual gravity.

F:f—Uﬁg=0<:>Un:; (1)

2
where f and g depend on uj = %6“2/_, {z}} = {t, 2y, 20, z3}.
Here u = u(t, zy, 20, 23).
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Introduction

Basic concepts
The main problems to be solved
Choice of equations

The main problems to be solved

We will describe a general method for obtaining Lax pairs and
recursion operators for equations of the form (1) which possess
a Lagrangian. We show that such equations have a general
symplectic Monge—Ampere form and find their Lagrangians.
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Introduction

Basic concepts
The main problems to be solved

Choice of equations

We study equations of the form (1) because of possible
applications to self-dual gravity. In 1975, J. F. Plebanski had
shown that the Einstein equations with Euclidean or neutral
signature with the constraint of Hodge self-duality reduce to a
single scalar equation for the Kahler potential of the metric
Uy7Uss — Uy3U,7 = 1 Which he called the 1st heavenly equation.
The metric is given by ds® = u;dz'dZ/. He also derived second
heavenly equation and the corresponding metric. Recently we
have shown that some further equations of this type, which will
be considered in this talk, also provide a description of self-dual
gravity.



Introduction

Basic concepts
The main problems to be solved

Choice of equations

Interesting solutions of the first heavenly equation (complex
Monge-Ampeére equation with the reality condition) are
gravitational instantons which yield a semi-classical description
of the future theory of quantum gravity. There is one important
gravitational instanton K3 whose metric is still unknown. It is
named after three geometers: Kummer, Kahler, and Kodaira.
K3 is a fundamental difficult problem similar to K2, a difficult
mountain in the Karakorum region of Himalayas. One of
possible approaches to K3 is to widen the class of scalar PDEs
governing self-dual gravity with the hope that their solutions
more readily will describe K3 in the corresponding new
variables.



2nd-order Lagrangian equations of evolutionary Hirota type

Second-order equations possessing a Lagrangian

The Fréchet derivative operator (linearization) of equation (1)
reads
Dr = —gD? + (fu,, — UttGu,)DtD1 + (fy, — UttGuy,) Di Do
+ (fut3 - uﬁgUm)DfD3 + (fU11 - Ungu11)D12 (2)
+ (fU12 - utth12)D1 D2 + (fU13 - uﬁgU13)D1 D3
+ (fU22 - uftguzz)Dg + (fU23 - utfguzs)D2D3 + (fu33 - Uttgu33)D§

where D;, D; denote operators of total derivatives.
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2nd-order Lagrangian equations of evolutionary Hirota type

@ The adjoint Fréchet derivative operator has the form

Dy = —DZ2g + DD (fu, — UQuy) + DeDa(fup, — UntQuy,)
+ DTDS(fUts - Uﬁguta) + D12(fU11 - Uﬁgun)
+ D1 D2(fU12 - Uttgu12) + D1 D3(fU13 - UﬁgU13)

+ Dg(fuzz - UﬁgUzz) + D2D3(fU23 - uﬁguza) + Dg(fuss - U”guss)
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2nd-order Lagrangian equations of evolutionary Hirota type

@ The adjoint Fréchet derivative operator has the form

Dy = —DZ2g + DD (fu, — UQuy) + DeDa(fup, — UntQuy,)
+ DTDS(fUts - Uﬁguta) + D12(fU11 - Uﬁgun)
+ D1 D2(fU12 - Uttgu12) + D1 D3(fU13 - UﬁgU13)

+ Dg(fuzz - UﬁgUzz) + D2D3(fU23 - uﬁguza) + Dg(fuss - U”guss)

@ Helmholtz conditions: equation (1) is an Euler-Lagrange

equation for a variational problem iff its Fréchet derivative
is self-adjoint, Df = Df.
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2nd-order Lagrangian equations of evolutionary Hirota type

F = ay{un(us1Una — UZp) — Upy (Upt Upp — UgpUso) + Uga(Upt Usp — UpplUs1)}
+ ap{un(U11Usg — USs) — Up (Upt Usg — Ugliz) + U (Up Uiz — Ugglig)}

+ ag{ us (U223 — u§3) — Upp(UrpUsz — UggUzg) + U (Ul — Urglzz) }

+ ag{Urt(U11Uzg — Us2U13) — Upt (Up Upg — UppU3) + Uga(Up Ur2 — UpaUq1)}
+ as{ui(U12Uo3 — Uy3lzp) — Upi (UppUz3 — Ugglo2) + Upp(Ural1z — UraUi2)}
+ ap{Uit(U12Us3 — Uy3Uz3) — Upi (UraUsz — Uggloz) + Upa(Ural13 — UrsUi2)}

+ by {U (U12Uoz — U1glpp) — Usp(U11Uog — U2Uy3) + Us(U11 U2 — U‘122)}
+ bo{us (U12Us3 — U1gUpz) — Usp(U11Us3 — U123) + Ura(Uy1Uo3 — Ui2U43)}
+ by { U1 (UppUss — U35) — Upp(UroUsg — Uralng) + U (Uralps — Urlino)}
(

+ ba{u11(UaUss — Us3) — Usa(U12Us3 — Usalzg) + Usa(Usplag — Usslzo)}
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2nd-order Lagrangian equations of evolutionary Hirota type

+ ar(uglyy — U4) + as(Unliz — Up Up) + ag(UgUrs — Upi Urg)

+ ay0(Ustlo — U?g) + a1 (Ut los — UrpUrz) + a12(Utt sz — Utza) + a3l

+ C1(Up U2 — UaUq1) + Co(Up U1z — Urglyq) + Ca3(Upt Uoo — UppUy2)

+ C4(Up1 Upg — UgaUy3) + Cs5(Uralog — UpgUzo) + Ce(Upt Usz — Ugsl3)

+ €7(UraUs3 — UgzUzg) + Cg(Ural13 — UrgUs2) + Cgr (U1 Uo3 — UgzUp2)

+ Co(U11U23 — Ut2U13) + Cro(Us2Uz3 — U13lo2) + C11(U12Us3 — Uy3Uz3)

+ Cro(Un1Uoz — Up) + Cr3(Ug1Usg — Usg) + Cra(UnoUss — U33)

+ C15Un + CiglU2 + C17Ut3 + C1glU11 + C1gli2 + Cool13 + CoqlU22 + Coolz3

+ Co3U33 + C24 =0 (3)
where the quadratic terms have the Monge—Ampére form. 1195



2nd-order Lagrangian equations of evolutionary Hirota type

The homotopy formula (see P. Olver’s book) yields the
Lagrangian for F = f — ugg in (3)

1 1

1
L[] = / u- FAu d\ = / U fAu] dA — / U - (g dA
0 0 0

with the result
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2nd-order Lagrangian equations of evolutionary Hirota type

u
L= 4 <a1 {un(n1tze — UFp) — Upt (Ut Uga — UraUnz) + Uz (Upt thz — Ugaling) )}

+ ap{up(ur1Usg — Us3) — Upi (Up Usg — Ugglns) + Ups(Up Uns — UggUiy)}
+ a{ui(UsoUsg — Ub3) — Upa(UrpUsg — Uggling) + Ups(UppUog — Upglinz) }

