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Euler, symmetric functions, and quantum groups

The theory of symmetric functions, initiated by Euler, plays a

crucial role in the theory of KP hierarchy via boson-fermion cor-

respondence.

Representation theory of quantum groups, first developed in St.

Petersburg in quantum integrable systems also play important

roles in some examples to be presented.
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2. Witten Conjecture/Kontsevich Theorem as example of emer-

gent geometry: The Virasoro constraints point of view

3. Witten Conjecture/Kontsevich Theorem as example of emer-

gent geometry: The KP hierarchy point of view

4. Emergent geometry of KP hierarchy

5. More examples



What does ”emergent geometry” mean?

In string theory, there are following approaches to compute par-

tition function, free energy or n-point correlation functions:

1. Recursion relations

2. Integrable hierarchies

3. Mirror symmetry



Recursion Relations

These include:

1. Topological recursion relations

2. Virasoro constraints

3. Eynard-Orantin topological recursions

From lower genera, few points to higher genera, more points.



Integrable hierarchies

These include:

1. Matrix models and integrable hierarchies

2. Topological gravity and KdV hierarchy (Witten Conjecture/

Kontsevich Theorem)

3. FJRW theory and Drinfeld-Sokolov hierarchies

4. Dubrovin-Zhang theory (from Frobenius manifolds to inte-

grable hierarchies)



Mirror symmetry

1. In genus zero: deformation theory of mirror manifold and vari-

ation of Hodge structures –special Kähler geometry on moduli

space of complex structures

2. In genus one: analytic torsions and tt∗-geometry

3. In higher general: holomorphic anomaly equation (quantiza-

tion and recursion)



Emergent geometry

The idea behind what we call emergent geometry is a synthesis
of ideas from the above three different aspects of string theory.

Integrable hierarchies
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It is borrowed from statistical physics, it means the geometric
structures that emerge when there is an infinite degree of free-
dom.

The idea of emergence was advocated by Nobel Laureate P.
Anderson in a 1972 paper entitled ”More is different” published
in Science.



An example of emergent phenomenon: Witten

Conjecture/Kontsevich Theorem

For topological 2D gravity, the n-point correlators are defined by

〈τm1 · · · τmn〉g :=
∫
Mg,n

ψ
m1
1 · · ·ψmn

n .

Fg(t) =
∑
n≥0

1

n!

∑
a1,...,an≥0

ta1 · · · tan〈τa1, · · · , τan〉g.

F (t;λ) =
∑
g≥0

λ2g−2Fg(t).

ZWK = expF (t;λ).

This is called the Witten-Kontsevich tau-function .



Witten Conjecture/Kontsevich Theorem

ZWK is a tau-function of the KdV hierarchy.

This means that u = λ2 ∂F
∂2t20

satisfies a sequence of equations:

∂tnu = ∂t0Rn+1,

where t0 = x.

Here Rn is a sequence of differential polynomials (Gelfand-Dickey

polynomials).



Virasoro Constraints

Dijkgraaf-Verlinde-Verlinde:

∂

∂un+1
ZWK = L̂nZWK, n ≥ −1,

where the operators L̂n are defined by:

L̂n =
∞∑
k=0

(2k + 1)uk
∂

∂uk+n
+
λ2

2

n−1∑
k=0

∂2

∂uk∂un−k−1
+

u2
0

2λ2
δn,−1 +

δn,0

8
.

Here we have made the following change of coordinates:

tk = (2k + 1)!!uk.



Virasoro Constraints for free energy

In terms of the free energy,

∂F

∂u0
=
∞∑
k=1

(2k + 1)uk
∂F

∂uk−1
+

u2
0

2λ2
,

∂F

∂u1
=
∞∑
k=0

(2k + 1)uk
∂F

∂uk
+

1

8
,

∂F

∂un
=
∞∑
k=0

(2k + 1)uk
∂F

∂uk+n−1

+
λ2

2

n−2∑
k=0

(
∂2F

∂uk∂un−k−2
+

∂F

∂uk

∂F

∂un−k−2

)
, n ≥ 2.



Virasoro Constraints for free energy in genus zero

∂F0

∂u0
=
∞∑
k=1

(2k + 1)uk
∂F0

∂uk−1
+
u2

0

2
,

∂F0

∂u1
=
∞∑
k=0

(2k + 1)uk
∂F0

∂uk
,

∂F0

∂un
=
∞∑
k=0

(2k + 1)uk
∂F0

∂uk+n−1
+

1

2

n−2∑
k=0

∂F0

∂uk

∂F0

∂un−k−2
, n ≥ 2.



