Lax pairs, recursion operators and new multi-parameter bi-Hamiltonian systems in $(3+1)$ dimensions

M. B. Sheftel

Boğaziçi University, Istanbul, Turkey
(based in part on the results obtained together with D. Yazicı)
Russian-Chinese Conference on Integrable Systems and Geometry, St. Petersburg, August 2018

Outline I

(1) Introduction

- Basic concepts
- The main problems to be solved
- Choice of equations
(2) 2nd-order Lagrangian equations of evolutionary Hirota type
(3) Symmetry condition in a skew-factorized form
- Skew-factorized forms for heavenly equations

4 Symmetry condition, integrability and recursions
(5) Two-component form

6 Hamiltonian representation
(7) Recursion operators in 2×2 matrix form

Outline II

8 Second Hamiltonian representation

9) Further new bi-Hamiltonian systems

Introduction
2nd-order Lagrangian equations of evolutionary Hirota type Symmetry condition in a skew-factorized form Symmetry condition, integrability and recursions

Two-component form
Hamiltonian representation Recursion operators in 2×2 matrix form

Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

Basic concepts

The main problems to be solved
Choice of equations

Basic concepts

Evolutionary Hirota type 3+1-dimensional equations generalize the famous heavenly equations which describe self-dual gravity.

$$
\begin{equation*}
F=f-u_{t t} g=0 \Longleftrightarrow u_{t t}=\frac{f}{g} \tag{1}
\end{equation*}
$$

where f and g depend on $u_{i j}=\frac{\partial^{2} u}{\partial z_{i} \partial z_{j}}, \quad\left\{z_{i}\right\}=\left\{t, z_{1}, z_{2}, z_{3}\right\}$. Here $u=u\left(t, z_{1}, z_{2}, z_{3}\right)$.

Introduction

Two-component form
Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

The main problems to be solved

We will describe a general method for obtaining Lax pairs and recursion operators for equations of the form (1) which possess a Lagrangian. We show that such equations have a general symplectic Monge-Ampère form and find their Lagrangians.

Introduction

Two-component form
Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

Basic concepts
The main problems to be solved
Choice of equations

We study equations of the form (1) because of possible applications to self-dual gravity. In 1975, J. F. Plebański had shown that the Einstein equations with Euclidean or neutral signature with the constraint of Hodge self-duality reduce to a single scalar equation for the Kähler potential of the metric $u_{1 \overline{1}} u_{2 \overline{2}}-u_{1 \overline{2}} u_{2 \overline{1}}=1$ which he called the 1 st heavenly equation. The metric is given by $d s^{2}=u_{i j} d z^{i} d \bar{z}^{j}$. He also derived second heavenly equation and the corresponding metric. Recently we have shown that some further equations of this type, which will be considered in this talk, also provide a description of self-dual gravity.

Introduction
2nd-order Lagrangian equations of evolutionary Hirota type
Symmetry condition in a skew-factorized form Symmetry condition, integrability and recursions

Two-component form
Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

Basic concepts
The main problems to be solved
Choice of equations

Interesting solutions of the first heavenly equation (complex Monge-Ampère equation with the reality condition) are gravitational instantons which yield a semi-classical description of the future theory of quantum gravity. There is one important gravitational instanton $K 3$ whose metric is still unknown. It is named after three geometers: Kummer, Kähler, and Kodaira. $K 3$ is a fundamental difficult problem similar to $K 2$, a difficult mountain in the Karakorum region of Himalayas. One of possible approaches to $K 3$ is to widen the class of scalar PDEs governing self-dual gravity with the hope that their solutions more readily will describe $K 3$ in the corresponding new variables.

Second-order equations possessing a Lagrangian

The Fréchet derivative operator (linearization) of equation (1) reads

$$
\begin{aligned}
& D_{F}=-g D_{t}^{2}+\left(f_{u_{t 1}}-u_{t t} g_{u_{t 1}}\right) D_{t} D_{1}+\left(f_{u_{t 2}}-u_{t t} g_{u_{t 2}}\right) D_{t} D_{2} \\
& +\left(f_{u_{t 3}}-u_{t t} g_{u_{t 3}}\right) D_{t} D_{3}+\left(f_{u_{11}}-u_{t t} g_{u_{11}}\right) D_{1}^{2} \\
& +\left(f_{u_{12}}-u_{t t} g_{u_{12}}\right) D_{1} D_{2}+\left(f_{u_{13}}-u_{t t} g_{u_{13}}\right) D_{1} D_{3} \\
& +\left(f_{u_{22}}-u_{t t} g_{u_{22}}\right) D_{2}^{2}+\left(f_{u_{23}}-u_{t t} g_{u_{23}}\right) D_{2} D_{3}+\left(f_{u_{33}}-u_{t t} g_{u_{33}}\right) D_{3}^{2}
\end{aligned}
$$

where D_{i}, D_{t} denote operators of total derivatives.

- The adjoint Fréchet derivative operator has the form

$$
\begin{aligned}
& D_{F}^{*}=-D_{t}^{2} g+D_{t} D_{1}\left(f_{u_{t 1}}-u_{t t} g_{u_{t 1}}\right)+D_{t} D_{2}\left(f_{u_{t 2}}-u_{t t} g_{u_{t 2}}\right) \\
& +D_{t} D_{3}\left(f_{u_{t 3}}-u_{t t} g_{u_{t 3}}\right)+D_{1}^{2}\left(f_{u_{11}}-u_{t t} g_{u_{11}}\right) \\
& +D_{1} D_{2}\left(f_{u_{12}}-u_{t t} g_{u_{12}}\right)+D_{1} D_{3}\left(f_{u_{13}}-u_{t t} g_{u_{13}}\right) \\
& +D_{2}^{2}\left(f_{u_{22}}-u_{t t} g_{u_{22}}\right)+D_{2} D_{3}\left(f_{u_{23}}-u_{t t} g_{u_{23}}\right)+D_{3}^{2}\left(f_{u_{33}}-u_{t t} g_{u_{33}}\right)
\end{aligned}
$$

- Helmholtz conditions: equation (1) is an Euler-Lagrange equation for a variational problem iff its Fréchet derivative is self-adjoint, $D_{F}^{*}=D_{F}$.
- The adjoint Fréchet derivative operator has the form

$$
\begin{aligned}
& D_{F}^{*}=-D_{t}^{2} g+D_{t} D_{1}\left(f_{u_{t 1}}-u_{t t} g_{u_{t 1}}\right)+D_{t} D_{2}\left(f_{u_{t 2}}-u_{t t} g_{u_{t 2}}\right) \\
& +D_{t} D_{3}\left(f_{u_{t 3}}-u_{t t} g_{u_{t 3}}\right)+D_{1}^{2}\left(f_{u_{11}}-u_{t t} g_{u_{11}}\right) \\
& +D_{1} D_{2}\left(f_{u_{12}}-u_{t t} g_{u_{12}}\right)+D_{1} D_{3}\left(f_{u_{13}}-u_{t t} g_{u_{13}}\right) \\
& +D_{2}^{2}\left(f_{u_{22}}-u_{t t} g_{u_{22}}\right)+D_{2} D_{3}\left(f_{u_{23}}-u_{t t} g_{u_{23}}\right)+D_{3}^{2}\left(f_{u_{33}}-u_{t t} g_{u_{33}}\right)
\end{aligned}
$$

- Helmholtz conditions: equation (1) is an Euler-Lagrange equation for a variational problem iff its Fréchet derivative is self-adjoint, $D_{F}^{*}=D_{F}$.

$$
\begin{aligned}
& F=a_{1}\left\{u_{t t}\left(u_{11} u_{22}-u_{12}^{2}\right)-u_{t 1}\left(u_{t 1} u_{22}-u_{t 2} u_{12}\right)+u_{t 2}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)\right\} \\
& +a_{2}\left\{u_{t t}\left(u_{11} u_{33}-u_{13}^{2}\right)-u_{t 1}\left(u_{t 1} u_{33}-u_{t 3} u_{13}\right)+u_{t 3}\left(u_{t 1} u_{13}-u_{t 3} u_{11}\right)\right\} \\
& +a_{3}\left\{u_{t t}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{t 2}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+u_{t 3}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)\right\} \\
& +a_{4}\left\{u_{t t}\left(u_{11} u_{23}-u_{12} u_{13}\right)-u_{t 1}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+u_{t 3}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)\right\} \\
& +a_{5}\left\{u_{t t}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{t 1}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)+u_{t 2}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)\right\} \\
& +a_{6}\left\{u_{t t}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{t 1}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+u_{t 3}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)\right\} \\
& +b_{1}\left\{u_{t 1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{t 2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+u_{t 3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\} \\
& +b_{2}\left\{u_{t 1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{t 2}\left(u_{11} u_{33}-u_{13}^{2}\right)+u_{t 3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\} \\
& +b_{3}\left\{u_{t 1}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{t 2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{t 3}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\} \\
& +b_{4}\left\{u_{11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{12}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{13}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& +a_{7}\left(u_{t t} u_{11}-u_{t 1}^{2}\right)+a_{8}\left(u_{t t} u_{12}-u_{t 1} u_{t 2}\right)+a_{9}\left(u_{t t} u_{13}-u_{t 1} u_{t 3}\right) \\
& +a_{10}\left(u_{t t} u_{22}-u_{t 2}^{2}\right)+a_{11}\left(u_{t t} u_{23}-u_{t 2} u_{t 3}\right)+a_{12}\left(u_{t t} u_{33}-u_{t 3}^{2}\right)+a_{13} u_{t t} \\
& +c_{1}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)+c_{2}\left(u_{t 1} u_{13}-u_{t 3} u_{11}\right)+c_{3}\left(u_{t 1} u_{22}-u_{t 2} u_{12}\right) \\
& +c_{4}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+c_{5}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)+c_{6}\left(u_{t 1} u_{33}-u_{t 3} u_{13}\right) \\
& +c_{7}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)+c_{8^{\prime}}\left(u_{t 1} u_{23}-u_{t 3} u_{12}\right) \\
& +c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)+c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& +c_{12}\left(u_{11} u_{22}-u_{12}^{2}\right)+c_{13}\left(u_{11} u_{33}-u_{13}^{2}\right)+c_{14}\left(u_{22} u_{33}-u_{23}^{2}\right) \\
& +c_{15} u_{t 1}+c_{16} u_{t 2}+c_{17} u_{t 3}+c_{18} u_{11}+c_{19} u_{12}+c_{20} u_{13}+c_{21} u_{22}+c_{22} u_{23} \\
& +c_{23} u_{33}+c_{24}=0 \tag{3}
\end{align*}
$$

where the quadratic terms have the Monge-Ampère form.

The homotopy formula (see P. Olver's book) yields the Lagrangian for $F=f-u_{t t} g$ in (3)

$$
L[u]=\int_{0}^{1} u \cdot F[\lambda u] d \lambda=\int_{0}^{1} u \cdot f[\lambda u] d \lambda-\int_{0}^{1} u \cdot\left(\lambda u_{t t}\right) g[\lambda u] d \lambda
$$

with the result

$$
\begin{aligned}
L & =\frac{u}{4}\left\langle a_{1}\left\{u_{t t}\left(u_{11} u_{22}-u_{12}^{2}\right)-u_{t 1}\left(u_{t 1} u_{22}-u_{t 2} u_{12}\right)+u_{t 2}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)\right\}\right. \\
& +a_{2}\left\{u_{t t}\left(u_{11} u_{33}-u_{13}^{2}\right)-u_{t 1}\left(u_{t 1} u_{33}-u_{t 3} u_{13}\right)+u_{t 3}\left(u_{t 1} u_{13}-u_{t 3} u_{11}\right)\right\} \\
& +a_{3}\left\{u_{t t}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{t 2}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+u_{t 3}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)\right\} \\
& +a_{4}\left\{u_{t t}\left(u_{11} u_{23}-u_{12} u_{13}\right)-u_{t 1}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+u_{t 3}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)\right\} \\
& +a_{5}\left\{u_{t t}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{t 1}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)+u_{t 2}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)\right\} \\
& +a_{6}\left\{u_{t t}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{t 1}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+u_{t 3}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)\right\} \\
& +b_{1}\left\{u_{t 1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{t 2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+u_{t 3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\} \\
& +b_{2}\left\{u_{t 1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{t 2}\left(u_{11} u_{33}-u_{13}^{2}\right)+u_{t 3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\} \\
& +b_{3}\left\{u_{t 11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{t 2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{t 3}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\} \\
& \left.+b_{4}\left\{u_{11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{12}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{13}\left(u_{12} u_{23}-u_{13} u_{223}\right)\right\}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& +\frac{u}{3}\left\{a_{7}\left(u_{t t} u_{11}-u_{t 1}^{2}\right)+a_{8}\left(u_{t t} u_{12}-u_{t 1} u_{t 2}\right)+a_{9}\left(u_{t t} u_{13}-u_{t 1} u_{t 3}\right)\right. \\
& +a_{10}\left(u_{t t} u_{22}-u_{t 2}^{2}\right)+a_{11}\left(u_{t t} u_{23}-u_{t 2} u_{t 3}\right)+a_{12}\left(u_{t t} u_{33}-u_{t 3}^{2}\right) \\
& +c_{1}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)+c_{2}\left(u_{t 1} u_{13}-u_{t 3} u_{11}\right)+c_{3}\left(u_{t 1} u_{22}-u_{t 2} u_{12}\right) \\
& +c_{4}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+c_{5}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)+c_{6}\left(u_{t 1} u_{33}-u_{t 3} u_{13}\right) \\
& +c_{7}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)+c_{8^{\prime}}\left(u_{t 1} u_{23}-u_{t 3} u_{12}\right) \\
& +c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)+c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& \left.+c_{12}\left(u_{11} u_{22}-u_{12}^{2}\right)+c_{13}\left(u_{11} u_{33}-u_{13}^{2}\right)+c_{14}\left(u_{22} u_{33}-u_{23}^{2}\right)\right\} \\
& +\frac{u}{2}\left(a_{13} u_{t t}+c_{15} u_{t 1}+c_{16} u_{t 2}+c_{17} u_{t 3}+c_{18} u_{11}+c_{19} u_{12}+c_{20} u_{13}\right. \\
& \left.+c_{21} u_{22}+c_{22} u_{23}+c_{23} u_{33}\right)+c_{24} u . \tag{4}
\end{align*}
$$