+ ag{un(U11Ueg — Ut2U43) — Upt (U Uz — UppUs3) + Upa(Up Ur2 — UppUt1)
+ as{un(Ur2Ues — Ut3Uzo) — Upi (UpUpz — Upalo2) + Upp(Urp Utz — UrgUs2)
+ ap{ Ut (U12U33 — Uy3Uaz) — Up (UrpUss — UraUogz) + U (U Utz — UrgUq2)
+ by {up (UroUog — Uralz) — Urp(U11Uzg — Uralisg) + Ugg(Us1lpo — UZ,)}
+ bo{up (UroUsg — Urglng) — Urp(U11Us — USg) + Ups(Ut1Uog — UraUss)}
+ b {up (UnoUsg — UB3) — Upp(UsoUsg — Usgling) + Up(Urolog — Urglizg)}

¥
¥
}

+ by {1 (UoUsg — U33) — Lha(Uralis3 — Uraliza) + Lha(Uralizs — U13Ugg,,)9l’>



2nd-order Lagrangian equations of evolutionary Hirota type

u
+ 5{37(UttU11 — UZ) + ag(UnUiz — UpiUsp) + 89(Unlsa — Upt Ugg)

+ aro(Utliop — U%) + a1 (Uglsg — Upplts) + @12(Unlia — UZy)

+ C1(Up U2 — UgaUq1) + Co(Up U1z — Urglyq) + Ca(Up1 Uoo — UppUy2)

+ C4(Up Uz — UpaUq3) + Cs(Upalo3 — Upglpo) + Cg (U1 Uss — Urzly3)

+ C7(UroUsz — Ualaz) + Cg(UraU13 — Urgli2) + Cgr (Ut Uz — UpzUq2)

+ Co(U11Uo3 — Ut2U13) + Cro(Us2U23 — U13lo2) + Cy1(U12Us3 — Uy3lz3)
+ Cra(U11Upo — UZp) + C13(Us1Usg — Us3) + Cra(Unolss — U33) }

u
+ 5(313Un + Ci5U + CiglUp2 + Ci17Ut3 + CiglU1q + Ciglq2 + CooU3

+ C21Up2 + Co2lo3 + Co3Us3) + CoaU. 14(3'5)
/



Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Operators L;x) and some of their properties

Symmetry condition is the differential compatibility condition of
(3) and the Lie equation u, = ¢, where ¢ is the symmetry
characteristic and 7 is the group parameter. It has the form of
Fréchet derivative (linearization) of equation (3). For a more
compact form, we introduce linear differential operators

Ly = ux Dy — ux Dy = —Ljiiy = Liiky =0, (5)
Lijky + Lkig) + Lixiy = 0, DiLijjy — DiLijy = Lijy Dr — Lij1y Dk
LijiyDxk + LixnDi + LyiyDy = 0 (6)

where i,j, k = 1,2,3,t. For example,

Ligz) = Up3Dy — 13Dz, Lig(ry = UatDy — U1t Do 15105



Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

{a7(Lt1(1)Dr — Lt1(1yD1) + a@s(L1(2) Dt — Lt1(1)D2)

+ a9(Lt1(3) Dt — L1(tyD3) + @to(Liz(2) Dt — Lyz(r) Do)
+ a11(Lee(3)Dt — Liz(tyD3) + @12(Lsa(3) Dt — Lia(1)D3)
+ ¢1(L12(1)Dt — Li2(1)D1) + C2(Lya(1) Dt — Ly3(1yD1)
+ €3(L12(2) Dt — Lio(1)D2) + ca(L123)Dt — L12(1yD3)
+ C5(Lag(2) Dt — Log(tyD2) + C6(L13(3) Dt — L13(t)D3)

+ €7(L23(3) Dt — La3(1yD3) + Cs(Los(1)Dr — Laz(tyD1)

+ Cor(L13(2) Dt — Liz()D2) + Co(L12(3) D1 — L12(1)D3)

+ ¢10(L232) D1 — L2a(1)D2) + €11(La33)D1 — Loa(1)Ds)

+ C12(L12(2) D1 — L12(1)D2) + ¢13(L133)D1 — L13(1)Ds)

+ Cy4(Logz Do — Log2yD3) b = 0 (7) 16705

—
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

in the particular case b; =0, 8 =0fori=1,...6, a; = 0. We
have also skipped the terms which do not involve L)

{a13D% + ¢15D¢D1 + ¢16D;D> + ¢17D;D5 + c1gD%
+ C19D1Ds + CooD1 D3 + €21 D5 + Cop Do D5 + 2305 }p = 0.
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Skew-factorized form of the symmetry condition

The linear operator of the symmetry condition for integrable
equations of the form (3) should be converted to the
"skew-factorized" form

(A1B2 — AsBy)p =0 (8)

where A; and B; are first order linear differential operators.
These operators should satisfy the commutator relations

[A1,A2] =0, [Ay,Bo] —[A2,B1]=0, [B1,B]=0 (9)

on solutions of the equation (3).
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Skew-factorized form of the symmetry condition

It immediately follows that the following two operators also
commute on solutions

X1 =M1+ By, Xo = MAs + B, [X1,X2]:0 (10)

and therefore constitute Lax representation for equation (3) with
A being a spectral parameter.

Symmetry condition in the form (8) not only provides the Lax
pair for equation (3) but also leads directly to recursion relations
for symmetries

A1p = Bip, Axp = Boyp (11)

where @ is a symmetry if ¢ is also a symmetry and vice versa.
19/95



Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Indeed, equations (11) together with (9) imply
(A1Bo — AoBq)p = [A1, A2]$ = 0, S0 ¢ is a symmetry
characteristic. Moreover, due to (11)

(A1Ba—A2By)¢ = ([A1, Bo]—[Az, Bi]+BoA1—B1Az) ¢ = [B, Bily

which shows that ¢ satisfies the symmetry condition (8) and
hence is also a symmetry. The equations (11) define an
auto-Béacklund transformation between the symmetry conditions
written for ¢ and $. Hence, the auto-Backlund transformation of
the symmetry condition is a recursion operator.

We note that the skew-factorized form (8) and the properties (9)
of the operators A; and B; remain invariant under the
simultaneous interchange A; +» By and As < Bo.

=0
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Our procedure extends A. Sergyeyev’s method for constructing
recursion operators. Namely, we start with the skew-factorized
form of the symmetry condition and extract from it a “special”
Lax pair instead of building it from a previously known Lax pair.
After that we construct a recursion operator from this newly
found Lax pair.
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Second heavenly equation

All known heavenly equations, describing self-dual gravity, can
be treated in a unified way according to this approach.