Derivatives of F0 on the small phase space

Now we take ui = 0 for i ≥ 1 in these equations, and set fn =
∂F0
∂un

(u0,0, . . . ), we get:

f0 =
u2

0

2
,

f1 = u0f0,

fn = u0fn−1 +
1

2

n−2∑
k=0

fkfn−k−2, n ≥ 2.



Derivatives of F0 on the small phase space

One can easily find the following explicit solution:

∂F0

∂un
(u0,0, . . . ) =

(2n+ 1)!!

(n+ 2)!
un+2

0 .

We note the above result can be reformulated as follows:

z(1−
2u0

z2
)1/2 = z −

u0

z
−
∞∑
n=0

∂F0

∂un
(u0,0, . . . ) · z−(2n+3).



Emergence of the spectral curve for topological 2D gravity

Consider the Puiseux series:

x = f −
u0

f
−
∑
n≥0

∂F0

∂un
(u0,0, . . . ) · f−2n−3,

where f2 = 2y, then one has

y =
1

2
x2 + u0.

When u0 = 0, this gives us the Airy curve:

y =
1

2
x2.

It is the spectral curve of the topological 2D gravity.

This is an emergent phenomenon : You have to go through the
infinite-dimensional big phase space to see the spectral curve.



Emergence of the special deformation of spectral curve for

topological 2D gravity

Theorem (Z.) Consider the following series:

x = f −
∑
n≥0

(2n+ 1)unf
2n−1 −

∑
n≥0

∂F0

∂un
(u) · f−2n−3.

Then one has

x2 =2y

(
1−

∑
n≥1

(2n+ 1)un(2y)n−1
)2

−2u0

(
1−

∑
n≥1

(2n+ 1)un(2y)n−1
)

+2
∑
n≥0

∑
k≥n+2

(2k + 1)uk ·
∂F0

∂un
· (2y)k−n−2.



In particular,

(x2)− = 0.

Here for a formal series
∑
n∈Z anf

n,

(
∑
n∈Z

anf
n)+ =

∑
n≥0

anf
n, (

∑
n∈Z

anf
n)− =

∑
n<0

anf
n.

Proof. Equivalent to Virasoro constraints for genus zero free

energy.



Examples of the special deformation

When tj = 0 for j ≥ 3, the curve is deformed to:

x2 = −2u0(1− 3u1) + 10u2
∂F0

∂u0
(u0, u1, u2)

+ ((1− 3u1)2 + 10u0u2)(2y)

− 10u2(1− 3u1)(2y)2 + 25u2
2(2y)3.

When t1 = 1 i.e., u1 = 1/3,

x2 = 10u2
∂F0

∂u0
(u0, u1, u2) + 10u0u2(2y) + 25u2

2(2y)3.

The spectral curve undergoes a phase change from a rational

curve to an elliptic curve! In general, the spectral curve can

undergo a phase change from p2 = q to p2 = q2n+1 in this way.

This is again an emergent phenomenon.



Quantum deformation theory

Q. How to get mirror symmetry for topological 2D gravity in all
genera?

A. Quantum deformation theory.

We quantize the special deformation of the Airy curve.

Rewrite the special deformation of the Airy curve as follows:

x(z) = −
∑
n≥0

(2n+ 1)ũnz
2n−1

2 −
∑
n≥0

∂F0

∂ũn
(u) · z−

2n+3
2 ,

where z = 2y = f2, and

ũn = un −
1

3
δn,1.



Consider the space of

V = z1/2C[[z, z−1]] = {
∞∑
n=0

(2n+ 1)ũnz
(2n−1)/2 +

∞∑
n=0

ṽnz
−(2n+3)/2}.

We regard {ũn, ṽn} as linear coordinates on V , and introduce the

following symplectic structure on V :

ω =
∞∑
n=0

dũn ∧ dṽn.

It follows that

ṽn =
∂F0

∂un
(u)

defines a Lagrangian submanifold in V .



Canonical quantization of the special deformation of Airy curve

Take the natural polarization that {qn = ũn} and {pn = ṽn}, one

can consider the canonical quantization:

ˆ̃un = ũn·, ˆ̃vn =
∂

∂ũn
.