Operators $L_{i j(k)}$ and some of their properties

Symmetry condition is the differential compatibility condition of (3) and the Lie equation $u_{\tau}=\varphi$, where φ is the symmetry characteristic and τ is the group parameter. It has the form of Fréchet derivative (linearization) of equation (3). For a more compact form, we introduce linear differential operators

$$
\begin{align*}
& L_{i j(k)}=u_{j k} D_{i}-u_{i k} D_{j}=-L_{j i(k)} \Longrightarrow L_{i j(k)}=0, \tag{5}\\
& L_{i j(k)}+L_{k i(j)}+L_{j k(i)}=0, \quad D_{l} L_{i j(k)}-D_{k} L_{i j(l)}=L_{i j(k)} D_{l}-L_{i j(l)} D_{k} \\
& L_{i j(l)} D_{k}+L_{j k(l)} D_{i}+L_{k i(l)} D_{j}=0 \tag{6}
\end{align*}
$$

where $i, j, k=1,2,3, t$. For example,

$$
L_{12(3)}=u_{23} D_{1}-u_{13} D_{2}, \quad L_{12(t)}=u_{2 t} D_{1}-u_{1 t} D_{2}
$$

Introduction
2nd-order Lagrangian equations of evolutionary Hirota type Symmetry condition in a skew-factorized form Symmetry condition, integrability and recursions

Two-component form
Hamiltonian representation Recursion operators in 2×2 matrix form Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

$$
\begin{aligned}
& \left\{a_{7}\left(L_{t 1(1)} D_{t}-L_{t 1(t)} D_{1}\right)+a_{8}\left(L_{t 1(2)} D_{t}-L_{t 1(t)} D_{2}\right)\right. \\
& +a_{9}\left(L_{t 1(3)} D_{t}-L_{t 1(t)} D_{3}\right)+a_{10}\left(L_{t 2(2)} D_{t}-L_{t 2(t)} D_{2}\right) \\
& +a_{11}\left(L_{t 2(3)} D_{t}-L_{t 2(t)} D_{3}\right)+a_{12}\left(L_{t 3(3)} D_{t}-L_{t 3(t)} D_{3}\right) \\
& +c_{1}\left(L_{12(1)} D_{t}-L_{12(t)} D_{1}\right)+c_{2}\left(L_{t 3(1)} D_{t}-L_{13(t)} D_{1}\right) \\
& +c_{3}\left(L_{12(2)} D_{t}-L_{12(t)} D_{2}\right)+c_{4}\left(L_{12(3)} D_{t}-L_{12(t)} D_{3}\right) \\
& +c_{5}\left(L_{23(2)} D_{t}-L_{23(t)} D_{2}\right)+c_{6}\left(L_{13(3)} D_{t}-L_{13(t)} D_{3}\right) \\
& +c_{7}\left(L_{23(3)} D_{t}-L_{23(t)} D_{3}\right)+c_{8}\left(L_{23(1)} D_{t}-L_{23(t)} D_{1}\right) \\
& +c_{8^{\prime}}\left(L_{13(2)} D_{t}-L_{13(t)} D_{2}\right)+c_{9}\left(L_{12(3)} D_{1}-L_{12(1)} D_{3}\right) \\
& +c_{10}\left(L_{23(2)} D_{1}-L_{23(1)} D_{2}\right)+c_{11}\left(L_{23(3)} D_{1}-L_{23(1)} D_{3}\right) \\
& +c_{12}\left(L_{12(2)} D_{1}-L_{12(1)} D_{2}\right)+c_{13}\left(L_{13(3)} D_{1}-L_{13(1)} D_{3}\right) \\
& \left.+c_{14}\left(L_{23(3)} D_{2}-L_{23(2)} D_{3}\right)\right\} \varphi=0
\end{aligned}
$$

in the particular case $b_{i}=0, a_{i}=0$ for $i=1, \ldots 6, a_{i j}=0$. We have also skipped the terms which do not involve $L_{i j(k)}$

$$
\begin{aligned}
& \left\{a_{13} D_{t}^{2}+c_{15} D_{t} D_{1}+c_{16} D_{t} D_{2}+c_{17} D_{t} D_{3}+c_{18} D_{1}^{2}\right. \\
& \left.+c_{19} D_{1} D_{2}+c_{20} D_{1} D_{3}+c_{21} D_{2}^{2}+c_{22} D_{2} D_{3}+c_{23} D_{3}^{2}\right\} \varphi=0 .
\end{aligned}
$$

Skew-factorized form of the symmetry condition

The linear operator of the symmetry condition for integrable equations of the form (3) should be converted to the "skew-factorized" form

$$
\begin{equation*}
\left(A_{1} B_{2}-A_{2} B_{1}\right) \varphi=0 \tag{8}
\end{equation*}
$$

where A_{i} and B_{i} are first order linear differential operators. These operators should satisfy the commutator relations

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=0, \quad\left[A_{1}, B_{2}\right]-\left[A_{2}, B_{1}\right]=0, \quad\left[B_{1}, B_{2}\right]=0 \tag{9}
\end{equation*}
$$

on solutions of the equation (3).

Skew-factorized form of the symmetry condition

It immediately follows that the following two operators also commute on solutions

$$
\begin{equation*}
X_{1}=\lambda A_{1}+B_{1}, \quad X_{2}=\lambda A_{2}+B_{2}, \quad\left[X_{1}, X_{2}\right]=0 \tag{10}
\end{equation*}
$$

and therefore constitute Lax representation for equation (3) with λ being a spectral parameter.
Symmetry condition in the form (8) not only provides the Lax pair for equation (3) but also leads directly to recursion relations for symmetries

$$
\begin{equation*}
A_{1} \tilde{\varphi}=B_{1} \varphi, \quad A_{2} \tilde{\varphi}=B_{2} \varphi \tag{11}
\end{equation*}
$$

where $\tilde{\varphi}$ is a symmetry if φ is also a symmetry and vice versa.

Indeed, equations (11) together with (9) imply
$\left(A_{1} B_{2}-A_{2} B_{1}\right) \varphi=\left[A_{1}, A_{2}\right] \tilde{\varphi}=0$, so φ is a symmetry
characteristic. Moreover, due to (11)
$\left(A_{1} B_{2}-A_{2} B_{1}\right) \tilde{\varphi}=\left(\left[A_{1}, B_{2}\right]-\left[A_{2}, B_{1}\right]+B_{2} A_{1}-B_{1} A_{2}\right) \tilde{\varphi}=\left[B_{2}, B_{1}\right] \varphi=0$
which shows that $\tilde{\varphi}$ satisfies the symmetry condition (8) and hence is also a symmetry. The equations (11) define an auto-Bäcklund transformation between the symmetry conditions written for φ and $\tilde{\varphi}$. Hence, the auto-Bäcklund transformation of the symmetry condition is a recursion operator.
We note that the skew-factorized form (8) and the properties (9) of the operators A_{i} and B_{i} remain invariant under the simultaneous interchange $A_{1} \leftrightarrow B_{1}$ and $A_{2} \leftrightarrow B_{2}$.

Our procedure extends A. Sergyeyev's method for constructing recursion operators. Namely, we start with the skew-factorized form of the symmetry condition and extract from it a "special" Lax pair instead of building it from a previously known Lax pair. After that we construct a recursion operator from this newly found Lax pair.

Second heavenly equation

All known heavenly equations, describing self-dual gravity, can be treated in a unified way according to this approach.
The second heavenly equation $u_{t t} u_{11}-u_{t 1}^{2}+u_{t 2}+u_{t 3}=0$ has the symmetry condition of the form

$$
\begin{equation*}
\left\{L_{t 1(1)} D_{t}-L_{t 1(t)} D_{1}+D_{2} D_{t}+D_{3} D_{1}\right\} \varphi=0 \tag{12}
\end{equation*}
$$

It has the skew-factorized form (8) with the operators $A_{1}=D_{t}$, $A_{2}=D_{1}, B_{1}=L_{t 1(t)}-D_{3}, B_{2}=L_{t 1(1)}+D_{2}$ satisfying conditions (9). According to (10) the Lax pair has the form $X_{1}=\lambda D_{t}+L_{t 1(t)}-D_{3}, X_{2}=\lambda D_{1}+L_{t 1(1)}+D_{2}$ and (11) yields the recursions for symmetries $D_{t} \tilde{\varphi}=\left(L_{t 1(t)}-D_{3}\right) \varphi$,
$D_{1} \tilde{\varphi}=\left(L_{t 1(1)}+D_{2}\right) \varphi$.

First heavenly equation

The first heavenly equation in the evolutionary form
$\left(u_{t t}-u_{11}\right) u_{23}-\left(u_{t 3}+u_{13}\right)\left(u_{t 2}-u_{12}\right)=1$ has the symmetry condition
$\left\{L_{t 2(t)} D_{3}-L_{t 2(3)} D_{t}+L_{23(1)} D_{t}-L_{23(t)} D_{1}+L_{12(3)} D_{1}-L_{12(1)} D_{3}\right\} \varphi=0$
with the skew-factorized form composed from the operators
$A_{1}=D_{t}-D_{1}, A_{2}=-D_{3}, B_{1}=L_{t 2(t)}-L_{12(1)}-L_{t 1(2)}$,
$B_{2}=L_{t 2(3)}+L_{\text {12(3) }}$ which satisfy conditions (9). The Lax pair
(10) reads $X_{1}=\lambda\left(D_{t}-D_{1}\right)+L_{t 2(t)}-L_{12(1)}-L_{t 1(2)}$,
$X_{2}=-\lambda D_{3}+L_{t 2(3)}+I_{12(3)}$ while the recursion relations (11)
become $\left(D_{t}-D_{1}\right) \tilde{\varphi}=\left(L_{t 2(t)}-L_{12(1)}-L_{t 1(2)}\right) \varphi$ and
$-D_{3} \tilde{\varphi}=\left(L_{t 2(3)}+L_{12(3)}\right) \varphi$.

Modified heavenly equation

The modified heavenly equation $u_{1 t} u_{2 t}-u_{t t} u_{12}+u_{13}=0$ has the symmetry condition $\left(L_{t 2(1)} D_{t}-L_{t 2(t)} D_{1}-D_{1} D_{3}\right) \varphi=0$. Its skew-factorized form is constructed from the operators $A_{1}=D_{t}$, $A_{2}=D_{1}, B_{1}=L_{t 2(t)}+D_{3}, B_{2}=L_{t 2(1)}$ obviously satisfying conditions (9). The Lax pair (10) is formed by $X_{1}=\lambda D_{t}+L_{t 2(t)}+D_{3}$ and $X_{2}=\lambda D_{1}+L_{t 2(1)}$. Recursions (11) have the form $D_{t} \tilde{\varphi}=\left(L_{t 2(t)}+D_{3}\right) \varphi, D_{1} \tilde{\varphi}=L_{t 2(1)} \varphi$.

Introduction
2nd-order Lagrangian equations of evolutionary Hirota type
Symmetry condition in a skew-factorized form
Symmetry condition, integrability and recursions
Two-component form
Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary

Husain equation

Husain equation in the evolutionary form
$u_{t t}+u_{11}+u_{t 2} u_{13}-u_{t 3} u_{12}=0$ has the symmetry condition
$\left(L_{23(1)} D_{t}-L_{23(t)} D_{1}+D_{t}^{2}+D_{1}^{2}\right) \varphi=0$. Its skew-factorized form is constituted by the operators $A_{1}=D_{t}, A_{2}=D_{1}$,
$B_{1}=L_{23(t)}-D_{1}, B_{2}=L_{23(1)}+D_{t}$ satisfying all conditions (9).
The Lax pair (10) becomes $X_{1}=\lambda D_{t}+L_{23(t)}-D_{1}$,
$X_{2}=\lambda D_{1}+L_{23(1)}+D_{t}$ while the recursions (11) read
$D_{t} \tilde{\varphi}=\left(L_{23(t)}-D_{1}\right) \varphi, D_{1} \tilde{\varphi}=\left(L_{23(1)}+D_{t}\right) \varphi$.