The second heavenly equation uyu1 — uﬁ +Up+ Uz =0
has the symmetry condition of the form

{Lt1(1)Dt—Lt1(1)D1 +D2Dt+D3D1}g0:0. (12)
It has the skew-factorized form (8) with the operators Ay = Dy,
Az = Dy, By = Lyy(t) — D3, B2 = Lyy(1) + D2 satisfying conditions
(9). According to (10) the Lax pair has the form
X1 = ADs + Lt1(t) — D3, Xo = \Dy + Lt1(1) + D5 and (11) yields
the recursions for symmetries Dy = (L1 (1) — D3)¢,
Di1@ = (Lei(1y + D2)e. 2205



Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

First heavenly equation

The first heavenly equation in the evolutionary form
(Ut — U11)Uzz — (Ugs + Ur3)(Ur2 — U12) = 1 has the symmetry
condition

{Lt2(tyD3—Li2(3) Dt+Los(1) Dt—Laz(tyD1+L12(3) D1 —Li2(1) D3} = 0
with the skew-factorized form composed from the operators

Ay = Dt — Dy, Ao = —D3, By = Loty — L1o(1) — Lt1(2)

B> = Lyp(3) + Li2(3) which satisfy conditions (9). The Lax pair
(10) reads X; = /\(Dt — D1) + Lt2(t) — L12(1) — L”(z),

Xo = —AD3 + Lip(3y + li2(3) While the recursion relations (11)
become (D; — D1)@ = (Liz(r) — L12(1) — Lt1(2)) @nd

—D3p = (Lia(3) + Li23)) -
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Modified heavenly equation

The modified heavenly equation uq;Us; — Uil + U3 = 0 has
the symmetry condition (Lt2(1)Dt — L[2(t) Dy — D; D3)g0 =0. lis
skew-factorized form is constructed from the operators Ay = D,
Az = Dy, By = Lty + D3, Bo = Lp(1) obviously satisfying
conditions (9). The Lax pair (10) is formed by

X1 = ADt + Lio(r) + D3 and Xz = ADy + Lyz(1y. Recursions (11)
have the form D;p = (Ltg(t) + D3)p, D1@ = Lt2(1)<p.
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

Husain equation

Husain equation in the evolutionary form

Uy + U1 + UpUyz — Uglyo = 0 has the symmetry condition
(Log(1)Dt — Log(ny Dy + D? 4 D2) = 0. Its skew-factorized form
is constituted by the operators Ay = Dy, A, = Dy,

By = Laz(ty — D1, B2 = Laz(1y + Dy satisfying all conditions (9).
The Lax pair (10) becomes Xi = AD; + Lpg(y) — Dy,

Xo = ADy + La3(1) + D: while the recursions (11) read

Dt@ = (Los(ty — D1)w, D1 = (Las(1y + Dt)ep.
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Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

General heavenly equation

General heavenly equation in the evolutionary form

(B4+7)(Urp Utz — Ut Upg+U11 Uz — U1 U13)+(v—B) (Up U3 — Ui Uy2) = 0

(13)
has the symmetry condition
{(B +7)(Lia(tyD2 — Liz2) Dt + Li2(3yD1 — L12(1)Ds)
+ (v — B)(Lag(1) Dt — Log(yyD1)}o = 0. (14)
1 1
Ar= Lo, A= —-L
1 U123 e@E) A=l ;
+
By = —{(B =)L) + (B +7)Li3@2)}: B2 = 7Lt3(2)-

Uos Uz3
26/95



Symmetry condition in a skew-factorized form

Skew-factorized forms for heavenly equations

General heavenly equation (continued)

The Lax pair (10) becomes

A 1
X1 = —Lpamy+ —{(8 =)L)+ (B +7)L ,
1= et Uzs{(ﬁ Y)Liz2) + (B +7)L1s)}

Xo = iL12(3) + s 7Lt3(2). Recursion relations (11) have the
Uz3 Uz3
form
L Lpey® = ~—{(8— ML) + (8 + Loz}
g t2(3)% U3 YIL3(2) YIL32)s¥
1 L B+
—L = L . 15
U -12@% = 7 Lis@)? (15)
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Symmetry condition, integrability and recursions

Further properties of the operators Ljx)

LijiyDr — Lijon Dk = Lijk )7leg) + D~ (Uij/I Uik Uj) Di(16)

LijkyDr — Lijoy D = LIkU)LTkLij(k) + DkLTk(Uiji/ — UiUjr) D(17)
j j

1 1
LiiyDr — Lijin Dk = L/j(l)*l—lk( )+ Dj— (U/kU// uikup)Dy - (18)

1 1
Lijy Dr = Lijy Dk = L/i(/)j/.j.%(i) - Lki(/)j”Lﬁ(f)

1
+ Di— (Uij,/ UikUj/)Dj. (19)

28/95



Symmetry condition, integrability and recursions

Here the expression (uxuj — Ui Uj) is precisely the group of
terms in the equation (3) corresponding to the terms

(LiikyDr — Lij1y Dk )¢ in the symmetry condition (7), so that the
last terms in all these relations vanish on solutions of (3).
Keeping different groups of terms in (3), we obtain
skew-factorized forms of the symmetry condition (7)
determined by the operators A;, B; listed below which satisfy all
the conditions (9). Using (10) and (11) we immediately obtain
the Lax pair and recursion relations, respectively.

29/95



Symmetry condition, integrability and recursions

First example

a11 (Ul — UrpUsz) + Ca(Up Uz — UppUy3) + Cs(UspUpz — UtgUpp)
+ Cg(UraUq3 — Uali12) + Co(Uy1Uzz — U2U43)

+ C1o(Uy2Uoz — U13lpp) =0 (20)
A=y By = —{(cs — Gs)Lisca) + CoLuaa) + Crolaso}
1= ey Bi= (G~ G)lise) + Galise) + Crolasee)

1 1
Ao =~ Liz@),  Be=(csleae) + Coluae) + aniLee)- (21)
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Symmetry condition, integrability and recursions

Second example

a1 (Uitlps — UrpUrs) + Ca(Upt Uog — UpplUt3) + C7(UrpUsg — UsgUng)
+ Cg(UraUq3 — Uali12) + Co(Uy1Uzz — U2U43)

+ C11(U12U33 — Uy3Uz3) = 0 (22)
A=y B, — —(CoLias) + CoLiaa + Crilosa)  (23)
1= U3 13(2)> 1= Uns 8Li2(3) T Coli2(3) 11L23(3)

1 1
A= ——1L B, = — —cg)L L aj L )
2 Ung 13(2)> 2 u23{(04 Cg)L12(3) + C7loa(a) + ar1lips)}
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Symmetry condition, integrability and recursions

Third example

ag(Unliz — U Usp) + aro(Uglop — U%) + a11(Uslog — UgpUss)

+ C7(UtpUs3 — Uz Uz3) + Cg(Urpl13 — Uggliy2) = 0 (24)
A=_o B, — —(asLiia) + @roLioia) + a11 Lig(a))
1= gt Bi=(@lne + ankee) + anlee)
1 1
A = —UTZLtz(t), B, = (C7Lt3(2) + CgLt1(2))- (25)
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Symmetry condition, integrability and recursions

Fourth example

a12(UgUsg — U%) + Cs5(Urplog — Urglnp) + Co(Up Ugz — UrzUiyz)

+ C7(UroUsz — UggUaz) + Cg(Uali13 — Ugliy2) = 0 (26)
A=t B —— 1 Ao = (esLipa + CoLirga)
1= ggreey Br=—y leaw, Ae= (G5l + Glng)

1
B, = UTS(amLts(t) + CsLia(r) + C7L23(r)) (27)
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Symmetry condition, integrability and recursions

Fifth example

ar(uglyy — UA) + ag(Unlio — U Urp) + ag(Urtlyz — Upi Upa)
+ C1 (U Utz — UppUqy) + C3(Up U — Upply2)

+ Ca(Upt Uz — Uppliy3) =0 (28)
A—LL B—1—(cL + 3Lty + Calizry)
1 Ly O 1= g (Rt T Gty + Gabea(n)
1 1
A= ——1L B, = —(asL agl agl
2 o, e B un( 7Le1(1y + @slio(1) + @olsz(1))
(29)
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Symmetry condition, integrability and recursions

Some of the equations listed above are not independent since
they are related by a permutation of indices. For example, our
second equation (22) and the corresponding operators A;, B; in
(23), determining the Lax pair and recursion relations, can be
obtained from the first equation (20) and its operators (21) by
the transposition of indices 2 +» 3 and the permutation of the
coefficients ¢5 <+ —c¢7, cg <> —cg and ¢ig <+ —Cy1.