Corresponding to the field x, consider the following field of op-

erators on the Airy curve:

x̂(z) = −
∑
m∈Z

β−(2m+1)z
m−1/2 = −

∑
m∈Z

β2m+1z
−m−3/2.

where the operators β2k+1 are defined by:

β−(2k+1) = λ−1(2k + 1)ũk·, β2k+1 = λ
∂

∂ũk
.



Regularized products of two fields

We define the regularized product of x̂(z) with itself by

x̂(z)� x̂(z) = x̂(z)�2 := lim
ε→0

(x̂(z + ε)x̂(z)−
2

ε2
)

= : x̂(z)x̂(z) : +
1

4z2
.



Virasoro constraints and mirror symmetry for 2D topological
gravity

Recall the special deformation of the Airy curve constructed us-
ing the genus zero free energy of the 2D topological gravity, is
characterized by :

(x2)− = 0.

The quantized version of this equation is

Theorem (Z.) The Witten-Kontsevich tau-function ZWK satis-
fies the following equation:

(x̂(z)�2)−ZWK = 0.

This result establishes the mirror symmetry of the theory of 2D
topological gravity and the quantum deformation theory of the
Airy curve.



Fermionic expression for ZWK from Virasoro constraints

Theorem (Z.) Under a change of coordinates

tn = (−1)n
√
−2T2n+1 ·

n∏
j=0

(j +
1

2
), Tn =

1

n
pn,

and the boson-fermion correspondence, the Witten-Kontsevich

tau-function is given by a Bogoliubov transformation:

ZWK = eA|0〉,

where the operator

A =
∑

m,n≥0

Am,nψ−m−1
2
ψ∗−n−1

2

with the coefficients Am,n as given on the next slide



Am,n = 0 if m+ n 6≡ −1 (mod 3) and

A3m−1,3n = A3m−3,3n+2 = (−1)n
(
−
√
−2

144

)m+n (6m+ 1)!!

(2(m+ n))!

·
n−1∏
j=0

(m+ j) ·
n∏

j=1

(2m+ 2j − 1) · (Bn(m) +
bn

6m+ 1
),

A3m−2,3n+1 = (−1)n+1
(
−
√
−2

144

)m+n (6m+ 1)!!

(2(m+ n))!

·
n−1∏
j=0

(m+ j) ·
n∏

j=1

(2m+ 2j − 1) · (Bn(m) +
bn

6m− 1
),

where Bn(m) is a polynomial in m of degree n− 1 defined by:

Bn(x) =
1

6

n∑
j=1

108jbn−j · (x+ n)[j−1],



where

(a)[j] =

1, j = 0,

a(a− 1) · · · (a− j + 1), j > 0,

and bn is a constant depending on n defined by:

bn =
2n · (6n+ 1)!!

(2n)!
.



The following are some examples:

B0 = 0,

B1 = 18,

B2 = 1944x+ 5778,

B3 = 209952x2 + 1253880x+ 2277477,

B4 = 22674816x3 + 226118304x2 + 787643676x+ 1114815879,

B5 = 2448880128x4 + 36665177472x3 + 207169401168x2

+545727699972x+ 2633883829515/4,

B6 = 264479053824x5 + 5546713489920x4 + 46133330328000x3

+193184363553840x2 + 424746412978761x

+1828597219279695/4,



and

b0 = 1,

b1 = 105,

b2 = 45045/2,

b3 = 14549535/2,

b4 = 25097947875/8,

b5 = 13537833083775/8,

b6 = 17531493843488625/16.



Examples of A3m−n−1,n

A3m−1,0 =

(
−
√
−2

144

)m(6m+ 1)!!

(2m)!
·

1

6m+ 1
,

A3m−2,1 = −
(
−
√
−2

144

)m(6m+ 1)!!

(2m)!
·

1

6m− 1
,

Up to the factor (−
√
−2

144 )m, our A3m−1,0 and A3m−2,1 are exactly

the coefficients of the two seires in the Faber-Zagier tautological

relations.

Their generating series are the so-called Airy functions.



Why do Airy functions appear?

Recall the mirror geometry of a point is the curve:

y =
1

2
x2.

We will quantize this curve in the following way:

x 7→ x̂ =
d

dy
, y 7→ ŷ = y · .