General heavenly equation

General heavenly equation in the evolutionary form
$(\beta+\gamma)\left(u_{t 2} u_{t 3}-u_{t t} u_{23}+u_{11} u_{23}-u_{12} u_{13}\right)+(\gamma-\beta)\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)=0$
has the symmetry condition

$$
\begin{align*}
& \left\{(\beta+\gamma)\left(L_{t 3(t)} D_{2}-L_{t 3(2)} D_{t}+L_{12(3)} D_{1}-L_{12(1)} D_{3}\right)\right. \\
& \left.+(\gamma-\beta)\left(L_{23(1)} D_{t}-L_{23(t)} D_{1}\right)\right\} \varphi=0 \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& A_{1}=\frac{1}{u_{23}} L_{t 2(3)}, \quad A_{2}=\frac{1}{u_{23}} L_{12(3)} \\
& B_{1}=\frac{1}{u_{23}}\left\{(\beta-\gamma) L_{t 3(2)}+(\beta+\gamma) L_{13(2)}\right\}, \quad B_{2}=\frac{\beta+\gamma}{u_{23}} L_{t 3(2)} .
\end{aligned}
$$

General heavenly equation (continued)

The Lax pair (10) becomes $X_{1}=\frac{\lambda}{u_{23}} L_{t 2(3)}+\frac{1}{u_{23}}\left\{(\beta-\gamma) L_{t 3(2)}+(\beta+\gamma) L_{13(2)}\right\}$,
$X_{2}=\frac{\lambda}{u_{23}} L_{12(3)}+\frac{\beta+\gamma}{u_{23}} L_{t 3(2)}$. Recursion relations (11) have the form

$$
\begin{align*}
& \frac{1}{u_{23}} L_{t 2(3)} \tilde{\varphi}=\frac{1}{u_{23}}\left\{(\beta-\gamma) L_{t 3(2)}+(\beta+\gamma) L_{13(2)}\right\} \varphi \\
& \frac{1}{u_{23}} L_{12(3)} \tilde{\varphi}=\frac{\beta+\gamma}{u_{23}} L_{t 3(2)} \varphi \tag{15}
\end{align*}
$$

Further properties of the operators $L_{i j(k)}$

$$
\begin{align*}
& L_{i j(k)} D_{l}-L_{i j(l)} D_{k}=L_{i j(k)} \frac{1}{u_{j k}} L_{l k(j)}+D_{j} \frac{1}{u_{j k}}\left(u_{j k} u_{i l}-u_{i k} u_{j l}\right) D_{k}(16) \\
& L_{i j(k)} D_{l}-L_{i j(l)} D_{k}=L_{l k(j)} \frac{1}{u_{j k}} L_{i j(k)}+D_{k} \frac{1}{u_{j k}}\left(u_{j k} u_{i l}-u_{j k} u_{j l}\right) D_{j(17)} \\
& L_{i j(k)} D_{l}-L_{i j(l)} D_{k}=L_{i j(l)} \frac{1}{u_{j l}} L_{l k(j)}+D_{j} \frac{1}{u_{j l}}\left(u_{j k} u_{i l}-u_{i k} u_{j l} D_{l}\right. \tag{18}\\
& L_{i j(k)} D_{l}-L_{i j(l)} D_{k}=L_{l i(j)} \frac{1}{u_{i j}} L_{k j(i)}-L_{k i(j)} \frac{1}{u_{i j}} L_{j(i)} \\
& +D_{i} \frac{1}{u_{i j}}\left(u_{j k} u_{i l}-u_{i k} u_{j l}\right) D_{j} . \tag{19}
\end{align*}
$$

Here the expression $\left(u_{j k} u_{i l}-u_{i k} u_{j l}\right)$ is precisely the group of terms in the equation (3) corresponding to the terms $\left(L_{i j(k)} D_{l}-L_{i j(l)} D_{k}\right) \varphi$ in the symmetry condition (7), so that the last terms in all these relations vanish on solutions of (3). Keeping different groups of terms in (3), we obtain skew-factorized forms of the symmetry condition (7) determined by the operators A_{i}, B_{i} listed below which satisfy all the conditions (9). Using (10) and (11) we immediately obtain the Lax pair and recursion relations, respectively.

First example

$$
\begin{align*}
& a_{11}\left(u_{t t} u_{23}-u_{t 2} u_{t 3}\right)+c_{4}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+c_{5}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right) \\
& +c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)+c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right) \\
& +c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)=0 \tag{20}
\end{align*}
$$

$$
\begin{aligned}
& A_{1}=\frac{1}{u_{23}} L_{t 2(3)}, \quad B_{1}=\frac{1}{u_{23}}\left\{\left(c_{4}-c_{8}\right) L_{t 3(2)}+c_{9} L_{13(2)}+c_{10} L_{23(2)}\right\} \\
& A_{2}=-\frac{1}{u_{23}} L_{12(3)}, \quad B_{2}=\frac{1}{u_{23}}\left(c_{5} L_{23(2)}+c_{8} L_{13(2)}+a_{11} L_{t 3(2)}\right) .(21)
\end{aligned}
$$

Second example

$$
\begin{align*}
& a_{11}\left(u_{t t} u_{23}-u_{t 2} u_{t 3}\right)+c_{4}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)+c_{7}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right) \\
& +c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)+c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right) \\
& +c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right)=0 \tag{22}
\end{align*}
$$

$$
\begin{align*}
& A_{1}=\frac{1}{u_{23}} L_{t 3(2)}, \quad B_{1}=\frac{1}{u_{23}}\left(c_{8} L_{t 2(3)}+c_{9} L_{12(3)}+c_{11} L_{23(3)}\right) \tag{23}\\
& A_{2}=-\frac{1}{u_{23}} L_{13(2)}, \quad B_{2}=\frac{1}{u_{23}}\left\{\left(c_{4}-c_{8}\right) L_{12(3)}+c_{7} L_{23(3)}+a_{11} L_{t 2(3)}\right\}
\end{align*}
$$

Third example

$$
\begin{align*}
& a_{8}\left(u_{t t} u_{12}-u_{t 1} u_{t 2}\right)+a_{10}\left(u_{t t} u_{22}-u_{t 2}^{2}\right)+a_{11}\left(u_{t t} u_{23}-u_{t 2} u_{t 3}\right) \\
& +c_{7}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)=0 \tag{24}
\end{align*}
$$

$$
\begin{array}{ll}
A_{1}=\frac{1}{u_{t 2}} L_{23(t)}, & B_{1}=\frac{1}{u_{t 2}}\left(a_{8} L_{t 1(2)}+a_{10} L_{t 2(2)}+a_{11} L_{t 3(2)}\right) \\
A_{2}=-\frac{1}{u_{t 2}} L_{t 2(t)}, \quad B_{2}=\frac{1}{u_{t 2}}\left(c_{7} L_{t 3(2)}+c_{8} L_{t 1(2)}\right) . \tag{25}
\end{array}
$$

Fourth example

$$
\begin{align*}
& a_{12}\left(u_{t t} u_{33}-u_{t 3}^{2}\right)+c_{5}\left(u_{t 2} u_{23}-u_{t 3} u_{22}\right)+c_{6}\left(u_{t 1} u_{33}-u_{t 3} u_{13}\right) \\
& +c_{7}\left(u_{t 2} u_{33}-u_{t 3} u_{23}\right)+c_{8}\left(u_{t 2} u_{13}-u_{t 3} u_{12}\right)=0 \tag{26}
\end{align*}
$$

$$
\begin{align*}
& A_{1}=\frac{1}{u_{t 3}} L_{t 3(3)}, \quad B_{1}=-\frac{1}{u_{t 3}} L_{23(t)}, \quad A_{2}=\frac{1}{u_{t 3}}\left(c_{5} L_{t 2(3)}+c_{8} L_{t 1(3)}\right) \\
& B_{2}=\frac{1}{u_{t 3}}\left(a_{12} L_{t 3(t)}+c_{6} L_{13(t)}+c_{7} L_{23(t)}\right) \tag{27}
\end{align*}
$$

Fifth example

$$
\begin{align*}
& a_{7}\left(u_{t t} u_{11}-u_{t 1}^{2}\right)+a_{8}\left(u_{t t} u_{12}-u_{t 1} u_{t 2}\right)+a_{9}\left(u_{t t} u_{13}-u_{t 1} u_{t 3}\right) \\
& +c_{1}\left(u_{t 1} u_{12}-u_{t 2} u_{11}\right)+c_{3}\left(u_{t 1} u_{22}-u_{t 2} u_{12}\right) \\
& +c_{4}\left(u_{t 1} u_{23}-u_{t 2} u_{13}\right)=0 \tag{28}
\end{align*}
$$

$$
\begin{aligned}
& A_{1}=\frac{1}{u_{t 1}} L_{t 1(t)}, \quad B_{1}=\frac{1}{u_{t 1}}\left(c_{1} L_{t 1(1)}+c_{3} L_{t 2(1)}+c_{4} L_{t 3(1)}\right) \\
& A_{2}=-\frac{1}{u_{t 1}} L_{12(t)}, \quad B_{2}=\frac{1}{u_{t 1}}\left(a_{7} L_{t 1(1)}+a_{8} L_{t 2(1)}+a_{9} L_{t 3(1)}\right)
\end{aligned}
$$

Some of the equations listed above are not independent since they are related by a permutation of indices. For example, our second equation (22) and the corresponding operators A_{i}, B_{i} in (23), determining the Lax pair and recursion relations, can be obtained from the first equation (20) and its operators (21) by the transposition of indices $2 \leftrightarrow 3$ and the permutation of the coefficients $c_{5} \leftrightarrow-c_{7}, c_{8} \leftrightarrow-c_{8}$ and $c_{10} \leftrightarrow-c_{11}$. We can obtain skew-factorized forms of symmetry conditions for many more equations of the type (3) by using permutations of indices 1, 2, 3, t with an appropriate permutation of coefficients which leave the equation (3) invariant. Such permutations will however do change the skew factorized forms of the symmetry conditions.

To see that conditions (9) are satisfied for any operators arising from the skew-factorized form of the symmetry condition (7), we note that this form should follow from a linear combination of such pairs of terms in the symmetry condition (7)

$$
\begin{equation*}
p\left(L_{i j(k)} D_{l}-L_{i j(l)} D_{k}\right)+q\left(L_{m j(k)} D_{n}-L_{m j(n)} D_{k}\right) \tag{30}
\end{equation*}
$$

with constant p, q, which are simultaneously factorized on solutions of the corresponding equations according the formula (16)

$$
\begin{aligned}
& L_{i j(k)} D_{l}-L_{i j(l)} D_{k}=L_{i j(k)} \frac{1}{u_{j k}} L_{I k(j)}+D_{j} \frac{1}{u_{j k}}\left(u_{j k} u_{i l}-u_{i k} u_{j l}\right) D_{k} \\
& L_{m j(k)} D_{n}-L_{m j(n)} D_{k}=L_{m j(k)} \frac{1}{u_{j k}} L_{n k(j)}+D_{j} \frac{1}{u_{j k}}\left(u_{j k} u_{m n}-u_{m k} u_{j n}\right) D_{k}
\end{aligned}
$$

Here the factors $D_{j}\left(1 / u_{j k}\right)\left(E_{p, q}\right) D_{k}$ are the same in both formulas with the exception of factors E_{p}, E_{q}, where

$$
\begin{equation*}
E_{p}=u_{j k} u_{i l}-u_{i k} u_{j l}, \quad E_{q}=u_{j k} u_{m n}-u_{m k} u_{j n} \tag{32}
\end{equation*}
$$

constitute the parts of the equation $E_{p q}=p E_{p}+q E_{q}=0$ which implies the symmetry condition (30).