We can obtain skew-factorized forms of symmetry conditions
for many more equations of the type (3) by using permutations
of indices 1,2, 3, t with an appropriate permutation of
coefficients which leave the equation (3) invariant. Such
permutations will however do change the skew factorized forms
of the symmetry conditions.
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Symmetry condition, integrability and recursions

To see that conditions (9) are satisfied for any operators arising
from the skew-factorized form of the symmetry condition (7), we
note that this form should follow from a linear combination of
such pairs of terms in the symmetry condition (7)

P(LjikyDr — Lij1y D) + Q(LmjkyDn — Limj(n) Dk), (30)

with constant p, q, which are simultaneously factorized on
solutions of the corresponding equations according the formula
(16)

1 1
LijiyDr — Lijon Dk = Lu(k)*l—/k(/) + D (U/kU:l Uik Ujr) Dk
1 1
LinjckyDn — Limj(nyDk = Lmj(k)*Lnk(/) + D; uk(Uijmn Uk Ujn) Dk
Uik i
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Symmetry condition, integrability and recursions

Here the factors D;(1/uj)(Ep,q) Dk are the same in both
formulas with the exception of factors Ep, E4, where

Ep = ukUy — UixUy, Eq = UkxUmn — UpkUjn  (32)

constitute the parts of the equation Epq = pEp + qE4 = 0 which
implies the symmetry condition (30).
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Symmetry condition, integrability and recursions

Then on solutions of the equation Epq = 0 we have
P(LjikyDr — Lij1yDi) + q(LmjkyDn — Limj(n)Dk)

1 1
= PLit— Ly + Glmice) — Lo 33
1 PLiw) g, /k1g) Ghmit) g nk:/) ( 1)
A= Lo, Bo= —Liiy, Ao=—— L Bi= — L.
1= gl Be=gibikgy Ae= =g Lo, Br= Lo

We have [A1,A2] =0, [B1 , Bg] =0and [A1 , Bz] — [Ag, B1] =0
holds on solutions of Epq = 0 due to the identity
1 E, E
A1, Bo] — [A2, Bi]= —{ D pq)D-—D-<pq>D }
(41,82~ 142.B1) = - { D (%) -0, (32 0y
More general skew-factorized forms of the symmetry condition
arise as suitable linear combinations of the equations (33). 38/95



Two-component form

ur=1v,

Ve = Z<31 (VBUpp + VEULT — 2V4 Valsp) + @p(VEUag + ViU — 2V4V3Ui3)
+ a3(VAUss + ViU — 2VaValing) + ag{ V4 (V1 Uog — Vols3)

— v3(ViUi2 — Vouyq)} + as{vq(Valaz — Valaz) — Vo(Valis — Vali2)}

+ ag{Va(VvyUsz — VaUy3) — V3(VyUzz — V3U12)}

+ a7v2 + agviva + @gVy Vs + aigVa + asi VoVa + aioVa

— by {vi(Uy2U23 — Uy3Uo2) — Vo(Uqq Uz — U12Uy3) + Va(Uy1Uap — U122)}

— bo{v1(U12Us3 — Usglzg) — Vo(Uy1Uss — UZ3) + Va(UsqUog — Ualsz)}

— ba{v1(UoaUsz — Ub3) — Va(UsoUss — Uralaz) + Va(Uralog — Uializz)}

— ba{uy1(UnoUss — UB3) — Ura(Usolsg — Usglg) + Ua(Usolog — Usglop)}



Two-component form

— Ci(ViUy2 — Vouy1) — Co(VyUy3 — VaUqq) — C3(Vqloa — Vally2)

- C4(V1 Up3 — Voli3) — Cs5(Valiog — Valzo) — Ce(ViUsz — VaUi3)
C7(Valss — V3Uz3) — Cg(Voliz — Vali2) — Cgr(Vileg — V3Ui2)

- 09(U11U23 — Ut2U13) — Cio(U12Uz3 — Urala2) — C11(Us2Us3 — Ui3lzg)

— Cro(Ur1Uzp — Usp) — Cra(Un1Uss — UZ3) — CralUoolss — Ug)

— Ci5V1 — C1eV2 — C17V3 — C1gl11 — Cigl12 — ColUi3

— Coq1lUpo — CoplUoz — Coglizz — C24>

24
= (Za,qa’ +Zb,qb’ + Zcq“) z% (34)



Two-component form

2 2 2
A = ay(Uy1Upe — U7p) + @2(U11Usz — UTs) + as(Uoolsz — Usg)

+ a4(U11Upg — U12U43) + as(U12lpg — U13lzz) + as(U12Us3 — U13Uo3)
+ azUq1 + agly2 + @gUy3 + Aol + A11Up3 + @12U33 + @13.  (39)
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Two-component form

L= (utv — 2V2> {81(U11 Uoo — U122) + 32(U11 U3z — U123) + a3(u22u33 — U§3)

+ as(Uy1Upz — U12U13) + as(U12Uog — Uyalzz) + 8p(Ut2Uss — Ug3lz3)
+ ayUy1 + a@gli + aglz + @1plop + ay1Uog + a12Usz + a3}

Ut
+ 2 <b1 {u1(Uy2U23 — Ut3Unp) — Up(U11Upz — UpU43) + Ug(Uqq U2 — U122)}
+ bo{uy (UraUz3 — Uraling) — Up(U1qUsz — UZg) + Us(UsqlUps — UraUs3)}

+ ba{u1(UppUzz — Uga) — Uo(UqU33 — U13loz) + Uz(U1oUg — U13U22)}>

u
- b4Z{U11(U22U33 — UB3) — U1o(U12Ua3 — Uy3lng) + Uy3(Usalps — Usalzz)}
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Two-component form

+ %{01(U1 Utp — UpUy1) + Co(Uy Uiz — Uslyq) + C3(Ug U — Ualq2)

+ Ca(U1Up3 — UpUs3) + C5(Uplzg — Usla) + Ce(U1Us3 — UUs3)

+ C7(UoUs3 — Uslpg) + Cg(UzUq3 — UgUi2) + Cer(UgUzg — Ugli2)}
- g{CQ(U11U23 — Uy2U43) + Cro(Uq2U3 — Uq3l2) + C11(U12Us3 — U13lo3)

+ Cr2(U11U22 — U?g) + C13(U11U33 — Ufs) + C14(Uo2Uz3 — Ugs)}

i
2

u
- 5(018U11 + Cigl12 + CooUy3 + Co1Upp + Cooliag + Coglizz) — Cosl
(36)

43/95
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Hamiltonian representation

oL
= B T v{a (Ur1Ua — U3p) + @p(U11Usg — Ufs) + A3(Upalss — U53)

+ a4(Uy1Uz3 — U12U13) + as(U12Uo3 — Uy3lzz) + 8p(U12U33 — Uq3ln3)

