On a class of solutions of KP-I equation

A.O. Smirnov
St.Petersburg State University of Aerospace Instrumentation

Russian-Chinese Conference on Integrable Systems and Geometry, 21 August 2018, St.Petersburg

Outline

(1) The equations from AKNS hierarchy
(2) The KP-I equation
(3) KdV equation and NLS hierarchy

Compatibility conditions

The equations from AKNS hierarchy have the form

$$
p_{t_{k}}=i^{k} H_{k}(p, q)=0, \quad q_{t_{k}}=(-i)^{k} H_{k}(q, p)=0
$$

and they can be obtained from the following equations

$$
\Psi_{x}=\mathfrak{U} \Psi, \quad \Psi_{t_{k}}=\mathfrak{V}_{k} \Psi
$$

where

$$
\begin{gathered}
\mathfrak{U}=\lambda J+\mathfrak{U}^{0}, \quad \mathfrak{V}_{1}=2 \lambda \mathfrak{U}+\mathfrak{V}_{1}^{0}, \quad \mathfrak{V}_{k+1}=2 \lambda \mathfrak{V}_{k}+\mathfrak{V}_{k+1}^{0}, \\
J=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right), \quad \mathfrak{U}^{0}=\left(\begin{array}{cc}
0 & i p \\
-i q & 0
\end{array}\right) .
\end{gathered}
$$

The functions H_{k}

In particular

$$
\begin{aligned}
& H_{1}(p, q)=p_{x x}-2 p^{2} q, \\
& H_{2}(p, q)=p_{x x x}-6 p q p_{x}, \\
& H_{3}(p, q)=p_{x x x x}-8 p q p_{x x}-2 p^{2} q_{x x}-6 p_{x}^{2} q-4 p p_{x} q_{x}+6 p^{3} q^{2}, \\
& H_{4}(p, q)=p_{x x x x x}-10 p q p_{x x x}-20 p_{x x} p_{x} q-10\left(p_{x} q_{x} p\right)_{x}+30 p^{2} q^{2} p_{x}, \\
& H_{5}(p, q)=p_{x x x x x x}-12 p q p_{x x x x}-2 p^{2} q_{x x x x}-30 p_{x x x} p_{x} q- \\
& \quad-18 p_{x x x} p q_{x}-8 p_{x} p q_{x x x}-50 p_{x x} p-x q_{x}+50 p_{x} x p^{2} q^{2}- \\
& \quad-20 p_{x x}^{2} q-22 p_{x x} q_{x x} p-20 p_{x}^{2} q_{x x}+20 p^{3} q q_{x x}+ \\
& \quad+10 p^{3} q_{x}^{2}+70 p_{x}^{2} p q^{2}+60 p^{2} p_{x} q q_{x}+20 p^{4} q^{3} .
\end{aligned}
$$

The link between KP-I equation and AKNS hierarchy

The KP-I equation has the form

$$
3 u_{y y}=\left(4 u_{t}+u_{x x x}+6 u u_{x}\right)_{x} .
$$

The function

$$
u(x, y, t)=-2 p(x, y, t) q(x, y, t)
$$

where $p\left(x, t_{1}, t_{2}\right)$ and $q\left(x, t_{1}, t_{2}\right)$ are solutions of equations from AKNS hierarchy, is a solution of KP-I equation. In cases of NLS $\left(q=-p^{*}\right)$ and NLS $^{-}\left(q=p^{*}\right)$ hierarchies the solution of KP-I equation is real

$$
u(x, y, t)= \pm 2|p(x, y, t)|^{2}
$$

The finite-gap solutions of the KdV equation

The finite-gap solutions of the KdV equation

$$
4 v_{t}+v_{x x x}+6 v v_{x}=0
$$

have the following form

$$
v(x, t)=-2 \partial_{x}^{2} \ln \Theta\left(\mathbf{W}^{1} x+\mathbf{W}^{2} t-\mathbf{X} \mid B\right)+2 s_{1}
$$

Theta function is defined by following equation

$$
\Theta(\mathbf{p} \mid B)=\sum_{\mathbf{m} \in \mathbb{Z}^{g}} \exp \left\{\pi i \mathbf{m}^{t} B \mathbf{m}+2 \pi i \mathbf{m}^{t} \mathbf{p}\right\}
$$

Parameters s_{1}, \mathbf{W}^{k} and B of finite-gap solutions depend of these spectral curves.

Parameters of finite-gap solutions

The spectral curve of real finite-gap solution of $K d V$ equation has the form

$$
\Gamma_{k d v}: \quad w^{2}=\prod_{j=1}^{2 g_{0}+1}\left(E-E_{j}\right), \quad \operatorname{Im}\left(E_{j}\right)=0, \quad E_{1}<\ldots<E_{2 g_{0}+1}
$$

Vectors $2 \pi i \mathbf{W}^{j}$ are vectors of b-periods of normalized Abelian integrals with asymptotic

$$
\widetilde{\Omega}_{j}=(i k)^{2 j-1}+\frac{s_{j}}{i k}+o(1 /(i k)), \quad E=k^{2}, \quad E \rightarrow \infty .
$$

Matrix B is a matrix of b-periods of normalized holomorphic integrals.