Then on solutions of the equation $E_{p q}=0$ we have

$$
\begin{align*}
& p\left(L_{i j(k)} D_{l}-L_{i j(l)} D_{k}\right)+q\left(L_{m j(k)} D_{n}-L_{m j(n)} D_{k}\right) \\
& =p L_{i j(k)} \frac{1}{u_{j k}} L_{l k(j)}+q L_{m j(k)} \frac{1}{u_{j k}} L_{n k(j)} \tag{33}
\end{align*}
$$

$$
A_{1}=\frac{1}{u_{j k}} L_{i j(k)}, \quad B_{2}=\frac{1}{u_{j k}} L_{l k(j)}, \quad A_{2}=-\frac{1}{u_{j k}} L_{m j(k)}, \quad B_{1}=\frac{1}{u_{j k}} L_{n k(j)} .
$$

We have $\left[A_{1}, A_{2}\right]=0,\left[B_{1}, B_{2}\right]=0$ and $\left[A_{1}, B_{2}\right]-\left[A_{2}, B_{1}\right]=0$ holds on solutions of $E_{p q}=0$ due to the identity

$$
\left[A_{1}, B_{2}\right]-\left[A_{2}, B_{1}\right]=\frac{1}{u_{j k}}\left\{D_{k}\left(\frac{E_{p q}}{u_{j k}}\right) D_{j}-D_{j}\left(\frac{E_{p q}}{u_{j k}}\right) D_{k}\right\} .
$$

More general skew-factorized forms of the symmetry condition arise as suitable linear combinations of the equations (33).

$$
\begin{aligned}
& u_{t}=v, \\
& v_{t}=\frac{1}{\Delta}\left\langle a_{1}\left(v_{1}^{2} u_{22}+v_{2}^{2} u_{11}-2 v_{1} v_{2} u_{12}\right)+a_{2}\left(v_{1}^{2} u_{33}+v_{3}^{2} u_{11}-2 v_{1} v_{3} u_{13}\right)\right. \\
& +a_{3}\left(v_{2}^{2} u_{33}+v_{3}^{2} u_{22}-2 v_{2} v_{3} u_{23}\right)+a_{4}\left\{v_{1}\left(v_{1} u_{23}-v_{2} u_{13}\right)\right. \\
& \left.-v_{3}\left(v_{1} u_{12}-v_{2} u_{11}\right)\right\}+a_{5}\left\{v_{1}\left(v_{2} u_{23}-v_{3} u_{22}\right)-v_{2}\left(v_{2} u_{13}-v_{3} u_{12}\right)\right\} \\
& +a_{6}\left\{v_{2}\left(v_{1} u_{33}-v_{3} u_{13}\right)-v_{3}\left(v_{1} u_{23}-v_{3} u_{12}\right)\right\} \\
& +a_{7} v_{1}^{2}+a_{8} v_{1} v_{2}+a_{9} v_{1} v_{3}+a_{10} v_{2}^{2}+a_{11} v_{2} v_{3}+a_{12} v_{3}^{2} \\
& -b_{1}\left\{v_{1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-v_{2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+v_{3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\} \\
& -b_{2}\left\{v_{1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-v_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+v_{3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\} \\
& -b_{3}\left\{v_{1}\left(u_{22} u_{33}-u_{23}^{2}\right)-v_{2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+v_{3}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\} \\
& -b_{4}\left\{u_{11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{12}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{13}\left(u_{12} u_{23}-u_{13} u_{32}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -c_{1}\left(v_{1} u_{12}-v_{2} u_{11}\right)-c_{2}\left(v_{1} u_{13}-v_{3} u_{11}\right)-c_{3}\left(v_{1} u_{22}-v_{2} u_{12}\right) \\
& -c_{4}\left(v_{1} u_{23}-v_{2} u_{13}\right)-c_{5}\left(v_{2} u_{23}-v_{3} u_{22}\right)-c_{6}\left(v_{1} u_{33}-v_{3} u_{13}\right) \\
& -c_{7}\left(v_{2} u_{33}-v_{3} u_{23}\right)-c_{8}\left(v_{2} u_{13}-v_{3} u_{12}\right)-c_{8^{\prime}}\left(v_{1} u_{23}-v_{3} u_{12}\right) \\
& -c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)-c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)-c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& -c_{12}\left(u_{11} u_{22}-u_{12}^{2}\right)-c_{13}\left(u_{11} u_{33}-u_{13}^{2}\right)-c_{14}\left(u_{22} u_{33}-u_{23}^{2}\right) \\
& -c_{15} v_{1}-c_{16} v_{2}-c_{17} v_{3}-c_{18} u_{11}-c_{19} u_{12}-c_{20} u_{13} \\
& \left.-c_{21} u_{22}-c_{22} u_{23}-c_{23} u_{33}-c_{24}\right\rangle
\end{aligned}
$$

$$
\begin{equation*}
\equiv \frac{1}{\Delta}\left(\sum_{i=1}^{12} a_{i} q^{(a i)}+\sum_{i=1}^{4} b_{i} q^{(b i)}+\sum_{i=1}^{24 \prime} c_{i} q^{(i)}\right) \equiv \frac{q}{\Delta} \tag{34}
\end{equation*}
$$

$\Delta=a_{1}\left(u_{11} u_{22}-u_{12}^{2}\right)+a_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+a_{3}\left(u_{22} u_{33}-u_{23}^{2}\right)$
$+a_{4}\left(u_{11} u_{23}-u_{12} u_{13}\right)+a_{5}\left(u_{12} u_{23}-u_{13} u_{22}\right)+a_{6}\left(u_{12} u_{33}-u_{13} u_{23}\right)$
$+a_{7} u_{11}+a_{8} u_{12}+a_{9} u_{13}+a_{10} u_{22}+a_{11} u_{23}+a_{12} u_{33}+a_{13}$.

$$
L=\left(u_{t} v-\frac{1}{2} v^{2}\right)\left\{a_{1}\left(u_{11} u_{22}-u_{12}^{2}\right)+a_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+a_{3}\left(u_{22} u_{33}-u_{23}^{2}\right)\right.
$$

$$
+a_{4}\left(u_{11} u_{23}-u_{12} u_{13}\right)+a_{5}\left(u_{12} u_{23}-u_{13} u_{22}\right)+a_{6}\left(u_{12} u_{33}-u_{13} u_{23}\right)
$$

$$
\left.+a_{7} u_{11}+a_{8} u_{12}+a_{9} u_{13}+a_{10} u_{22}+a_{11} u_{23}+a_{12} u_{33}+a_{13}\right\}
$$

$$
+\frac{u_{t}}{4}\left\langle b_{1}\left\{u_{1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+u_{3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\}\right.
$$

$$
+b_{2}\left\{u_{1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+u_{3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\}
$$

$$
\left.+b_{3}\left\{u_{1}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{3}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\}\right\rangle
$$

$$
-b_{4} \frac{u}{4}\left\{u_{11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{12}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{13}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\}
$$

$$
\begin{aligned}
& +\frac{u_{t}}{3}\left\{c_{1}\left(u_{1} u_{12}-u_{2} u_{11}\right)+c_{2}\left(u_{1} u_{13}-u_{3} u_{11}\right)+c_{3}\left(u_{1} u_{22}-u_{2} u_{12}\right)\right. \\
& +c_{4}\left(u_{1} u_{23}-u_{2} u_{13}\right)+c_{5}\left(u_{2} u_{23}-u_{3} u_{22}\right)+c_{6}\left(u_{1} u_{33}-u_{3} u_{13}\right) \\
& \left.+c_{7}\left(u_{2} u_{33}-u_{3} u_{23}\right)+c_{8}\left(u_{2} u_{13}-u_{3} u_{12}\right)+c_{8^{\prime}}\left(u_{1} u_{23}-u_{3} u_{12}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
-\frac{u}{3}\{ & c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)+c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& \left.+c_{12}\left(u_{11} u_{22}-u_{12}^{2}\right)+c_{13}\left(u_{11} u_{33}-u_{13}^{2}\right)+c_{14}\left(u_{22} u_{33}-u_{23}^{2}\right)\right\} \\
& +\frac{u_{t}}{2}\left(c_{15} u_{1}+c_{16} u_{2}+c_{17} u_{3}\right) \\
& -\frac{u}{2}\left(c_{18} u_{11}+c_{19} u_{12}+c_{20} u_{13}+c_{21} u_{22}+c_{22} u_{23}+c_{23} u_{33}\right)-c_{24} u
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{u}=\frac{\partial L}{\partial u_{t}}=v\left\{a_{1}\left(u_{11} u_{22}-u_{12}^{2}\right)+a_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+a_{3}\left(u_{22} u_{33}-u_{23}^{2}\right)\right. \\
& +a_{4}\left(u_{11} u_{23}-u_{12} u_{13}\right)+a_{5}\left(u_{12} u_{23}-u_{13} u_{22}\right)+a_{6}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& \left.+a_{1} u_{11}+a_{8} u_{12}+a_{9} u_{13}+a_{10} u_{22}+a_{11} u_{23}+a_{12} u_{33}+a_{13}\right\} \\
& +\frac{1}{4}\left\langle b_{1}\left\{u_{1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+u_{3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\}\right. \\
& +b_{2}\left\{u_{1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+u_{3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\} \\
& \left.+b_{3}\left\{u_{1}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{3}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{3}\left\{c_{1}\left(u_{1} u_{12}-u_{2} u_{11}\right)+c_{2}\left(u_{1} u_{13}-u_{3} u_{11}\right)+c_{3}\left(u_{1} u_{22}-u_{2} u_{12}\right)\right. \\
& +c_{4}\left(u_{1} u_{23}-u_{2} u_{13}\right)+c_{5}\left(u_{2} u_{23}-u_{3} u_{22}\right)+c_{6}\left(u_{1} u_{33}-u_{3} u_{13}\right) \\
& \left.+c_{7}\left(u_{2} u_{33}-u_{3} u_{23}\right)+c_{8}\left(u_{2} u_{13}-u_{3} u_{12}\right)+c_{8^{\prime}}\left(u_{1} u_{23}-u_{3} u_{12}\right)\right\} \\
& +\frac{1}{2}\left(c_{15} u_{1}+c_{16} u_{2}+c_{17} u_{3}\right), \quad \pi_{v}=\frac{\partial L}{\partial v_{t}}=0 \tag{37}
\end{align*}
$$

The canonical momenta satisfy canonical Poisson brackets $\left[u^{i}(z), \pi^{k}\left(z^{\prime}\right)\right]=\delta^{i k} \delta\left(z-z^{\prime}\right)$, where $u^{1}=u, u^{2}=v, \pi^{1}=\pi_{u}$, $\pi^{2}=\pi_{v}$ and $z=\left(z_{1}, z_{2}, z_{3}\right)$. The Lagrangian (36) is degenerate because the momenta cannot be inverted for the velocities. We impose (37) as constraints $\Phi_{u}=0, \Phi_{v}=0$ where

$$
\begin{aligned}
& \Phi_{u}=\pi_{u}-v\left\{a_{1}\left(u_{11} u_{22}-u_{12}^{2}\right)+a_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+a_{3}\left(u_{22} u_{33}-u_{23}^{2}\right)\right. \\
& +a_{4}\left(u_{11} u_{23}-u_{12} u_{13}\right)+a_{5}\left(u_{12} u_{23}-u_{13} u_{22}\right)+a_{6}\left(u_{12} u_{33}-u_{13} u_{23}\right) \\
& \left.+a_{7} u_{11}+a_{8} u_{12}+a_{9} u_{13}+a_{10} u_{22}+a_{11} u_{23}+a_{12} u_{33}+a_{13}\right\}
\end{aligned}
$$

$$
-\frac{1}{4}\left\langle b_{1}\left\{u_{1}\left(u_{12} u_{23}-u_{13} u_{22}\right)-u_{2}\left(u_{11} u_{23}-u_{12} u_{13}\right)+u_{3}\left(u_{11} u_{22}-u_{12}^{2}\right)\right\}\right.
$$

$$
+b_{2}\left\{u_{1}\left(u_{12} u_{33}-u_{13} u_{23}\right)-u_{2}\left(u_{11} u_{33}-u_{13}^{2}\right)+u_{3}\left(u_{11} u_{23}-u_{12} u_{13}\right)\right\}
$$

$$
+b_{3}\left\{u_{1}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{2}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{3}\left(u_{12} u_{23}-u_{13} u_{22}\right)_{46}\right\rangle_{95}
$$

$$
\begin{align*}
& -\frac{1}{3}\left\{c_{1}\left(u_{1} u_{12}-u_{2} u_{11}\right)+c_{2}\left(u_{1} u_{13}-u_{3} u_{11}\right)+c_{3}\left(u_{1} u_{22}-u_{2} u_{12}\right)\right. \\
& +c_{4}\left(u_{1} u_{23}-u_{2} u_{13}\right)+c_{5}\left(u_{2} u_{23}-u_{3} u_{22}\right)+c_{6}\left(u_{1} u_{33}-u_{3} u_{13}\right) \\
& \left.+c_{7}\left(u_{2} u_{33}-u_{3} u_{23}\right)+c_{8}\left(u_{2} u_{13}-u_{3} u_{12}\right)+c_{8^{\prime}}\left(u_{1} u_{23}-u_{3} u_{12}\right)\right\} \\
& -\frac{1}{2}\left(c_{15} u_{1}+c_{16} u_{2}+c_{17} u_{3}\right) \tag{38}\\
& \Phi_{v}=\pi_{v} \tag{39}
\end{align*}
$$

and calculate Poisson brackets for the constraints

$$
\begin{array}{ll}
K_{11}=\left[\Phi_{u}(z), \Phi_{u^{\prime}}\left(z^{\prime}\right)\right], & K_{12}=\left[\Phi_{u}(z), \Phi_{v^{\prime}}\left(z^{\prime}\right)\right] \\
K_{21}=\left[\Phi_{v}(z), \Phi_{u^{\prime}}\left(z^{\prime}\right)\right], & K_{22}=\left[\Phi_{v}(z), \Phi_{v^{\prime}}\left(z^{\prime}\right)\right] \tag{40}
\end{array}
$$

following the Dirac's theory of constraints.