After quantization the above equation leads to a differential e-
quation:

1

2

d2

dy2
ψ(y) = y · ψ(y).

This is the Airy equation.



Summary

In the above results we have actually used Virasoro constraints
only.

The first result is in bosonic picture: Witten-Kontsevich tau-
function is annihilated by some bosonic fields on the Airy curve.

The second result is in the fermionic picture: The Witten-
Kontsevich function is the Bogoliubov transform of the vacuum,
it is related to the two solutions of the Airy equation.

These results suggest to study them from the point of view of
KdV hierarchy, or more generally, KP hierarchy, and from the
point of view of conformal field theory of free bosons and free
fermions on Riemann surfaces.



Emergent Picture for Gromov-Witten theory of a point
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For Witten-Kontsevich tau-function, the relevant integrable hi-

erarchy is the KdV hierarchy which is a reduction of the KP

hierarchy.

It is important to work with the KP hierarchy first, then consider

the reduction.



KP hierarchy and its reductions

Let x = t1, ∂x = ∂
∂t1

,

L = ∂x +
∞∑
n=1

un+1(t)(~∂x)−n,

The latter is a system of partial differential equations:

~
∂

∂tk
L = [Bk, L], k = 1,2, . . . ,

Bk = (Lk)+.

This system is equivalent to the Zakharov-Shabat zero-curvature

equations:

~
∂Bm

∂Tn
− ~

∂Bn

∂Tm
+ [Bm, Bn] = 0.



Emergent geometry of KP hierarchy
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Wave-function

By Sato’s formula, one can define the wave function from the
tau-function as follows:

w(T; ξ) = exp

(
~
∞∑
n=1

Tnξ
n

)
·
τ(T1 − ~ξ−1, T2 − ~1

2ξ
−2, . . . ; ~)

τ(T1, T2, . . . ; ~)
.

It is a formal solution of the form

w = exp

(
~−1

∞∑
n=1

Tnξ
n

)
·
(

1 +
w1

ξ
+
w2

ξ2
+ · · ·

)
to the system

Lw = ξ · w,

~
∂w

∂Tn
= Bnw, n = 1,2, . . . .

The compatibility condition of this system is the KP system.



Dressing operator

The dressing operator W is defined by:

W := 1 +
∞∑
n=1

wj∂
−j
x .

The dressing operator W and the wave-function w uniquely de-
termine each other:

w = W exp

(
~−1

∞∑
n=1

Tnξ
n

)
.

The operator L and W are related by:

L := W ◦ ~∂x ◦W−1.

The evolution of the operator W is governed by the Sato equa-
tion:

∂

∂Tk
W = −(Lk)−W.



Orlov-Schulman operator

The Orlov-Schulman operator is defined by

M = W

( ∞∑
n=1

nTn(~∂x)n−1
)
W−1.

It can be written in the following form:

M =
∞∑
n=1

nTnL
n−1 +

∞∑
n=1

vn(T; ~)L−n−1.

This operator satisfies the following equations:

~
∂M

∂Tn
= [Bn,M ], n = 1,2, . . . ,

[L,M ] = ~.



S-function

Write the logarithm of the wave-function as follows:

logw(T; ξ) = ~−1
∞∑
n=1

Tnξ
n + ~−1

∞∑
n=0

Sn+1(T; ~)ξ−n.

By Sato’s formula, we have

~−1
∞∑
n=0

Sn+1(T; ~)ξ−n = F (T− ~[ξ−1]; ~)− F (T; ~).



Relations among operators by S-function

~∂ = L+
∞∑
n=1

∂Sn+1

∂x
L−n,

M =
∞∑
n=1

nTnL
n−1 −

∞∑
n=1

nSn+1L
−n−1,

Bm = Lm +
∞∑
n=1

∂Sn+1

∂Tm
L−n.



The Ŝ-operator and noncommutative Hamilton-Jacobi equation

Introduce an operator

Ŝ :=
∞∑
n=1

TnL
n +

∞∑
n=0

Sn+1(T; ~)L−n,

then one has

~Ŝw = (
∞∑
n=1

Tnξ
n +

∞∑
n=0

Sn+1(T; ~)ξ−n)w.

One can regard Ŝ as the noncommutative action operator . For-
mally one has

∂LŜ = M, ∂TnŜ = Bn.