+ arUy1 + aglyz + aglya + aolo2 + 11Uz + @12Us3 + @13}

+ 4 <b1 {u1(U12Uo3 — U13lop) — Ua(UgqUog — U12U43) + Us(Uqq U — U122)}
+ bo{u1(Ut2U33 — Uy3les) — Ua(Uy1Us3 — U123) + Uz(U11Uz3 — Ug2U43)}

+ ba{u1(UppUszz — U§3) — Uo(UqUz3 — U13laz) + Uz(U1oUng — U13U22)}>
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Hamiltonian representation

1
+ 5{01(U1 U2 — UaUq1) + Ca(Ur Uiz — UgUiy) + C3(Us Uza — UpUs2)
+ C4(UyUpz — Uply3) + Cs5(UpUpz — Uslipp) + Cs(UyUsz — Usliq3)
+ €7(Uplsz — Uslpz) + Cg(Uoliyg — Usl12) + Cer(Utlog — Usls2) }

oL _y (37)

1
—(Cy5Uq + Cigls + Ci7U _ 9t _
+2( 15U1 + Cigln + C17U3), Ty v,
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Hamiltonian representation

The canonical momenta satisfy canonical Poisson brackets

[U/(2), 7K (2)] = 6%5(z — Z'), where u' = u, U = v, ! = 7,

7% =, and z = (24, Z», z3). The Lagrangian (36) is degenerate

because the momenta cannot be inverted for the velocities. We

impose (37) as constraints ¢, = 0, , = 0 where

2 2 2

Sy = my — v{ar (U1l — UTp) + as(Uy1Usz — Uf3) + az(Unalizz — Us3)
+ aa(U11Up3 — Ug2U13) + as(U12Uzz — U13Uzp) + as(U12Us3 — Uy3lps)
+ azuy1 + aglyz + 8gUq3 + A1olz + a11Ue3 + a12Us3 + 813}

-2 <b1 {us(U12U23 — Usalinp) — Un(Ug1Uzg — UrpUia) + Us(UtqUop — US,)}
+ bo{u1(U12Uz3 — Uy3lpz) — Uo(U11U33 — U123) + U3(U1qUpg — U12U43)}

+ ba{u (Upplsz — UB) — Up(U12Uss — Usglag) + Us(Usalos — U13U22)1}/>5



Hamiltonian representation

1
- 5{01(U1 Ui2 — UpUy1) + Co(UyUyg — UsUty) + C3(Ut U2 — UnUs2)
+ C4(U1Up3 — UpUy3) + C5(UzUz3 — Uslizp) + Cs(U1Usz — Usli3)
+ €7(Uplsz — Uslpz) + Cg(Uoliy — Uslr2) + Cer(Utlog — Usls2) }

- %(015U1 + Ciglp + Cy7U3) (38)

S (39)
and calculate Poisson brackets for the constraints

Kit = [04(2), 0u(Z)],  Kiz = [04(2), 00/ (2)]

Kot = [0v(2), Py (Z)], Koz = [®v(2), v (2')] (40)

following the Dirac’s theory of constraints. 47/95



Hamiltonian representation

We obtain the following matrix of Poisson brackets

_( K1 Kz
K_<_K12 o> (41)

13 8’ 3
K= ak® + Z bk + 3 ek S ciiaby,
i=1 i=1 i=1

13
Kio = Z a;K1('2) (42)
i=1

with the following definitions
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Hamiltonian representation

K1(f1) = 2(VylUoo — ValU2) Dy + 2(Vauy1 — vyU12) Do + vy Uoo + Voo Uy
— 2VyoU42, Kf;’ = —(Ut1 Uz — UZp), K1(1 ?) — 2(vyus3 — vaU13) Dy
+2(vau11 — viuU13)D3 + viqUsg + VagUy1 — 2vy3U43,
KD = —(unuss — udy), KT = 2(vauss — vauzs) Dy
+ 2(VaUop — Valp3) D3 + Voo Usz + Vaglpe — 2Vo3Uzs,
KS) = —(Upousg — U3y),
K1(f4) = (2viUgz — Vouy3 — VaU12) Dy + (vaury — vaus3) Do
+ (Vout1 — viU12) D3 + ViqUz3 + VozUiq — ViaUiz — VigUsz

4
K1(2) = —(Uy1U23 — Uy2U43)
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Hamiltonian representation

K(a ) = (Valag — VaUpo) Dy + (V4 Upg — 2Valig + VaUis2) Dy

+ (VaUi2 — ViUo2) D3 + Viplog + VogUia — Viglpo — Voolis
KS) = —(U12U23 — Uy3Up2), ng) = —(U12U33 — Uy3U23)
K%)= (Vousg — Valpg) Dy + (v1Usg — Vaha) Dy
+ (2v3U12 — Vil — VoU13) D3 + VyaUss + VagUiz — Viglaz — Voglis
KE) = 201Dy + vy, K = —uyy, K = oDy + 1Dy + vip
K1(§) = —Uyp, K1(f9) = v3Dy + vy D3 + w3, K1(2) = —Uy3
K1(f10) =2voDs + Vap, K1(;0) = —Upo, Kffm = v3Ds + voDg + Vo3
KOD = —tpg, K2 — 21305 + vag, KG?) = —ugg, K@% =0
KGD = 1. (43)



Hamiltonian representation

b1
K1(1 ) — (Urglze — U12Upg) Dy + (Uy1Ups — Usatis) Dp — (U1 Uz — U2) D

b2
K2 — (Uygupg — U1oUs3) Dy + (Uy1Usg — U3g) Do — (Uy1Upg — Uralisg)Ds

b3
K1(1 ) — —(Upplsz — UB3) Dy + (Un2Uss — Usaliz) Dy — (U2Uzs — Usgliz) Ds

K1(11) = U102 — u12Dy, K1(12) = Uy1D3 — u13Dy, K1(13) = U120 — Up2 Dy

Kﬁ) = U13D2 — U3 Dy, K1(;5) = Upp D3 — Up3 D>, Kﬁs) = U13D3 — U3 Dy

K1(17) = Up3zD3 — U3 Dy, K1(?) = U12D3 — u13D3, Kf?,) = Uy2D3 — Up3 Dy

K% = —py, KU® = —D,, K{I" = Dy (44)
The components of Ki1 can be presented in a manifestly skew
symmetric form, so that K is skew symmetric.
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Hamiltonian representation

—1
J:K—1=< 0 Ko ) 45

0 K1 21 K1 21 /‘(11 K1 21 ( )
Operator Jy is Hamiltonian if and only if its inverse K is
symplectic: the volume integral of w = (1/2)du’ A Kjjduw/ should
be a symplectic form, i.e. dw = 0 modulo total divergence.
Here u' = u, u? = v, so that

13 3 8 3
w= Z ajwf + Z biw? + Z Ciwi + Z Cit14 Wit14,
i—1 i—1 i—1 i—1
wf = ZAun KT du+ dunKdv,  wf = Sdun K du

wi= younkou, K& =0, K =0 (46)
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Hamiltonian representation

Using (43) and (44) for K&, k), k() and K in (46), we get

wd = (Viloa — Valy2)adu A duy + (Vouyq — vyus2)du A dus
— (U112 — US)du A dv
ws = (V1 U3z — V3U13)dU A duy + (V3U11 — Vi U13)dU A dus
— (u11Usg — UZ3)du A dv
wi = (Valsz — Valps)du A dup + (Valop — Valpz)du A dus
— (UpaUsg — U5)du A dv