We obtain the following matrix of Poisson brackets

$$
\begin{align*}
& K=\left(\begin{array}{cc}
K_{11} & K_{12} \\
-K_{12} & 0
\end{array}\right) \tag{41}\\
& K_{11}=\sum_{i=1}^{13} a_{i} K_{11}^{(a i)}+\sum_{i=1}^{3} b_{i} K_{11}^{(b i)}+\sum_{i=1}^{8^{\prime}} c_{i} K_{11}^{(i)}-\sum_{i=1}^{3} c_{i+14} D_{i}, \\
& K_{12}=\sum_{i=1}^{13} a_{i} K_{12}^{(i)} \tag{42}
\end{align*}
$$

with the following definitions

$$
\begin{aligned}
& K_{11}^{(a 1)}=2\left(v_{1} u_{22}-v_{2} u_{12}\right) D_{1}+2\left(v_{2} u_{11}-v_{1} u_{12}\right) D_{2}+v_{11} u_{22}+v_{22} u_{11} \\
& -2 v_{12} u_{12}, \quad K_{12}^{(1)}=-\left(u_{11} u_{22}-u_{12}^{2}\right), \quad K_{11}^{(a 2)}=2\left(v_{1} u_{33}-v_{3} u_{13}\right) D_{1} \\
& +2\left(v_{3} u_{11}-v_{1} u_{13}\right) D_{3}+v_{11} u_{33}+v_{33} u_{11}-2 v_{13} u_{13}, \\
& \quad K_{12}^{(2)}=-\left(u_{11} u_{33}-u_{13}^{2}\right), \quad K_{11}^{(a 3)}=2\left(v_{2} u_{33}-v_{3} u_{23}\right) D_{2} \\
& +2\left(v_{3} u_{22}-v_{2} u_{23}\right) D_{3}+v_{22} u_{33}+v_{33} u_{22}-2 v_{23} u_{23}, \\
& K_{12}^{(3)}=-\left(u_{22} u_{33}-u_{23}^{2}\right), \\
& K_{11}^{(a 4)}=\left(2 v_{1} u_{23}-v_{2} u_{13}-v_{3} u_{12}\right) D_{1}+\left(v_{3} u_{11}-v_{1} u_{13}\right) D_{2} \\
& +\left(v_{2} u_{11}-v_{1} u_{12}\right) D_{3}+v_{11} u_{23}+v_{23} u_{11}-v_{12} u_{13}-v_{13} u_{12} \\
& K_{12}^{(4)}=-\left(u_{11} u_{23}-u_{12} u_{13}\right)
\end{aligned}
$$

Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation Further new bi-Hamiltonian systems

Summary
$K_{11}^{(a 5)}=\left(v_{2} u_{23}-v_{3} u_{22}\right) D_{1}+\left(v_{1} u_{23}-2 v_{2} u_{13}+v_{3} u_{12}\right) D_{2}$ $+\left(v_{2} u_{12}-v_{1} u_{22}\right) D_{3}+v_{12} u_{23}+v_{23} u_{12}-v_{13} u_{22}-v_{22} u_{13}$
$K_{12}^{(5)}=-\left(u_{12} u_{23}-u_{13} u_{22}\right), \quad K_{12}^{(6)}=-\left(u_{12} u_{33}-u_{13} u_{23}\right)$
$K_{11}^{(a 6)}=\left(v_{2} u_{33}-v_{3} u_{23}\right) D_{1}+\left(v_{1} u_{33}-v_{3} u_{13}\right) D_{2}$
$+\left(2 v_{3} u_{12}-v_{1} u_{23}-v_{2} u_{13}\right) D_{3}+v_{12} u_{33}+v_{33} u_{12}-v_{13} u_{23}-v_{23} u_{13}$
$K_{11}^{(a 7)}=2 v_{1} D_{1}+v_{11}, K_{12}^{(7)}=-u_{11}, \quad K_{11}^{(a 8)}=v_{2} D_{1}+v_{1} D_{2}+v_{12}$
$K_{12}^{(8)}=-u_{12}, \quad K_{11}^{(a 9)}=v_{3} D_{1}+v_{1} D_{3}+v_{13}, K_{12}^{(9)}=-u_{13}$
$K_{11}^{(a 10)}=2 v_{2} D_{2}+v_{22}, K_{12}^{(10)}=-u_{22}, \quad K_{11}^{(a 11)}=v_{3} D_{2}+v_{2} D_{3}+v_{23}$
$K_{12}^{(11)}=-u_{23}, \quad K_{11}^{(a 12)}=2 v_{3} D_{3}+v_{33}, K_{12}^{(12)}=-u_{33}, \quad K_{11}^{(a 13)}=0$
$K_{12}^{(13)}=-1$.
$K_{11}^{(b 1)}=\left(u_{13} u_{22}-u_{12} u_{23}\right) D_{1}+\left(u_{11} u_{23}-u_{12} u_{13}\right) D_{2}-\left(u_{11} u_{22}-u_{12}^{2}\right) D_{3}$
$K_{11}^{(b 2)}=\left(u_{13} u_{23}-u_{12} u_{33}\right) D_{1}+\left(u_{11} u_{33}-u_{13}^{2}\right) D_{2}-\left(u_{11} u_{23}-u_{12} u_{13}\right) D_{3}$
$K_{11}^{(b 3)}=-\left(u_{22} u_{33}-u_{23}^{2}\right) D_{1}+\left(u_{12} u_{33}-u_{13} u_{23}\right) D_{2}-\left(u_{12} u_{23}-u_{13} u_{22}\right) D_{3}$
$K_{11}^{(1)}=u_{11} D_{2}-u_{12} D_{1}, K_{11}^{(2)}=u_{11} D_{3}-u_{13} D_{1}, K_{11}^{(3)}=u_{12} D_{2}-u_{22} D_{1}$
$K_{11}^{(4)}=u_{13} D_{2}-u_{23} D_{1}, K_{11}^{(5)}=u_{22} D_{3}-u_{23} D_{2}, K_{11}^{(6)}=u_{13} D_{3}-u_{33} D_{1}$
$K_{11}^{(7)}=u_{23} D_{3}-u_{33} D_{2}, K_{11}^{(8)}=u_{12} D_{3}-u_{13} D_{2}, K_{11}^{\left(8^{\prime}\right)}=u_{12} D_{3}-u_{23} D_{1}$
$K_{11}^{(15)}=-D_{1}, K_{11}^{(16)}=-D_{2}, K_{11}^{(17)}=-D_{3}$
The components of K_{11} can be presented in a manifestly skew symmetric form, so that K is skew symmetric.

$$
J_{0}=K^{-1}=\left(\begin{array}{cc}
0 & -K_{12}^{-1} \tag{45}\\
K_{12}^{-1} & K_{12}^{-1} K_{11} K_{12}^{-1}
\end{array}\right) .
$$

Operator J_{0} is Hamiltonian if and only if its inverse K is symplectic: the volume integral of $\omega=(1 / 2) d u^{i} \wedge K_{i j} d u^{j}$ should be a symplectic form, i.e. $d \omega=0$ modulo total divergence.
Here $u^{1}=u, u^{2}=v$, so that

$$
\begin{align*}
& \omega=\sum_{i=1}^{13} a_{i} \omega_{i}^{a}+\sum_{i=1}^{3} b_{i} \omega_{i}^{b}+\sum_{i=1}^{8^{\prime}} c_{i} \omega_{i}+\sum_{i=1}^{3} c_{i+14} \omega_{i+14} \\
& \omega_{i}^{a}=\frac{1}{2} d u \wedge K_{11}^{(a i)} d u+d u \wedge K_{12}^{(i)} d v, \quad \omega_{i}^{b}=\frac{1}{2} d u \wedge K_{11}^{(b i)} d u \\
& \omega_{i}=\frac{1}{2} d u \wedge K_{11}^{(i)} d u, \quad K_{12}^{(b i)}=0, \quad K_{12}^{(i)}=0 \tag{46}
\end{align*}
$$

Using (43) and (44) for $K_{11}^{(a i)}, K_{11}^{(b i)}, K_{11}^{(i)}$ and $K_{12}^{(i)}$ in (46), we get

$$
\omega_{1}^{a}=\left(v_{1} u_{22}-v_{2} u_{12}\right) d u \wedge d u_{1}+\left(v_{2} u_{11}-v_{1} u_{12}\right) d u \wedge d u_{2}
$$

$$
-\left(u_{11} u_{22}-u_{12}^{2}\right) d u \wedge d v
$$

$$
\omega_{2}^{a}=\left(v_{1} u_{33}-v_{3} u_{13}\right) d u \wedge d u_{1}+\left(v_{3} u_{11}-v_{1} u_{13}\right) d u \wedge d u_{3}
$$

$$
-\left(u_{11} u_{33}-u_{13}^{2}\right) d u \wedge d v
$$

$$
\omega_{3}^{a}=\left(v_{2} u_{33}-v_{3} u_{23}\right) d u \wedge d u_{2}+\left(v_{3} u_{22}-v_{2} u_{23}\right) d u \wedge d u_{3}
$$

$$
-\left(u_{22} u_{33}-u_{23}^{2}\right) d u \wedge d v
$$

$$
\omega_{4}^{a}=\frac{1}{2}\left\{\left(2 v_{1} u_{23}-v_{2} u_{13}-v_{3} u_{12}\right) d u \wedge d u_{1}+\left(v_{3} u_{11}-v_{1} u_{13}\right) d u \wedge d u_{2}\right.
$$

$$
\left.+\left(v_{2} u_{11}-v_{1} u_{12}\right) d u \wedge d u_{3}\right\}-\left(u_{11} u_{23}-u_{12} u_{13}\right) d u \wedge d v
$$

$$
\begin{aligned}
& \omega_{5}^{a}=\frac{1}{2}\left\{\left(-2 v_{2} u_{13}+v_{1} u_{23}+v_{3} u_{12}\right) d u \wedge d u_{2}+\left(v_{2} u_{12}-v_{1} u_{22}\right) d u \wedge d u_{3}\right. \\
& \left.+\left(v_{2} u_{23}-v_{3} u_{22}\right) d u \wedge d u_{1}\right\}-\left(u_{12} u_{23}-u_{13} u_{22}\right) d u \wedge d v \\
& \omega_{6}^{a}=\frac{1}{2}\left\{\left(2 v_{3} u_{12}-v_{1} u_{23}-v_{2} u_{13}\right) d u \wedge d u_{3}+\left(v_{1} u_{33}-v_{3} u_{13}\right) d u \wedge d u_{2}\right. \\
& \left.+\left(v_{2} u_{33}-v_{3} u_{23}\right) d u \wedge d u_{1}\right\}-\left(u_{12} u_{33}-u_{13} u_{23}\right) d u \wedge d v \\
& \omega_{7}^{a}=v_{1} d u \wedge d u_{1}-u_{11} d u \wedge d v, \quad \omega_{8}^{a}=\frac{1}{2}\left(v_{1} d u \wedge d u_{2}+v_{2} d u \wedge d u_{1}\right)
\end{aligned}
$$

$-u_{12} d u \wedge d v, \quad \omega_{9}^{a}=\frac{1}{2}\left(v_{1} d u \wedge d u_{3}+v_{3} d u \wedge d u_{1}\right)-u_{13} d u \wedge d v$
$\omega_{10}^{a}=v_{2} d u \wedge d u_{2}-u_{22} d u \wedge d v, \quad \omega_{11}^{a}=\frac{1}{2}\left(v_{3} d u \wedge d u_{2}+v_{2} d u \wedge d u_{3}\right)$
$-u_{23} d u \wedge d v, \quad \omega_{12}^{a}=v_{3} d u \wedge d u_{3}-u_{33} d u \wedge d v, \quad \omega_{13}^{a}=d u \wedge d v$.

$$
\omega_{1}^{b}=\frac{1}{2}\left\{\left(u_{13} u_{22}-u_{12} u_{23}\right) d u \wedge d u_{1}+\left(u_{11} u_{23}-u_{12} u_{13}\right) d u \wedge d u_{2}\right.
$$

$$
\left.-\left(u_{11} u_{22}-u_{12}^{2}\right) d u \wedge d u_{3}\right\}, \quad \omega_{2}^{b}=\frac{1}{2}\left\{\left(u_{13} u_{23}-u_{12} u_{33}\right) d u \wedge d u_{1}\right.
$$

$$
\left.+\left(u_{11} u_{33}-u_{13}^{2}\right) d u \wedge d u_{2}-\left(u_{11} u_{23}-u_{12} u_{13}\right) d u \wedge d u_{3}\right\}
$$

$$
\omega_{3}^{b}=\frac{1}{2}\left\{\left(u_{23}^{2}-u_{22} u_{33}\right) d u \wedge d u_{1}+\left(u_{12} u_{33}-u_{13} u_{23}\right) d u \wedge d u_{2}\right.
$$

$$
\left.-\left(u_{12} u_{23}-u_{13} u_{22}\right) d u \wedge d u_{3}\right\}, \quad \omega_{1}=\frac{1}{2}\left(u_{11} d u \wedge d u_{2}-u_{12} d u \wedge d u_{1}\right)
$$

$\omega_{2}=\frac{1}{2}\left(u_{11} d u \wedge d u_{3}-u_{13} d u \wedge d u_{1}\right), \omega_{3}=\frac{1}{2}\left(u_{12} d u \wedge d u_{2}-u_{22} d u \wedge d u_{1}\right)$
$\omega_{4}=\frac{1}{2}\left(u_{13} d u \wedge d u_{2}-u_{23} d u \wedge d u_{1}\right), \omega_{5}=\frac{1}{2}\left(u_{22} d u \wedge d u_{3}-u_{23} d u \wedge d u_{2}\right)$
$\omega_{6}=\frac{1}{2}\left(u_{13} d u \wedge d u_{3}-u_{33} d u \wedge d u_{1}\right), \omega_{7}=\frac{1}{2}\left(u_{23} d u \wedge d u_{3}-u_{33} d u \wedge d u_{2}\right)$
$\omega_{8}=\frac{1}{2}\left(u_{12} d u \wedge d u_{3}-u_{13} d u \wedge d u_{2}\right), \omega_{8^{\prime}}=\frac{1}{2}\left(u_{12} d u \wedge d u_{3}-u_{23} d u \wedge d u_{1}\right)$
$\omega_{15}=-\frac{1}{2} d u \wedge d u_{1}, \quad \omega_{16}=-\frac{1}{2} d u \wedge d u_{2}, \quad \omega_{17}=-\frac{1}{2} d u \wedge d u_{3}$.