Here L is the noncommutative generalized position, and M is the
noncommutative conjugate momentum; Tn’s are time variables,
and Bn are the corresponding Hamiltonians.



Takasaki-Takebe’s result on twistor data

Suppose that

f(~, x, ~∂x) =
∑
n∈Z

fn(~, x)(~∂x)n,

g(~, x, ~∂x) =
∑
n∈Z

gn(~, x)(~∂x)n

are two pseudo-differential operators with some homogeneity

conditions, and that they satisfy the canonical commutation re-

lation

[f, g] = ~.



Takasaki-Takebe’s result on twistor data

Assume that there are two pseudo-differential operators L and

M of the forms

L = ~∂x +
∞∑
n=1

un+1(~, t)(~∂x)−n,

M =
∞∑
n=1

ntnL
n−1 +

∞∑
n=1

vn(~, t)L−n−1,

respectively, are given and that some homogeneity conditions are

satisfied and

[L,M ] = ~



Takasaki-Takebe’s result on twistor data

If f(~,M,L) and g(~,M,L) are both differential operators, i.e.,

(f(~,M,L))− = (g(~,M,L))− = 0,

then L is a solution of the KP hierarchy, and M is the corre-

sponding Orlov-Shulman operator.

The pair (f, g) above is called the twistor data of the tau-

function of the KP hierarchy.

Conversely, any solution of the KP hierarchy possesses a twistor

data.



Noncommutative special deformation

Write P = f(M,L; ~) and Q = g(M,L; ~). Then one has

[P,Q] = ~.

Hence one can also use the pair (P,Q) as noncommutative Dar-

boux coordinates. In particular, one can express Ŝ in terms of P

and Q.

Let us rewrite Ŝ as a noncommutative function on the noncom-

mutative (P,Q)-plane. We will consider the following noncom-

mutative curve:

Q = ∂P Ŝ.

We will call this the noncommutative special deformation.



Special twistor data and string equation

Suppose that the operators P and Q satisfy:

P = W (~∂x)nW−1,

Q = W

(
1

n
x(~∂x)1−n +

∑
m
cm(~) · (~∂x)m

)
W−1.

In particular, P = Ln.

We call such a twistor data a special twistor data .

In this case the equation

[P,Q] = ~

is called the string equation .



Sato Grassmannian

In the above we are naturally led to the space C((∂−1
x )) of pseudo-

differential operators with constant coefficients. Let us recall
Sato Grassmannian.

Denote by E the ring of pseudo-differential operators. Then
H = E/Ex is isomorphic as a vector space to the set C((∂−1

x )).
After a Fourier transform,

H ∼= C((z−1)),

with the action of xm∂nx transformed to the action of ∂mz z
n.

Let H+ = C[z] and H− = z−1C[[z−1]]. One has a decomposition
H = H+ ⊕H−. Let π : H → H+ be the projection. The big cell
Gr(0) of Sato grassmannian consists of linear subspaces V of H
such that π+|V : V → H+ are isomorphisms.



Kac-Schwarz operator

One can use the dressing operator to associate an element V

corresponding to the tau-function as follows:

V = W−1H+.

Since P and Q are differential operators, they satisfy:

PH+ ⊂ H+, QH+ ⊂ H+.

These conditions are equivalent to:

znV ⊂ V, AV ⊂ V,

where A is the Kac-Schwarz operator:

A = ~1−n ∂

∂zn
+
∑
m
cm(~) · (~z)m.



Kac-Schwarz operator characterization of ZWK

Let tn = (2n + 1)!!T2n+1, ZWK becomes a series in T1, T3. . . . ,
and a tau-function of the KP hierarchy.

According to Kac-Schwarz, the element V ∈ Gr(0) corresponding
to ZWK is given by a basis of the form {z2na(z), z2n+1b(z)}n≥0,
where a(z) and b(z) are given by the following series respectively:

a(z) =
∞∑

m=0

(6m− 1)!!

62m(2m)!
z−3m,

b(z) = −
∞∑

m=0

(6m− 1)!!

62m(2m)!

6m+ 1

6m− 1
z−3m+1.

This space is characterized as follows:

z2V ⊂ V, (
1

z
∂z −

1

2z2
+ z)V ⊂ V.