]
wg = é{(2V1 Up3 — Voliz — VaUy2)du A duy + (Vauyq — viUy3)du A dup
+ (VaUr1 — VaU12)du A dus} — (U11Ues — Ur2U3)du A dv
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Hamiltonian representation

wé = %{(—2vzu13 + Viloz + V3Uq2)du A dus + (Valqa — VyUoo)du A dus
+ (Valoz — Valpo)du A duy} — (UraUaz — Uygl2)du A dv

Wi = %{(2v3u12 — Vilpg — VoUy3)du A dus + (VyUsz — Vauyz)du A dup
+ (VaUsz — Valpz)du A duy} — (UraUsz — Uyglpa)du A dv

]

wd = vidu A duy — uprdu A dv,  w§ = E(v1du/\ dus + vodu A duy)
1

— Uppdu N dv, w§ = é(w du A dus + vadu A duy) — ugzdu A dv

1
wiy = vodu A dup — uppdu A dv,  wi = é(v3du A dus + vodu A dug)

— Upzdu A dv, wfy = vadu A dus — uszdu A dv, wiy=duAdv.
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Hamiltonian representation

1
wf = 5 {(U1aliop — Lh2Uzg)dU A Ol + (U114 U — Usalisa)dU A dup

1
— (Ur1pe — USp)du A dus},  wh = E{(U13U23 — Uy2Us3)du A duy
+ (U11 Uzz — U123)dU A dus — (U11 Uog — U12U13)dU VAN dU3}

1
wg = E{(U§3 — UpplUsz)du A duy + (U12Us3 — Uizlzz)du A dus

1
— (Ur2lg — Urgliz2)dU A U}, wy = 5 (Us1dU A dup — Usdu A duy)

1 1
wo = E(UﬁdUA duz — ui3du A duy), wg = E(U12dU/\ dup — Ugedu A duy)
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Hamiltonian representation

1 1
W4 = *(U13dU A dus — Uz dUu N dU1)7 wy = *(Uzgdu A dus — Uszdu N dUg)

2 2
1 1

we = E(u13du A dus — uszdu A duy), w7 = E(UZSdU A dus — Uszdu A dus)
1 1

wg = E(U12du A dus — ugzdu A dus), wg = E(Umdu A dus — Upzdu A duy)

1 1 1
w15 = _édU/\ duy, wie = —EdU/\ dus, wi7 = _EdU/\ dus. (47)
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Hamiltonian representation

Taking exterior derivatives of (47) and skipping total divergence
terms, we have checked that dw = 0 modulo total divergence
which proves that operator K is symplectic because the
closedness condition for w is equivalent to the Jacobi identity for
Jo. Hence, Jy defined in (45) is indeed a Hamiltonian operator.
Hamiltonian form of this system is

u ouH
(o) = (8 )

where we still need to determine the corresponding
Hamiltonian density H; by the formula Hy = 7 us + m, vy — L,
where 7, = 0, with the following final result
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Hamiltonian representation

V2 13 )

1
Hi=—% Za,-K12

i=1
u
+ b4Z{U11(U22U33 — U3) — Ua(U12Ug3 — Usglag) + Uy (Uialog — Usalpo)}
u

+ 5{09(U11U23 — UyaU13) + C1o(U12Uog — Uigloz) + C11(U12Us3 — U13lpg)

+ Cr2(Ug1Ug — UZ,) + Cr3(Us1Usz — UZg) + Cra(UnoUss — U35)}

u
+ 5(018U11 + Cigl12 + Coolyz + Co1Upp + Coolpz + Cozliaz) + Cosl.  (49)
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Hamiltonian representation

We can write the Hamiltonian density in (49) in the following
short-hand notation
24 1

H1_Za, a’+Zbe’+Zc, (50)

where the sum 2,24 "includes i = 8’ and individual terms of

the sums in (50) are defined by

i b2 b3
H(a’) -5 K1(2), H( 1 _ H( ) _ H( ) _ -0 (51)
H(1) H(Z) _ H1( ) _ H1(8') -0 H(15) H(16) H(17) 0
and the remaining terms H1(b4), H1(9), e ,H1(14), H1(18), e ,H1(24)

are given in (49).
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Hamiltonian representation

The formula (48) provides a Hamiltonian form of our
two-component system (34)

us=YvVv

24 1
(Zaq(a” +qu“’” + Z cq“’) = 1 (52)
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Recursion operators in 2 x 2 matrix form

For equation (20) recursions due to operators (21) become

UpaPt — UaPz = (Ca — Cg)(Uzzpt — Upawpz) + (Calyz(e) + Crolaz(e))e
—Li23)p = (CsLos(z) + CaLli3(2))p + a@11(U2zpt — Uppp3). (53)

Lax pair for the equation (20) reads

A 1
Xi=—1L + —{(c4 — cg)L + colL + cqol
1= L L2 u23{( 4 — C8)Liz(2) + CoL1a(2) + Crolosre)}
A

’
Xo =——1L + —(osL + cgl + a1 L . (54
2 U 12 u23( 5Lo3(2) + CgLli3(2) + a11Ls(2))- (54)
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Recursion operators in 2 x 2 matrix form

In a two-component form the equation (20) becomes

_ _gqg_ 1 (a11) (4) (5) ®8)
up=v, vwv= A~ i <a11q + 049" + 065G + Cgq

+ gt + C1oq(10)> , g =g, g = —(vizs — vatns)

q(5) = —(Valioz — Valpp), q(s) = —(Vauiz — vaUr2)

9% = —(t1tzs — Uratiz),  qU9) = —(Uratioz — Urslize).  (55)
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Recursion operators in 2 x 2 matrix form

Lie equations in a two-component form become u, = ¢,

V. = 1, so that u; = v implies ¢; = ¢. We define
two-component symmetry characteristic (i, 1)) T with ¢ = ¢
and (@, )T with ¢ = ;.
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Recursion operators in 2 x 2 matrix form

D
P v )’ Rz —an DzL12( )U23 + C4 — Cg
1 (56)
Ri1 = —Liy3)(CsLag(2) + Caliz2) — a11v2Ds)

"
Roy = T%{(Cg — C4)V2D3 + CgLy3(2) + Crolaz(2)}

v _
- T;DzL121(3)(05L23(2) + CgLy3(2) — ar1v2Ds).

Here L12(3)L12(3) = 1. Operator L12(3) can make sense merely

as a formal inverse of Ly5(3). Thus, the recursion relations

above are formal as well. The proper interpretation of L12(3)

requires the language of differential coverings. 64795



Second Hamiltonian representation

Composing the recursion operator (56) with the Hamiltonian
operator Jy defined in (45) we obtain the second Hamiltonian
operator J; = RJy. For equation (55) we have Ki» = —aqqUog,
Ki1 = a11(v3D2 + D3vp) — CaLly(3) — Cslog(2) — Calaa(y)-

1 0 1
= 1 .
o ailpz | —1 7K Ton &7

ai Uo3

The corresponding Hamiltonian density according to (49), (50)
reads

Hy = ay H 4 ggH® 4 o H) (58)
2

v u
= a5 ls {09(U11U23 — Uq2U43) + Cio(U12U23 — Uq3lno)}.
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Second Hamiltonian representation

The equation (20) taken in the two-component form (55) can be
written now as the Hamiltonian system

(ﬁtf):J(J(g‘v’Z; > (59)

For bi-Hamiltonian system we need a second Hamiltonian
operator and corresponding Hamiltonian density. Performing
matrix multiplication RJy of the expressions (56) and (57) we
obtain the second Hamiltonian operator

1 1 Cg — C4 1
Lia - <L12(3)D2 Vs + )

Ji = ] a1 Uz3

_ Cg — C4 )

— ( vsDoL ! + ) J
Uz3 ( 12(3) ait !