Taking exterior derivatives of (47) and skipping total divergence terms, we have checked that $d \omega=0$ modulo total divergence which proves that operator K is symplectic because the closedness condition for ω is equivalent to the Jacobi identity for J_{0}. Hence, J_{0} defined in (45) is indeed a Hamiltonian operator. Hamiltonian form of this system is

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}} \tag{48}
\end{equation*}
$$

where we still need to determine the corresponding Hamiltonian density H_{1} by the formula $H_{1}=\pi_{u} u_{t}+\pi_{v} v_{t}-L$, where $\pi_{v}=0$, with the following final result

$$
\begin{align*}
& H_{1}=-\frac{v^{2}}{2} \sum_{i=1}^{13} a_{i} K_{12}^{(i)} \\
& +b_{4} \frac{u}{4}\left\{u_{11}\left(u_{22} u_{33}-u_{23}^{2}\right)-u_{12}\left(u_{12} u_{33}-u_{13} u_{23}\right)+u_{13}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\} \\
& +\frac{u}{3}\left\{c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)+c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right)\right. \\
& \left.+c_{12}\left(u_{11} u_{22}-u_{12}^{2}\right)+c_{13}\left(u_{11} u_{33}-u_{13}^{2}\right)+c_{14}\left(u_{22} u_{33}-u_{23}^{2}\right)\right\} \\
& +\frac{u}{2}\left(c_{18} u_{11}+c_{19} u_{12}+c_{20} u_{13}+c_{21} u_{22}+c_{22} u_{23}+c_{23} u_{33}\right)+c_{24} u \tag{49}
\end{align*}
$$

We can write the Hamiltonian density in (49) in the following short-hand notation

$$
\begin{equation*}
H_{1}=\sum_{i=1}^{13} a_{i} H_{1}^{(a i)}+\sum_{i=1}^{4} b_{i} H_{1}^{(b i)}+\sum_{i=1}^{24 \prime} c_{i} H_{1}^{(i)} \tag{50}
\end{equation*}
$$

where the sum $\sum_{i=1}{ }^{24}{ }^{\prime}$ includes $i=8^{\prime}$ and individual terms of the sums in (50) are defined by
$H_{1}^{(a i)}=-\frac{v^{2}}{2} K_{12}^{(i)}, \quad H_{1}^{(b 1)}=H_{1}^{(b 2)}=H_{1}^{(b 3)}=0$
$H_{1}^{(1)}=H_{1}^{(2)}=\cdots=H_{1}^{(8)}=H_{1}^{\left(8^{\prime}\right)}=0, \quad H_{1}^{(15)}=H_{1}^{(16)}=H_{1}^{(17)}=0$
and the remaining terms $H_{1}^{(b 4)}, H_{1}^{(9)}, \cdots, H_{1}^{(14)}, H_{1}^{(18)}, \cdots, H_{1}^{(24)}$ are given in (49).

The formula (48) provides a Hamiltonian form of our two-component system (34)

$$
\begin{aligned}
& u_{t}=v \\
& v_{t}=\frac{1}{\Delta}\left(\sum_{i=1}^{13} a_{i} q^{(a i)}+\sum_{i=1}^{4} b_{i} q^{(b i)}+\sum_{i=1}^{24,} c_{i} q^{(i)}\right) \equiv \frac{q}{\Delta}(52)
\end{aligned}
$$

For equation (20) recursions due to operators (21) become

$$
\begin{align*}
& u_{23} \tilde{\varphi}_{t}-u_{t 3} \tilde{\varphi}_{2}=\left(c_{4}-c_{8}\right)\left(u_{23} \varphi_{t}-u_{t 2} \varphi_{3}\right)+\left(c_{9} L_{13(2)}+c_{10} L_{23(2)}\right) \varphi \\
& -L_{12(3)} \tilde{\varphi}=\left(c_{5} L_{23(2)}+c_{8} L_{13(2)}\right) \varphi+a_{11}\left(u_{23} \varphi_{t}-u_{t 2} \varphi_{3}\right) . \tag{53}
\end{align*}
$$

Lax pair for the equation (20) reads

$$
\begin{aligned}
& X_{1}=\frac{\lambda}{u_{23}} L_{t 2(3)}+\frac{1}{u_{23}}\left\{\left(c_{4}-c_{8}\right) L_{t 3(2)}+c_{9} L_{13(2)}+c_{10} L_{23(2)}\right\} \\
& X_{2}=-\frac{\lambda}{u_{23}} L_{12(3)}+\frac{1}{u_{23}}\left(c_{5} L_{23(2)}+c_{8} L_{13(2)}+a_{11} L_{t 3(2)}\right) .(54)
\end{aligned}
$$

In a two-component form the equation (20) becomes

$$
\begin{align*}
& u_{t}=v, \quad v_{t}=\frac{q}{\Delta}=\frac{1}{a_{11} u_{23}}\left(a_{11} q^{(a 11)}+c_{4} q^{(4)}+c_{5} q^{(5)}+c_{8} q^{(8)}\right. \\
& \left.+c_{9} q^{(9)}+c_{10} q^{(10)}\right), \quad q^{(a 11)}=v_{2} v_{3}, \quad q^{(4)}=-\left(v_{1} u_{23}-v_{2} u_{13}\right) \\
& q^{(5)}=-\left(v_{2} u_{23}-v_{3} u_{22}\right), \quad q^{(8)}=-\left(v_{2} u_{13}-v_{3} u_{12}\right) \\
& q^{(9)}=-\left(u_{11} u_{23}-u_{12} u_{13}\right), \quad q^{(10)}=-\left(u_{12} u_{23}-u_{13} u_{22}\right) \tag{55}
\end{align*}
$$

Lie equations in a two-component form become $u_{\tau}=\varphi$, $v_{\tau}=\psi$, so that $u_{t}=v$ implies $\varphi_{t}=\psi$. We define two-component symmetry characteristic $(\varphi, \psi)^{T}$ with $\psi=\varphi_{t}$ and $(\tilde{\varphi}, \tilde{\psi})^{T}$ with $\tilde{\psi}=\tilde{\varphi}_{t}$.

$$
\begin{align*}
\binom{\tilde{\varphi}}{\tilde{\psi}}= & R\binom{\varphi}{\psi}, \quad R=\left(\begin{array}{ll}
R_{11} & -a_{11} L_{12(3)}^{-1} u_{23} \\
R_{21} & -a_{11} \frac{v_{3}}{u_{23}} D_{2} L_{12(3)}^{-1} u_{23}+c_{4}-c_{8}
\end{array}\right. \\
& R_{11}=-L_{12(3)}^{-1}\left(c_{5} L_{23(2)}+c_{8} L_{13(2)}-a_{11} v_{2} D_{3}\right) \tag{56}\\
& R_{21}=\frac{1}{u_{23}}\left\{\left(c_{8}-c_{4}\right) v_{2} D_{3}+c_{9} L_{13(2)}+c_{10} L_{23(2)}\right\} \\
& -\frac{v_{3}}{u_{23}} D_{2} L_{12(3)}^{-1}\left(c_{5} L_{23(2)}+c_{8} L_{13(2)}-a_{11} v_{2} D_{3}\right) .
\end{align*}
$$

Here $L_{12(3)}^{-1} L_{12(3)}=1$. Operator $L_{12(3)}^{-1}$ can make sense merely as a formal inverse of $L_{12(3)}$. Thus, the recursion relations above are formal as well. The proper interpretation of $L_{12(3)}^{-1}$ requires the language of differential coverings.

Composing the recursion operator (56) with the Hamiltonian operator J_{0} defined in (45) we obtain the second Hamiltonian operator $J_{1}=R J_{0}$. For equation (55) we have $K_{12}=-a_{11} u_{23}$, $K_{11}=a_{11}\left(V_{3} D_{2}+D_{3} v_{2}\right)-c_{4} L_{12(3)}-c_{5} L_{23(2)}-c_{8} L_{23(1)}$.

$$
J_{0}=\frac{1}{a_{11} u_{23}}\left(\begin{array}{cc}
0 & 1 \tag{57}\\
-1 & \frac{1}{a_{11}} K_{11} \frac{1}{u_{23}}
\end{array}\right) .
$$

The corresponding Hamiltonian density according to (49), (50) reads

$$
\begin{aligned}
& H_{1}=a_{11} H_{1}^{(a 11)}+c_{9} H_{1}^{(9)}+c_{10} H_{1}^{(10)} \\
& =a_{11} \frac{v^{2}}{2} u_{23}+\frac{u}{3}\left\{c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{10}\left(u_{12} u_{23}-u_{13} u_{22}\right)\right\}
\end{aligned}
$$

The equation (20) taken in the two-component form (55) can be written now as the Hamiltonian system

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}} . \tag{59}
\end{equation*}
$$

For bi-Hamiltonian system we need a second Hamiltonian operator and corresponding Hamiltonian density. Performing matrix multiplication $R J_{0}$ of the expressions (56) and (57) we obtain the second Hamiltonian operator

$$
J_{1}=\left(\begin{array}{cc}
L_{12(3)}^{-1} & -\left(L_{12(3)}^{-1} D_{2} v_{3}+\frac{c_{8}-c_{4}}{a_{11}}\right) \frac{1}{u_{23}} \\
\frac{1}{u_{23}}\left(v_{3} D_{2} L_{12(3)}^{-1}+\frac{c_{8}-c_{4}}{a_{11}}\right) & J_{1}^{22}
\end{array}\right)
$$

where the entry J_{1}^{22} is defined by

$$
\begin{aligned}
& J_{1}^{22}=\frac{1}{a_{11} u_{23}}\left(c_{9} L_{13(2)}+c_{10} L_{23(2)}\right) \frac{1}{u_{23}}-\frac{v_{3}}{u_{23}} D_{2} L_{12(3)}^{-1} D_{2} \frac{v_{3}}{u_{23}} \\
& +\frac{c_{4}-c_{8}}{a_{11} u_{23}}\left\{D_{2} v_{3}+v_{3} D_{2}-\frac{1}{a_{11}}\left(c_{4} L_{12(3)}+c_{5} L_{23(2)}+c_{8} L_{23(1)}\right)\right\} \frac{1}{u_{23}} .
\end{aligned}
$$

The operator J_{1} is manifestly skew symmetric. A check of the Jacobi identities and compatibility of the two Hamiltonian structures J_{0} and J_{1} has been made by P. Olver's method of the functional multi-vectors under the well-founded conjecture that this method is applicable for nonlocal Hamiltonian operators.

The next problem is to derive the Hamiltonian density H_{0} corresponding to the second Hamiltonian operator J_{1} such that implies the bi-Hamiltonian representation of the system (55)

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}}=J_{1}\binom{\delta_{u} H_{0}}{\delta_{v} H_{0}}=\binom{v}{\frac{q}{\Delta}} \tag{62}
\end{equation*}
$$

where q / Δ is the right-hand side of the second equation in (55). Then we may conclude that our system is integrable in the sense of Magri.

We assume quadratic dependence of the Hamiltonian H_{0} on v

$$
\begin{equation*}
H_{0}=a[u] v^{2}+b[u] v+c[u] \tag{63}
\end{equation*}
$$

the coefficients depending only on u and its partial derivatives.