Twistor data and for Witten-Kontsevich tau-function

P = L2, Q = L−1M −
1

2
L−2 + L,

Ŝ =
∞∑
n=1

TnP
n/2 +

∞∑
n=0

Sn+1(T; ~)P−n/2,

Then the noncommutative special deformation is given by:

Q =
1

2

∞∑
n=1

nTnP
n/2−1 −

1

2

∞∑
n=0

Sn+1(T; ~)P−n/2−1.

Set T2n = 0 for n ≥ 1 in the dispersionless version:

Q =
1

2

∞∑
n=0

(2n+ 1)T2n+1Pn−1/2 +
1

2

∞∑
n=0

∂F0

∂T2n+1
P−n−3/2.

This is the special deformation.



Fermionic picture from KP hierarchy point of view

Suppose that V ∈ Gr(0) is given by a normalized basis

{fn = zn +
∑
m≥0

an,mz
−m−1}n≥0,

then after the boson-fermion correspondence the tau-function

corresponds to:

|U〉 = eA|0〉,

where A is a linear operator on the fermionic Fock space:

A =
∑

m,n≥0

an,mψ−m−1/2ψ
∗
−n−1/2.



A formula for n-point function

For n ≥ 1, the bosonic n-function associated to tau-function of

the KP hierarchy is:

∑
j1,...,jn≥1

∂nFU
∂Tj1 · · · ∂Tjn

∣∣∣∣∣
T=0

ξ
−j1−1
1 · · · ξ−jn−1

n +
δn,2

(ξ1 − ξ2)2

= (−1)n−1 ∑
n-cycles

n∏
i=1

Â(ξσ(i), ξσ(i+1)),

where Â(ξi, ξj) are the propagators:

Â(ξi, ξj) =


iξi,ξj

1
ξi−ξj +A(ξi, ξj), i < j,

A(ξi, ξi), i = j,

iξj,ξi
1

ξi−ξj +A(ξi, ξj), i > j.



Notations used in the formula

A(ξ, η) =
∑

m,n≥0

am,nξ
−m−1η−n−1,

ix,y
1

(x− y)n
=

∑
k≥0

(−n
k

)
x−n−kyk.



The propagator for Witten-Kontsevich tau-function

Recall two solutions of Airy equation give rise to the Faber-Zagier

series:

a(z) =
∞∑

m=0

(6m− 1)!!

62m(2m)!
z−3m,

b(z) = −
∞∑

m=0

(6m− 1)!!

62m(2m)!

6m+ 1

6m− 1
z−3m+1.

I derive the following formula for the propagator:∑
m,n≥0

am,nx
−m−1y−n−1 = −

1

x− y
+
a(−x) · b(y)− a(y)b(−x)

x2 − y2
.



First few terms of the propagator

The following are the first few terms of A(x, y):

A(x, y) =
5

24xy3
−

7

24x2y2
+

5

24x3y

+
385

1152xy6
−

455

1152x2y5
+

385

1152x3y4

−
385

1152x4y3
+

455

1152x5y2
−

385

1152x6y

+
85085

82944xy9
−

95095

82944x2y8
+

85085

82944x3y7

−
43505

41472x4y6
+

45955

41472x5y5
−

43505

41472x6y4

+
85085

82944x7y3
−

95095

82944x8y2
+

85085

82944x9y
+ · · · .



Formula for one-point function and two-point function

The bosonic one-point function for topological 2D gravity is:

∑
j

∂F

∂Tj

∣∣∣∣∣
T=0

ξ−j−1 =
∑
g≥1

(6g − 3)!!

24gg!ξ6g+1
.

The bosonic two-point function for topological 2D gravity is:

∑
j,k

∂2F

∂Tj∂Tk

∣∣∣∣∣
T=0

ξ
−j−1
1 ξ−k−1

2 = −Â(ξ1, ξ2)Â(ξ2, ξ1)−
1

(ξ1 − ξ2)2
.



Example: Hurwitz numbers

Denote by Hg,µ the Hurwitz number of branched coverings of P1

of type µ by genus g Riemann surfaces.

These numbers can be computed by the Burnside formula:

ZH : = exp
∑
µ6=∅

∑
g≥0

λ2g−2+l(µ)+|µ|

(2g − 2 + l(µ) + |µ|)!
Hg,µpµ

=
∑
ν

dimRν

|ν|!
· eκνλ/2 · sν.

Here pµ =
∏l(µ)
i=1 pµi are the Newton functions, sν are the Schur

functions.