(60) 66/95



Second Hamiltonian representation

where the entry J22 is defined by

1 1 %

22 3

= L L — — B DL} D 61

J; 311U23(09 13(2) + C1o 23(2))u23 Us D2br2@ P, (61)
1

C4 — Cg 1
Dovy + vaDo — —(cyL + el + cal }
a3 { 23T aﬂ( aL12(3) + Cslas(e) + Calag()) Uns

The operator J; is manifestly skew symmetric. A check of the
Jacobi identities and compatibility of the two Hamiltonian
structures Jp and J; has been made by P. Olver’s method of the
functional multi-vectors under the well-founded conjecture that
this method is applicable for nonlocal Hamiltonian operators.
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Second Hamiltonian representation

The next problem is to derive the Hamiltonian density Hy
corresponding to the second Hamiltonian operator J; such that
implies the bi-Hamiltonian representation of the system (55)

us \ duH, _ duHo '\ v
(Vt>_JO<5vH1>_J1<5vHo -\ 7 (62)
A
where q/A is the right-hand side of the second equation in

(55). Then we may conclude that our system is integrable in the
sense of Magri.
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Second Hamiltonian representation

We assume quadratic dependence of the Hamiltonian Hy on v
Ho = a[u]v? + blu]v + c[u] (63)

the coefficients depending only on u and its partial derivatives.
Proposition

Bi-Hamiltonian representation (62) of the system (55) with the
assumption (63) is valid under the constraint

CgC1p = C5Cy (64)

with the following Hamiltonian density

_ {81108V2 + (ar1couq + by)v — cy(cg — C4)U12}U23
Hy = — (65)
2{aj1cq + Cg(Cg — C4)} 69/95



Second Hamiltonian representation

Thus, we have shown that our first integrable equation (20) in
the two-component form (55) under the constraint (64) admits
bi-Hamiltonian representation (62) with the second Hamiltonian
operator J; defined in (60), (61) and the corresponding
Hamiltonian density Hy given in (65). In the next section, we
construct bi-Hamiltonian systems corresponding to other four
equations admitting skew-factorized form of the symmetry
condition.
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Further new bi-Hamiltonian systems

Results for our 2nd example (22) can be obtained from those
for equation (20) by interchanging the indices 2 and 3 together
with the simultaneous interchange of the coefficients ¢5 «<» —cy,
Cs +» (€4 — cg) and cyg <> —cq1 with all other coefficients
(including ¢4) unchanged. The Lax pair for equation (22) reads

A 1
Xy =—1L + —{cglL + colL + c11L 66
1= Ly @) u23{ 8Lio(3) + CoLia(a) + C11lo33)} (66)
A 1
Xo=——L + —{(c4 — cg)L + c7L + ajlL .
> s T13@) Uzs{( 4 — Cg)L12(3) 23(3) + @11Le(3)}
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Further new bi-Hamiltonian systems

The equation (22) in the two-component form becomes

u=v (67)
q 1

Vi=— = {a@11vavs + ca(Valrz — Vilog) — C7(Volss — VaUas)
A Ayl

— Cg(Valiz — V3lq2) + Co(U12Uy3 — U11Uzz) — Cy1(Us2Us3 — Uy3lag)}.
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Further new bi-Hamiltonian systems

The recursion operator is obtained from (56) by the same
combined permutation

R4 —ai Lf;(g)uzs
R= v o (68)
( Ray —aqy 723031-13(2) Up3 + Cg

with the matrix elements

Ri1 = —Liga)(Crlos(@) + (Ca — Ca)L1a(@) — @113 Dz)
1
Ry = T%(—CBV3D2 + coLiz(3) + C11Llo3(3))

v _
- T;D3L131(2){C7L23(3) + (a4 — Cg)L123) — @11 va3Da}.
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Further new bi-Hamiltonian systems

The first Hamiltonian operator has the form

1 0 1
Jo = 1 1 69
¢ anu \ -1 ——Kii— (69)

a1 Uz3

where Kio = —ajq1Uos,
Ki1 = a11(v2D3 + Dav3) — Caly3(2) — C7Log(3) + (Ca — C8)Loz(1).-
The corresponding Hamiltonian density reads

2
v u
Hi = ay1— Uz + 5{09(U11U23 — U12U43) + C11(U12Us3 — U13lzg)}.

2
(70)
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Further new bi-Hamiltonian systems

The second Hamiltonian operator is obtained by composing R
and Jp as J; = RJy

—1 1 Cs 1
) Hate (o 2 )
L _ c
Uon <V2D3L131(2) - 8> Ji?
(71)

1 1 V-
J?2 = Lioz) + Cr1logs))— — —2 D3y} D
1 (IRP) 11 23(3))u23 3hi32)787, -

a41Uo3 Uz3 U23

’
Davo + Vo D3 — — (4L + c7L —ce)L }
ai1Uos { sv2m 2 ar (CaLiae) 23(3) — (Ca — C8)Log(1))

We see that J; is manifestly skew-symmetric.
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Further new bi-Hamiltonian systems

The constraint (64) for the existence of the Hamiltonian density
Hy corresponding to J; becomes c¢11(c4 — Cg) = ¢7C9. Then Hy
reads

~{a11(cs — cg)v® + (a11Cous + bo)V + CoCe L5} Uing

fo = 2{ay1cg + cg(cs — C4)} - 79)
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Further new bi-Hamiltonian systems

We show here the recursion operator and bi-Hamiltonian
representation for our 3rd example (24). The Lax pair for this

equation due to (25) reads

A 1

Xi=—L + —(aglL + ajol + ayL

1=, 0 Ut2( 8Lt1(2) + @oLlie(e) + @11L3(2))
A 1

Xo =——1L + —(¢c7L + cgl . 74

2 U 20 Ut2(C7 13(2) + Cslt1(2)) (74)

In the following it is convenient to introduce the following

notation
A= agDy + ajgD> + a11D5
A=A (U] = agui2 + @12 + @11Uo3
¢ = c7D3 + cgDy. (75) ., .



Further new bi-Hamiltonian systems

In the two component form the equation (24) becomes

q

=5 9= vo(Alv] — Sus]) + valuz].  (76)

u=v, W

From now on, square brackets denote the value of an operator.
Formulas (25) also imply the recursion relations for symmetry
characteristics.