Proposition

Bi-Hamiltonian representation (62) of the system (55) with the assumption (63) is valid under the constraint

$$
\begin{equation*}
c_{8} c_{10}=c_{5} c_{9} \tag{64}
\end{equation*}
$$

with the following Hamiltonian density

$$
\begin{equation*}
H_{0}=-\frac{\left\{a_{11} c_{8} v^{2}+\left(a_{11} c_{9} u_{1}+b_{0}\right) v-c_{9}\left(c_{8}-c_{4}\right) u_{1}^{2}\right\} u_{23}}{2\left\{a_{11} c_{9}+c_{8}\left(c_{8}-c_{4}\right)\right\}} \tag{65}
\end{equation*}
$$

Thus, we have shown that our first integrable equation (20) in the two-component form (55) under the constraint (64) admits bi-Hamiltonian representation (62) with the second Hamiltonian operator J_{1} defined in (60), (61) and the corresponding Hamiltonian density H_{0} given in (65). In the next section, we construct bi-Hamiltonian systems corresponding to other four equations admitting skew-factorized form of the symmetry condition.

Results for our 2nd example (22) can be obtained from those for equation (20) by interchanging the indices 2 and 3 together with the simultaneous interchange of the coefficients $C_{5} \leftrightarrow-C_{7}$, $c_{8} \leftrightarrow\left(c_{4}-c_{8}\right)$ and $c_{10} \leftrightarrow-c_{11}$ with all other coefficients (including c_{4}) unchanged. The Lax pair for equation (22) reads

$$
\begin{aligned}
& X_{1}=\frac{\lambda}{u_{23}} L_{t 3(2)}+\frac{1}{u_{23}}\left\{c_{8} L_{t 2(3)}+c_{9} L_{12(3)}+c_{11} L_{23(3)}\right\} \\
& X_{2}=-\frac{\lambda}{u_{23}} L_{13(2)}+\frac{1}{u_{23}}\left\{\left(c_{4}-c_{8}\right) L_{12(3)}+c_{7} L_{23(3)}+a_{11} L_{t 2(3)}\right\}
\end{aligned}
$$

The equation (22) in the two-component form becomes

$$
\begin{aligned}
& u_{t}=v \\
& v_{t}=\frac{q}{\Delta}=\frac{1}{a_{11} u_{23}}\left\{a_{11} v_{2} v_{3}+c_{4}\left(v_{2} u_{13}-v_{1} u_{23}\right)-c_{7}\left(v_{2} u_{33}-v_{3} u_{23}\right)\right. \\
& \left.-c_{8}\left(v_{2} u_{13}-v_{3} u_{12}\right)+c_{9}\left(u_{12} u_{13}-u_{11} u_{23}\right)-c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right)\right\} .
\end{aligned}
$$

The recursion operator is obtained from (56) by the same combined permutation

$$
R=\left(\begin{array}{cc}
R_{11} & -a_{11} L_{13(2)}^{-1} u_{23} \tag{68}\\
R_{21} & -a_{11} \frac{v_{2}}{u_{23}} D_{3} L_{13(2)}^{-1} u_{23}+c_{8}
\end{array}\right)
$$

with the matrix elements

$$
\begin{aligned}
& R_{11}=-L_{13(2)}^{-1}\left(c_{7} L_{23(3)}+\left(c_{4}-c_{8}\right) L_{12(3)}-a_{11} v_{3} D_{2}\right) \\
& R_{21}=\frac{1}{u_{23}}\left(-c_{8} v_{3} D_{2}+c_{9} L_{12(3)}+c_{11} L_{23(3)}\right) \\
& -\frac{v_{2}}{u_{23}} D_{3} L_{13(2)}^{-1}\left\{c_{7} L_{23(3)}+\left(c_{4}-c_{8}\right) L_{12(3)}-a_{11} v_{3} D_{2}\right\} .
\end{aligned}
$$

The first Hamiltonian operator has the form

$$
J_{0}=\frac{1}{a_{11} u_{23}}\left(\begin{array}{cc}
0 & 1 \tag{69}\\
-1 & \frac{1}{a_{11}} K_{11} \frac{1}{u_{23}}
\end{array}\right)
$$

where $K_{12}=-a_{11} u_{23}$,
$K_{11}=a_{11}\left(v_{2} D_{3}+D_{2} v_{3}\right)-c_{4} L_{13(2)}-c_{7} L_{23(3)}+\left(c_{4}-c_{8}\right) L_{23(1)}$.
The corresponding Hamiltonian density reads

$$
H_{1}=a_{11} \frac{v^{2}}{2} u_{23}+\frac{u}{3}\left\{c_{9}\left(u_{11} u_{23}-u_{12} u_{13}\right)+c_{11}\left(u_{12} u_{33}-u_{13} u_{23}\right)\right\} .
$$

The second Hamiltonian operator is obtained by composing R and J_{0} as $J_{1}=R J_{0}$
$J_{1}=\left(\begin{array}{cc}L_{13(2)}^{-1} \\ \frac{1}{u_{23}}\left(v_{2} D_{3} L_{13(2)}^{-1}-\frac{c_{8}}{a_{11}}\right) & -\left(L_{13(2)}^{-1} D_{3} v_{2}-\frac{c_{8}}{a_{11}}\right) \frac{1}{u_{23}} \\ J_{1}^{22}\end{array}\right)$
(71)
$J_{1}^{22}=\frac{1}{a_{11} u_{23}}\left(c_{9} L_{12(3)}+c_{11} L_{23(3)}\right) \frac{1}{u_{23}}-\frac{v_{2}}{u_{23}} D_{3} L_{13(2)}^{-1} D_{3} \frac{v_{2}}{u_{23}}$
$+\frac{c_{8}}{a_{11} u_{23}}\left\{D_{3} v_{2}+v_{2} D_{3}-\frac{1}{a_{11}}\left(c_{4} L_{13(2)}+c_{7} L_{23(3)}-\left(c_{4}-c_{8}\right) L_{23(1)}\right)\right\}$
We see that J_{1} is manifestly skew-symmetric.

The constraint (64) for the existence of the Hamiltonian density H_{0} corresponding to J_{1} becomes $c_{11}\left(c_{4}-c_{8}\right)=c_{7} c_{9}$. Then H_{0} reads

$$
\begin{equation*}
H_{0}=-\frac{\left\{a_{11}\left(c_{4}-c_{8}\right) v^{2}+\left(a_{11} c_{9} u_{1}+b_{0}\right) v+c_{9} c_{8} u_{1}^{2}\right\} u_{23}}{2\left\{a_{11} c_{9}+c_{8}\left(c_{8}-c_{4}\right)\right\}} . \tag{73}
\end{equation*}
$$

We show here the recursion operator and bi-Hamiltonian representation for our 3rd example (24). The Lax pair for this equation due to (25) reads

$$
\begin{align*}
& X_{1}=\frac{\lambda}{u_{t 2}} L_{23(t)}+\frac{1}{u_{t 2}}\left(a_{8} L_{t 1(2)}+a_{10} L_{t 2(2)}+a_{11} L_{t 3(2)}\right) \\
& X_{2}=-\frac{\lambda}{u_{t 2}} L_{t 2(t)}+\frac{1}{u_{t 2}}\left(c_{7} L_{t 3(2)}+c_{8} L_{t 1(2)}\right) . \tag{74}
\end{align*}
$$

In the following it is convenient to introduce the following notation

$$
\begin{align*}
& \hat{\Delta}=a_{8} D_{1}+a_{10} D_{2}+a_{11} D_{3} \\
& \Delta=\hat{\Delta}\left[u_{2}\right]=a_{8} u_{12}+a_{10} u_{22}+a_{11} u_{23} \\
& \hat{c}=c_{7} D_{3}+c_{8} D_{1} . \tag{77/95}
\end{align*}
$$

In the two component form the equation (24) becomes

$$
\begin{equation*}
u_{t}=v, \quad v_{t}=\frac{q}{\Delta}, \quad q=v_{2}\left(\hat{\Delta}[v]-\hat{c}\left[u_{3}\right]\right)+v_{3} \hat{c}\left[u_{2}\right] . \tag{76}
\end{equation*}
$$

From now on, square brackets denote the value of an operator.
Formulas (25) also imply the recursion relations for symmetry characteristics.

$$
\begin{align*}
& L_{23(t)} \tilde{\varphi}=\left(a_{8} L_{t 1(2)}+a_{10} L_{t 2(2)}+a_{11} L_{t 3(2)}\right) \varphi \\
& -L_{t 2(t)} \tilde{\varphi}=\left(c_{7} L_{t 3(2)}+c_{8} L_{t 1(2)}\right) \varphi . \tag{77}
\end{align*}
$$

In a two-component form $u_{t}=v, \varphi_{t}=\psi, \tilde{\varphi}_{t}=\tilde{\psi}$ equations (77) become

$$
\binom{\tilde{\varphi}}{\tilde{\psi}}=R\binom{\varphi}{\psi}
$$

where the recursion operator is defined by

$$
R=\left(\begin{array}{cc}
-L_{23(t)}^{-1} v_{2} \hat{\Delta} & L_{23(t)}^{-1} \Delta \tag{78}\\
-\frac{q}{v_{2} \Delta} D_{2} L_{23(t)}^{-1} v_{2} \hat{\Delta}+\hat{c} & \frac{1}{v_{2}}\left\{\frac{q}{\Delta} D_{2} L_{23(t)}^{-1} \Delta-\hat{c}\left[u_{2}\right]\right\}
\end{array}\right)
$$

Two-component form

The first Hamiltonian operator has the form

$$
J_{0}=\left(\begin{array}{cc}
0 & \Delta^{-1} \tag{79}\\
-\Delta^{-1} & \Delta^{-1} K_{11} \Delta^{-1}
\end{array}\right)
$$

where $K_{11}=v_{2} \hat{\Delta}+D_{2} \hat{\Delta}[v]-c_{7} L_{23(3)}-c_{8} L_{23(1)}$. With the corresponding Hamiltonian density

$$
\begin{equation*}
H_{1}=\frac{v^{2}}{2} \Delta \tag{80}
\end{equation*}
$$

the system (76) takes the Hamiltonian form

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}} . \tag{81}
\end{equation*}
$$

Composing the recursion operator (78) with the first Hamiltonian operator (79) we obtain the second Hamiltonian operator

$$
J_{1}=R J_{0}=\left(\begin{array}{cc}
-L_{23(t)}^{-1} & \left(L_{23(t)}^{-1} D_{2} q-\hat{c}\left[u_{2}\right]\right) \frac{1}{v_{2} \Delta} \\
-\frac{1}{v_{2} \Delta}\left(q D_{2} L_{23(t)}^{-1}-\hat{c}\left[u_{2}\right]\right) & J_{1}^{22}
\end{array}\right)
$$

$$
\begin{align*}
& J_{1}^{22}=\hat{c} \frac{1}{\Delta}-\hat{c}\left[u_{2}\right] \frac{1}{\Delta} \hat{\Delta} \frac{1}{\Delta}+\frac{q}{v_{2} \Delta} D_{2} L_{23(t)}^{-1} D_{2} \frac{q}{v_{2} \Delta}-\frac{q}{v_{2} \Delta} D_{2} \frac{\hat{c}\left[u_{2}\right]}{v_{2} \Delta} \\
& -\frac{\hat{c}\left[u_{2}\right]}{v_{2} \Delta} D_{2} \frac{q}{v_{2} \Delta}+\frac{\hat{c}\left[u_{2}\right]}{v_{2} \Delta} L_{23(t)} \frac{\hat{c}\left[u_{2}\right]}{v_{2} \Delta} \tag{83}
\end{align*}
$$

which shows that J_{1} is manifestly skew-symmetric.