ZH is a tau-function of the KP hierarchy, with Tn = pn
n . This is

a special case of a result of Okounkov for two-Hurwitz numbers.



Spectral curve and quantum spectral curve for Hurwitz
numbers

The spectral curve for Hurwitz numbers is the Lambert curve
(Eynard et al):

x = ye−y.

The quantum spectral curve for Hurwitz numbers is the quantum
Lambert curve (Z.):

(ŷ − x̂eŷ)Φ = 0, x̂ = x·, ŷ = λx
∂

∂x
,

where

Φ =
∞∑
n=0

en(n−1)λ/2 xn

n!λn
.



Fermionic picture for Hurwitz partition function

UH = exp(
∑

m,n≥0

(−1)n
e(m(m+1)/2−n(n+1)/2)λ

(m+ n+ 1) ·m! · n!
· ψ−m−1/2ψ

∗
−n−1/2)|0〉.

The one-point function:

G(1)(ξ) =
∞∑
n=1

1

n!
(enλ/2 − e−nλ/2)n−1ξ−n−1.



The two-point function:

G(2)(ξ1, ξ2)

=
∑
m>1

1

(m+ 1)!

(
qm/2 − q−m/2

)m+1

ξ−2
1 ξ−m−1

2

+
∑
m≥1

1

(m+ 2)!
(q

m
2 − q−

m
2 )m+1

(
qm+1 − q−m +mq −mq−1

)
ξ−3

1 ξ−m−1
2

+
∑
m≥1

1

(m+ 3)!
(q

m
2 − q−

m
2 )m+1(q3/2 − q−3/2)2

·
[
q2m+3 + q−2m−3 + (m+ 1)(qm+3 + q−m−3)− (m+ 2)(qm + q−m)

(q3/2 − q−3/2)2

+
(m+ 2

2

)]
· ξ−4

1 ξ−m−1
2 + · · ·



Example: Mariño-Vafa formula

For a partition µ = (µ1, . . . , µl(µ)), consider the Hodge integral:

Cg,µ(a) = −
√
−1|µ|+l(µ)

|Aut(µ)|
(a(a+ 1))l(µ)−1

l(µ)∏
i=1

∏µi−1
a=1 (µia+ a)

(µi − 1)!

·
∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−a− 1)Λ∨g (a)∏l(µ)
i=1(1− µiψi)

.



The Mariño-Vafa formula (Mariño-Vafa, Liu-Liu-Z., Okounkov-

Pandharipande) states that (q = e
√
−1λ):

ZMV : = exp
∑
|µ|≥1

∑
g≥0

λ2g−2+l(µ)Cg,µ(a)pµ

=
∑
|ν|≥0

qaκντ/2√−1|ν|sν(qρ)sν,

sν(qρ) = sν(q−1/2, q−3/2, . . . ) =
qκν/4∏

x∈ν(qh(x)/2 − q−h(x)/2)
.

This generalizes ELSV formula for Hurwitz numbers.

With Tn = pn
n ZMV is a tau-function of the KP hierarchy (Z.).



Spectral curve and quantum spectral curve for Mariño-Vafa
partition function

The spectral curve for MV partition function is the following
curve (L, Chen, Z.):

x = ya − ya+1.

The quantum spectral curve for MV partition function is the
quantum Lambert curve (Z.):

(1− ŷ − eλ/2x̂ŷ−a)Φ = 0, x̂ = x·, ŷ = eλx
∂
∂x,

where

Φ =
∞∑
n=0

e−an(n−1)λ/2+nλ/2∏n
j=1(1− ejλ)

xn.



Fermionic picture for MV partition function

UMV = exp

( ∑
m,n≥0

(−1)n
√
−1m+n+1

·
q(m(m+1)/2−n(n+1)/2))(a+1/2)

[m+ n+ 1] · [m]! · [n]!
· ψ−m−1/2ψ

∗
−n−1/2

)
|0〉,

q = e
√
−1λ,

[n] = qn/2 − e−n/2,

[n]! = [n] · [n− 1] · · · [1].



Example: The conifold partition function

The full Mariño-Vafa conjecture states (Mariǹo-Vafa, Z.):

exp
∑

µ∈P+

∞∑
g=0

∞∑
k=0

√
−1l(µ)F̃

(a)
g;k;µλ

2g−2+l(µ)e(|µ|/2−k)tpµ

=
∑
µ
sµ · qaκµ/2 · dimqRµ.