Lozt = (@8Lt1(2) + @10Lio(2) + @11L3(2)) %
—Lip(1y@ = (C7Liz(2) + CaLt1(2)) - (77)
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Further new bi-Hamiltonian systems

In a two-component form u; = v, ¢ = 1, 3; = ¢ equations (77)

T (8)-A(2)

where the recursion operator is defined by

1A 1
—Log(y e Login
R— 1 (g \ (78)

q —1 AL A -1 A
i Dl b e { 2 DaLygy s — Ele]
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Further new bi-Hamiltonian systems

The first Hamiltonian operator has the form

0 AT
Jo = ( A AR A ) (79)

where Ki1 = VoA + DoA[v] — ¢7L3(3) — Calog(ry. With the
corresponding Hamiltonian density
2
v

Hy = ? (80)

the system (76) takes the Hamiltonian form
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Further new bi-Hamiltonian systems

Composing the recursion operator (78) with the first
Hamiltonian operator (79) we obtain the second Hamiltonian
operator

Ji = Rl = 1 Lo (Lpa(D2q — C[Uz])iA
i (@DaLyy — Elue)) 22
(82)
2 1.9, g q . tlwl
22 Al 1 -
Jit = Cx — Clug] AA At oA Dngs(t)Dg NN
_Cluelp, g Cluel C[UZ] (83)

Vo A Vo A VoA 23(1) VoA
which shows that J; is manifestly skew-symmetric. 81/95



Further new bi-Hamiltonian systems

The Hamiltonian density Hy corresponding to the second
Hamiltonian operator J; has the form

Hy = kvA = kv(aguqz + aioloz + ai1Uz3) (84)

with a constant k. Thus, we obtain a bi-Hamiltonian
representation for the system (76), which is a two-component
form of the equation (24)

th o 5Llf11 _ 6Llf4b
<Vt>_J0<5vH1>_J1<5vH0>' (85)

82/95



Further new bi-Hamiltonian systems

Lax pair for our 4th example (26) due to (27) reads

A 1
Xy = 2 Ligg) — —L
1= te® — g Lea
A 1
Xo = —(cs5L L —(aqoL cslL L .
> Uts(Cs 12(3) + CaL1(3)) + Ut3( 12Ls3(1) + CsLaa(r) + C7Llas(r)
(86)

In a two-component form, equation (26) becomes

u=v, vwv= % (87)

q = a12V2(CsValag — Valpp) — Cs(ViUsg — VaUss)
— C7(VoUsg — Valog) — Cg(Valyz — Vali2), A = aaUss.
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Further new bi-Hamiltonian systems

First Hamiltonian operator has the form
0 AT
JO = ( _A-T A_1K11A_1 ) (88)
where

Ki1 = ai2(v3D3 + D3V3) — CsLp3(2) — CoL13(3) — C7L23(3) — Calag(n)
and Kij» = —ajouz3 = —A. With the corresponding Hamiltonian
density

Hy = %vzu% (89)

the system (87) takes the Hamiltonian form

u ouH
()= (5 )
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Further new bi-Hamiltonian systems

The recursion operator in 2 x 2 matrix form is

& 0 R @bz s
5 ) =R A= 21 V3 (91)
(0 (0 R —312@D3L[12]3(3)U33

where we introduce the notation L1233y = CsL13(3) + C5L23(3)

R" = L[_12]3(3 {qu — CelszLiz(r) — (Cslps + Cglits + C7U33) Log(ry }

v _
R?' = JZD\Q,L“Z]3 —{qD3 — ceuszLy3y)
1

— (Cslp3 + Cgli3 + C7Us3)Log(r) } — T%LZS(I‘)-

85/95



Further new bi-Hamiltonian systems

Composing recursion operator (91) with Jy in (88) we obtain the
second Hamiltonian operator J; = RJy

1 1
~Lhaa) ~Lirza)

V:
Dy—2
Uz3

V3 D1 Vs 1 Vs 1 1

DsL — | —DsL D;— Loars ——

Usa 35112]3(3) ( Uas 3L[12)3(3)~3 a3 + 12 23(t) Uss)
92

Jy =

Ji is manifestly skew-symmetric. With the Hamiltonian density
Ho = {Kk(t,z1)v® — (Cauy + CsUz + C7U3)V)}Usz  (93)
system (87) takes bi-Hamiltonian form

th _ 5Llf{1 _ 5Ll}1b
(v )= (5 )05 ) o0
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Further new bi-Hamiltonian systems

Lax pair for our 5th example (28) due to (29) reads

A 1
Xi=—L + —(cqL + c3L + c4L
1= gyt U”(1 t1(1) T CaLio(1) + Calsz(1))
A 1
Xo = *ufﬁhz(t) + [T”(aﬂnm + aglip(1y + aglez1)).  (95)

87/95



Further new bi-Hamiltonian systems

In the following it is convenient to introduce the following
notation

A= a;Dy + agDo + agDs;, A = A[U1] = ayUy1 + aglUqo + aglqs
C=c1Dy + c3Ds + c4D5. (96)

In a two component form the equation (28) becomes

u=v, v=-—, q=wv(Alv]-2elw])+ vellu].  (97)

>l
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Further new bi-Hamiltonian systems

First Hamiltonian operator has the form

0 A1
Jo = ( A AR A ) (98)

where Ky1 = V~|A + D1A[V] — C1 L12(1) — 03L12(2) — C4L12(3) and
Ki2 = —A. With the corresponding Hamiltonian density
2
%

H1 = ? (99)

the system (97) takes the Hamiltonian form
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Further new bi-Hamiltonian systems

Recursion operator in 2 x 2 matrix form is

(%)=r(3)

L1_21(t) viA - L1_21(t)A
A=\ 9pus va-e tew--T DA |
Avq 12(1) "1 v T Ay TT2(n
(101)
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Further new bi-Hamiltonian systems

Composing the recursion operator (101) with J; in (98) we
obtain the second Hamiltonian operator

1
L) —(L3} . D1q — &[uy])—~
J1 = RJO = 1 12(1) 12(1) V1A
(qD1I— 1() é[u1]) J122

(102)

1 1 q q q A Clui
22 A A

ST =84 +C[u1]AAA Av, av: DikiawDry NG
il g Clw] C[U1] (103)

Avy ! ViA B Avq 12(1) viA
which srjows that J; is manifestly skew-symmetric on account
of A = Aluy]. 91/95



Further new bi-Hamiltonian systems

The Hamiltonian density Hy corresponding to the second
Hamiltonian operator J; is

Hy = kvA = kv(aguqz + aioloz + ai1Uz3) (104)

with a constant k. Thus, we obtain a bi-Hamiltonian
representation for the system (76), which is a two-component
form of the equation (24)

th o 5Llf11 _ 6Llf4b
(w )= () =v (). os)
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Summary

Summary

@ All equations of the evolutionary Hirota type in (3 + 1)
dimensions possessing a Lagrangian have the symplectic
Monge—Ampére form.
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@ We have developed a regular way for converting the
symmetry condition to a skew-factorized form. Recursion
relations and Lax pairs are obtained as immediate
consequences of this representation.
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Summary

Summary

@ All equations of the evolutionary Hirota type in (3 + 1)
dimensions possessing a Lagrangian have the symplectic
Monge—Ampére form.

@ In a two-component evolutionary form, all our equations
have Hamiltonian form.

@ We have developed a regular way for converting the
symmetry condition to a skew-factorized form. Recursion
relations and Lax pairs are obtained as immediate
consequences of this representation.

@ We have obtained new bi-Hamiltonian systems as an

illustration of the general method.
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Summary

For Further Reading
[ M. B. Sheftel and D. Yazici.
Lax pairs, recursion operators and bi-Hamiltonian
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arXiv:1804.10620v2.
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Thank you very much for your
attention.
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