The Hamiltonian density H_{0} corresponding to the second Hamiltonian operator J_{1} has the form

$$
\begin{equation*}
H_{0}=k v \Delta=k v\left(a_{8} u_{12}+a_{10} u_{22}+a_{11} u_{23}\right) \tag{84}
\end{equation*}
$$

with a constant k. Thus, we obtain a bi-Hamiltonian representation for the system (76), which is a two-component form of the equation (24)

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}}=J_{1}\binom{\delta_{u} H_{0}}{\delta_{v} H_{0}} . \tag{85}
\end{equation*}
$$

Lax pair for our 4th example (26) due to (27) reads

$$
\begin{aligned}
& X_{1}=\frac{\lambda}{u_{t 3}} L_{t 3(3)}-\frac{1}{u_{t 3}} L_{23(t)} \\
& X_{2}=\frac{\lambda}{u_{t 3}}\left(c_{5} L_{t 2(3)}+c_{8} L_{t 1(3)}\right)+\frac{1}{u_{t 3}}\left(a_{12} L_{t 3(t)}+c_{6} L_{13(t)}+c_{7} L_{23(t)}\right) .
\end{aligned}
$$

In a two-component form, equation (26) becomes

$$
\begin{align*}
& u_{t}=v, \quad v_{t}=\frac{q}{\Delta} \tag{87}\\
& q=a_{12} v_{3}^{2}\left(c_{5} v_{2} u_{23}-v_{3} u_{22}\right)-c_{6}\left(v_{1} u_{33}-v_{3} u_{13}\right) \\
& -c_{7}\left(v_{2} u_{33}-v_{3} u_{23}\right)-c_{8}\left(v_{2} u_{13}-v_{3} u_{12}\right), \quad \Delta=a_{12} u_{33}
\end{align*}
$$

First Hamiltonian operator has the form

$$
J_{0}=\left(\begin{array}{cc}
0 & \Delta^{-1} \tag{88}\\
-\Delta^{-1} & \Delta^{-1} K_{11} \Delta^{-1}
\end{array}\right)
$$

where
$K_{11}=a_{12}\left(v_{3} D_{3}+D_{3} v_{3}\right)-c_{5} L_{23(2)}-c_{6} L_{13(3)}-c_{7} L_{23(3)}-c_{8} L_{23(1)}$ and $K_{12}=-a_{12} u_{33}=-\Delta$. With the corresponding Hamiltonian density

$$
\begin{equation*}
H_{1}=\frac{a_{12}}{2} v^{2} u_{33} \tag{89}
\end{equation*}
$$

the system (87) takes the Hamiltonian form

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}} \tag{90}
\end{equation*}
$$

The recursion operator in 2×2 matrix form is

$$
\binom{\tilde{\varphi}}{\tilde{\psi}}=R\binom{\varphi}{\psi}, R=\left(\begin{array}{cc}
R^{11} & -a_{12} L_{[12] 3(3)}^{-1} u_{33} \tag{91}\\
R^{21} & -a_{12} \frac{v_{3}}{u_{33}} D_{3} L_{[12] 3(3)}^{-1} u_{33}
\end{array}\right)
$$

where we introduce the notation $L_{[12] 3(3)}=c_{8} L_{13(3)}+c_{5} L_{23(3)}$

$$
\begin{aligned}
& R^{11}=L_{[12] 3(3)}^{-1} \frac{1}{v_{3}}\left\{q D_{3}-c_{6} u_{33} L_{13(t)}-\left(c_{5} u_{23}+c_{8} u_{13}+c_{7} u_{33}\right) L_{23(t)}\right\} \\
& R^{21}=\frac{v_{3}}{u_{33}} D_{3} L_{[12] 3(3)}^{-1} \frac{1}{v_{3}}\left\{q D_{3}-c_{6} u_{33} L_{13(t)}\right. \\
& \left.-\left(c_{5} u_{23}+c_{8} u_{13}+c_{7} u_{33}\right) L_{23(t)}\right\}-\frac{1}{u_{33}} L_{23(t)} .
\end{aligned}
$$

Composing recursion operator (91) with J_{0} in (88) we obtain the second Hamiltonian operator $J_{1}=R J_{0}$

$$
J_{1}=\left(\begin{array}{cc}
-L_{[12] 3(3)}^{-1} & -L_{[12] 3(3)}^{-1} D_{3} \frac{v_{3}}{u_{33}} \\
\frac{v_{3}}{u_{33}} D_{3} L_{[12] 3(3)}^{-1} & -\left(\frac{v_{3}}{u_{33}} D_{3} L_{[12] 3(3)}^{-1} D_{3} \frac{v_{3}}{u_{33}}+\frac{1}{a_{12} u_{33}} L_{23(t)} \frac{1}{u_{33}}\right. \tag{92}
\end{array}\right)
$$

J_{1} is manifestly skew-symmetric. With the Hamiltonian density

$$
\begin{equation*}
\left.H_{0}=\left\{k\left(t, z_{1}\right) v^{2}-\left(c_{8} u_{1}+c_{5} u_{2}+c_{7} u_{3}\right) v\right)\right\} u_{33} \tag{93}
\end{equation*}
$$

system (87) takes bi-Hamiltonian form

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}}=J_{1}\binom{\delta_{u} H_{0}}{\delta_{v} H_{0}} \tag{94}
\end{equation*}
$$

Lax pair for our 5th example (28) due to (29) reads

$$
\begin{align*}
& X_{1}=\frac{\lambda}{u_{t 1}} L_{t 1(t)}+\frac{1}{u_{t 1}}\left(c_{1} L_{t 1(1)}+c_{3} L_{t 2(1)}+c_{4} L_{t 3(1)}\right) \\
& X_{2}=-\frac{\lambda}{u_{t 1}} L_{12(t)}+\frac{1}{u_{t 1}}\left(a_{7} L_{t 1(1)}+a_{8} L_{t 2(1)}+a_{9} L_{t 3(1)}\right) \tag{95}
\end{align*}
$$

Two-component form
Hamiltonian representation
Recursion operators in 2×2 matrix form
Second Hamiltonian representation
Further new bi-Hamiltonian systems
Summary

In the following it is convenient to introduce the following notation

$$
\begin{align*}
& \hat{\Delta}=a_{7} D_{1}+a_{8} D_{2}+a_{9} D_{3}, \quad \Delta=\hat{\Delta}\left[u_{1}\right]=a_{7} u_{11}+a_{8} u_{12}+a_{9} u_{13} \\
& \hat{c}=c_{1} D_{1}+c_{3} D_{2}+c_{4} D_{3} . \tag{96}
\end{align*}
$$

In a two component form the equation (28) becomes

$$
\begin{equation*}
u_{t}=v, \quad v_{t}=\frac{q}{\Delta}, \quad q=v_{1}\left(\hat{\Delta}[v]-\hat{c}\left[u_{2}\right]\right)+v_{2} \hat{c}\left[u_{1}\right] . \tag{97}
\end{equation*}
$$

First Hamiltonian operator has the form

$$
J_{0}=\left(\begin{array}{cc}
0 & \Delta^{-1} \tag{98}\\
-\Delta^{-1} & \Delta^{-1} K_{11} \Delta^{-1}
\end{array}\right)
$$

where $K_{11}=v_{1} \hat{\Delta}+D_{1} \hat{\Delta}[v]-c_{1} L_{12(1)}-c_{3} L_{12(2)}-c_{4} L_{12(3)}$ and $K_{12}=-\Delta$. With the corresponding Hamiltonian density

$$
\begin{equation*}
H_{1}=\frac{v^{2}}{2} \Delta \tag{99}
\end{equation*}
$$

the system (97) takes the Hamiltonian form

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}} . \tag{100}
\end{equation*}
$$

Two-component form

Recursion operator in 2×2 matrix form is

$$
\begin{gathered}
\binom{\tilde{\varphi}}{\tilde{\psi}}=R\binom{\varphi}{\psi} \\
R=\left(\begin{array}{cc}
L_{12(t)}^{-1} v_{1} \hat{\Delta} \\
\frac{q}{\Delta v_{1}} D_{1} L_{12(t)}^{-1} v_{1} \hat{\Delta}-\hat{c} & \frac{1}{v_{1}} \hat{c}\left[u_{1}\right]-\frac{q}{\Delta v_{1}} D_{12(t)}^{-1} L_{12(t)}^{-1} \Delta
\end{array}\right)
\end{gathered}
$$

Composing the recursion operator (101) with J_{0} in (98) we obtain the second Hamiltonian operator

$$
J_{1}=R J_{0}=\left(\begin{array}{cc}
L_{12(t)}^{-1} & -\left(L_{12(t)}^{-1} D_{1} q-\hat{c}\left[u_{1}\right]\right) \frac{1}{v_{1} \Delta} \\
\frac{1}{v_{1} \Delta}\left(q D_{1} L_{12(t)}^{-1}-\hat{c}\left[u_{1}\right]\right) & J_{1}^{22}
\end{array}\right)
$$

$$
\begin{align*}
& J_{1}^{22}=-\hat{c} \frac{1}{\Delta}+\hat{c}\left[u_{1}\right] \frac{1}{\Delta} \hat{\Delta} \frac{1}{\Delta}-\frac{q}{\Delta v_{1}} D_{1} L_{12(t)}^{-1} D_{1} \frac{q}{v_{1} \Delta}+\frac{q}{\Delta v_{1}} D_{1} \frac{\hat{c}\left[u_{1}\right]}{v_{1} \Delta} \\
& +\frac{\hat{c}\left[u_{1}\right]}{\Delta v_{1}} D_{1} \frac{q}{v_{1} \Delta}-\frac{\hat{c}\left[u_{1}\right]}{\Delta v_{1}} L_{12(t)} \frac{\hat{c}\left[u_{1}\right]}{v_{1} \Delta} \tag{103}
\end{align*}
$$

which shows that J_{1} is manifestly skew-symmetric on account of $\Delta=\hat{\Delta}\left[u_{1}\right]$.

The Hamiltonian density H_{0} corresponding to the second Hamiltonian operator J_{1} is

$$
\begin{equation*}
H_{0}=k v \Delta=k v\left(a_{8} u_{12}+a_{10} u_{22}+a_{11} u_{23}\right) \tag{104}
\end{equation*}
$$

with a constant k. Thus, we obtain a bi-Hamiltonian representation for the system (76), which is a two-component form of the equation (24)

$$
\begin{equation*}
\binom{u_{t}}{v_{t}}=J_{0}\binom{\delta_{u} H_{1}}{\delta_{v} H_{1}}=J_{1}\binom{\delta_{u} H_{0}}{\delta_{v} H_{0}} . \tag{105}
\end{equation*}
$$

Summary

- All equations of the evolutionary Hirota type in $(3+1)$ dimensions possessing a Lagrangian have the symplectic Monge-Ampère form.
- In a two-component evolutionary form, all our equations have Hamiltonian form.
- We have developed a regular way for converting the symmetry condition to a skew-factorized form. Recursion relations and Lax pairs are obtained as immediate consequences of this representation.
- We have obtained new bi-Hamiltonian systems as an illustration of the general method.

Summary

- All equations of the evolutionary Hirota type in $(3+1)$ dimensions possessing a Lagrangian have the symplectic Monge-Ampère form.
- In a two-component evolutionary form, all our equations have Hamiltonian form.
- We have developed a regular way for converting the symmetry condition to a skew-factorized form. Recursion relations and Lax pairs are obtained as immediate consequences of this representation.
- We have obtained new bi-Hamiltonian systems as an illustration of the general method

Summary

- All equations of the evolutionary Hirota type in $(3+1)$ dimensions possessing a Lagrangian have the symplectic Monge-Ampère form.
- In a two-component evolutionary form, all our equations have Hamiltonian form.
- We have developed a regular way for converting the symmetry condition to a skew-factorized form. Recursion relations and Lax pairs are obtained as immediate consequences of this representation.

Summary

- All equations of the evolutionary Hirota type in $(3+1)$ dimensions possessing a Lagrangian have the symplectic Monge-Ampère form.
- In a two-component evolutionary form, all our equations have Hamiltonian form.
- We have developed a regular way for converting the symmetry condition to a skew-factorized form. Recursion relations and Lax pairs are obtained as immediate consequences of this representation.
- We have obtained new bi-Hamiltonian systems as an illustration of the general method.

For Further Reading

囲 M. B. Sheftel and D. Yazıcı.
Lax pairs, recursion operators and bi-Hamiltonian representations
of (3+1)-dimensional Hirota type equations, 2018, arXiv:1804.10620v2.M. B. Sheftel and D. Yazicı Evolutionary Hirota type (2+1)-dimensional equations: Lax pairs, recursion operators and bi-Hamiltonian structures, SIGMA 14:017, 19 pages, 2018; arXiv:1712.01549v2.
國 M. B. Sheftel, D. Yazicı and A. A. Malykh. Recursion operators and bi-Hamiltonian structure of the general heavenly equation, J. Geom. Phys. 116:124-139,

For Further Reading

䡒 M. B. Sheftel and D. Yazıcı.
Lax pairs, recursion operators and bi-Hamiltonian representations
of (3+1)-dimensional Hirota type equations, 2018, arXiv:1804.10620v2.M. B. Sheftel and D. Yazıcı.

Evolutionary Hirota type (2+1)-dimensional equations: Lax pairs, recursion operators and bi-Hamiltonian structures, SIGMA 14:017, 19 pages, 2018; arXiv:1712.01549v2.

Recursion operators and bi-Hamiltonian structure of the general heavenly equation, J. Geom. Phys. 116:124-139,

For Further Reading

䡒 M. B. Sheftel and D. Yazıcı.
Lax pairs, recursion operators and bi-Hamiltonian representations
of (3+1)-dimensional Hirota type equations, 2018, arXiv:1804.10620v2.
R M. B. Sheftel and D. Yazıcı.
Evolutionary Hirota type (2+1)-dimensional equations: Lax pairs, recursion operators and bi-Hamiltonian structures, SIGMA 14:017, 19 pages, 2018; arXiv:1712.01549v2.
國 M. B. Sheftel, D. Yazıcı and A. A. Malykh.
Recursion operators and bi-Hamiltonian structure of the general heavenly equation, J. Geom. Phys. 116:124-139,

Thank you very much for your attention.