The finite-gap solutions of equations from NLS hierarchy

The finite-gap solutions of equations from NLS hierarchy ($q=-p^{*}$) have the form

$$
\begin{aligned}
& p\left(x, t_{1}, \ldots\right)=\rho_{1} \frac{\Theta\left(\mathbf{U}\left(x, t_{1}, \ldots\right)+\mathbf{Z}-\boldsymbol{\Delta}\right)}{\Theta\left(\mathbf{U}\left(x, t_{1}, \ldots\right)+\mathbf{Z}\right)} \exp \left\{2 i \Phi\left(x, t_{1}, \ldots\right)\right\}, \\
& q\left(x, t_{1}, \ldots\right)=\rho_{2} \frac{\Theta\left(\mathbf{U}\left(x, t_{1}, \ldots\right)+\mathbf{Z}+\boldsymbol{\Delta}\right)}{\Theta\left(\mathbf{U}\left(x, t_{1}, \ldots\right)+\mathbf{Z}\right)} \exp \left\{-2 i \Phi\left(x, t_{1}, \ldots\right)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{U}\left(x, t_{1}, \ldots\right)=\mathbf{V}^{1} x+\sum_{j>1} \mathbf{V}^{j} t_{j-1}, \\
& \Phi\left(x, t_{1}, \ldots\right)=-K_{1} x-\sum_{j>1} K_{j} t_{j-1} .
\end{aligned}
$$

Parameters of finite-gap solutions

The spectral curve in the case of NLS hierarchy has the form

$$
\Gamma: \quad \chi^{2}=\prod_{j=1}^{g+1}\left[\left(\lambda-\lambda_{j}\right)\left(\lambda-\lambda_{j}^{*}\right)\right], \quad \operatorname{Im}\left(\lambda_{j}\right)>0
$$

Vectors $2 \pi i \mathrm{~V}^{j}$ are vectors of b-periods of Abelian integrals with asymptotics

$$
\begin{array}{ll}
\Omega_{j}(\mathcal{P})=\mp i\left(2^{j-1} \lambda^{j}-K_{j}+O\left(\lambda^{-1}\right)\right), & \mathcal{P} \rightarrow \mathcal{P}_{\infty}^{ \pm}, \\
\chi= \pm\left(\lambda^{g+1}+O\left(\lambda^{g}\right)\right), & \mathcal{P} \rightarrow \mathcal{P}_{\infty}^{ \pm}
\end{array}
$$

The link between spectral curves

Let us take

$$
E=\lambda^{2}+\varkappa, \quad w=\chi .
$$

Then from spectral curve $\Gamma_{k d v}$ we get following spectral curves

$$
\begin{aligned}
& \Gamma_{a k n s}: \chi^{2}=\prod_{j=1}^{2 g_{0}+1}\left(\lambda^{2}+\varkappa-E_{j}\right), \quad \varkappa>\max E_{j}, \quad g=2 g_{0}, \\
& \Gamma_{a k n s}^{\prime}: \chi^{2}=\prod_{j=1}^{2 g_{0}}\left(\lambda^{2}+E_{2 g_{0}+1}-E_{j}\right), \quad \varkappa=E_{2 g_{0}+1}, \quad g=2 g_{0}-1
\end{aligned}
$$

for the NLS hierarchy equations.

Covering

Spectral curves $\Gamma_{a k n s}$ and $\Gamma_{a k n s}^{\prime}$ cover $\Gamma_{k d v}$ and second curves

$$
\begin{array}{ll}
\Gamma_{k d v+}: & w^{2}=(E-\varkappa) \prod_{j=1}^{2 g_{0}+1}\left(E-E_{j}\right), \quad \varkappa>E_{2 g_{0}+1}, \\
\Gamma_{k d v-}: & w^{2}=\prod_{j=1}^{2 g_{0}}\left(E-E_{j}\right), \quad \varkappa=E_{2 g_{0}+1} .
\end{array}
$$

The curves $\Gamma_{k d v+}\left(g_{+}=g_{0}\right)$ and $\Gamma_{k d v-}\left(g_{-}=g_{0}-1\right)$ are spectral curves for finite-gap solutions of equations from NLS- hierarchy ($q=p^{*}$).

Reduction

Let us define
(1) Vectors $2 \pi i \widehat{\mathbf{V}}^{j}$ are vectors of b-periods of corresponding normalized Abelian integrals on $\Gamma_{k d v \pm ; ~}$
(2) Matrix \widehat{B} is matrix of b-periods of holomorphic normolized integrals on $\Gamma_{k d v \pm}$.
Then from theorem of reduction of multi-dimensional Riemann theta functions we get the following relation

$$
\begin{aligned}
\Theta\left(U\left(x, t_{1}, \ldots\right)\right)= & \sum_{k_{j} \in\{0 ; 1\}} \varepsilon\left(k_{1}, \ldots, k_{g}\right) \Theta\left(4 \widehat{\mathbf{V}}^{1} t_{1}+\ldots \mid 2 \widehat{B}\right) \\
& \times \Theta\left(2 \mathbf{W}^{1}\left(x+6 \varkappa t_{2}\right)+8 \mathbf{W}^{2} t_{2}+\ldots \mid 2 B\right),
\end{aligned}
$$

The number of terms in sum equals 2^{g}.

Elliptic solutions

$$
\binom{\Gamma_{k d v}}{v(x, t)} \rightarrow\binom{\Gamma_{a k n s}}{p(x, y, t)} \rightarrow u(x, y, t)
$$

Therefore, if $\Gamma_{k d v}$ is a spectral curve
(1) of elliptic in x finite-gap solution of KdV equation, the solution $u=2|p|^{2}$ of KP-I equation is also elliptic in x;
(2) of elliptic in x and t two-pase finite-gap solution of KdV equation, the four-phase solution $u=2|p|^{2}$ of KP-I equation is elliptic in x and not elliptic in t and y;
(3) of elliptic in x and t two-pase finite-gap solution of KdV equation and $\varkappa=E_{5}$, the three-pase solution $u=2|p|^{2}$ of KP-I equation is elliptic in x and y and not elliptic in t.