The left-hand side is some open string partition function of the

resolved conifold, the right-hand side is the quantum dimension :

dimqRµ =
∏

1≤i<j≤l(µ)

[µi − µj + j − i]
[j − i]

·
l(µ)∏
i=1

∏µi
j=1[j − i]et∏µi

j=1[j − i+ l(µ)]
.

[n]et = et/2qn/2 − e−t/2q−n/2.



Spectral curve and quantum spectral curve for conifold
partition function

The spectral curve for conifold partition function is the following
curve (Z.):

1− y + xya+1 − e−txya = 0.

The quantum spectral curve for conifold partition function is
(Z.):

(1− ŷ + q1/2x̂ŷa+1 − q1/2e−tx̂ŷa)Φ = 0, x̂ = x·, ŷ = e−
√
−1λx ∂

∂x,

where

Φ =
∞∑
n=0

n∏
j=1

1− e−tq−(j−1)

1− q−j
qan(n−1)/2−n/2xn.



Fermionic picture for conifold partition function

UMV = exp

( ∑
m,n≥0

(−1)n dimqR(m|n) · ψ−m−1/2ψ
∗
−n−1/2

)
|0〉, .

dimqR(m|n) =
q(m(m+1)−n(n+1))/4

[m+ n+ 1] · [m]! · [n]!

·
m∏
j=0

(et/2qj/2 − e−t/2q−j/2)

·
n∏

k=1

(et/2q−k/2 − e−t/2qk/2).



Example: Hermitian matrix model

For N ≥ 1,

ZN =

∫
HN dM exp

(
tr
∞∑
n=1

gn−δn,2
ngs

Mn

)
∫
HN dM exp

(
− 1

2gs
tr(M2)

) .

HN : space of Hermitian N ×N matrices.

I will give a close formula for ZN .



ZN = 1 +N2 ·
g2

2
+Ng−1

s ·
g2

1

2
+ (N + 2N3)gs ·

g4

4
+ 3N2 ·

g3g1

3

+ (2N2 +N4) ·
g2

2

8
+ (2N +N3)g−1

s ·
g2g

2
1

4
+ 3N2g−2

s ·
g4

1

4!

+ (10N2 + 5N4)g2
s
g6

6
+ (5N + 10N3)gs ·

g5g1

5

+ (4N + 9N3 + 2N5)gs ·
g4g2

8
+ (13N2 + 2N4) ·

g4g
2
1

8

+ (3N + 12N3)gs ·
g2

3

18
+ (12N2 + 3N4) ·

g3g2g1

6

+ (6N + 9N3)g−1
s ·

g3g
3
1

18
+ (8N2 + 6N4 +N6) ·

g3
2

48

+ (8N + 6N3 +N5)g−1
s ·

g2
2g

2
1

16
+ (12N2 + 3N4)g−2

s ·
g2g

4
1

48

+ 15N3g−3
s ·

g6
1

720
+ · · · .



Close formula for Hermitian matrix model partition function

As in other examples, we use the theory of symmetric functions

First change to Newton functions:

gn = g
1−n/2
s pn

next change to Schur functions:

sµ =
∑
ν

χµ(ν)

zν
pν, pν =

∑
µ
χµ(ν)sµ.



Then one has a much more tractable expression:

ZN = 1 +
N(N + 1)

2
s(2) −

N(N − 1)

2
· s(1,1)

+
1

8
N(N + 1)(N + 2)(N + 3) · s(4)

−
1

8
N(N + 1)(N + 2)(N − 1) · s(3,1)

+
1

4
N2(N + 1)(N − 1) · s(2,2)

−
1

8
N(N + 1)(N − 1)(N − 2) · s(2,1,1)

+
1

8
N(N − 1)(N − 2)(N − 3) · s(14) + · · ·



Close formula for partition function of Hermitian matrix model

Z =
∑
n≥0

∑
|λ|=2n

(2n− 1)!!
χλ(2n)

χλ
(12n)

· dimR
U(N)
λ · sλ

=
∑
n≥0

∑
|λ|=2n

(2n− 1)!!
χλ(2n)

χλ
(12n)

·
∏
x∈λ

N + c(x)

h(x)
· sλ

(2n− 1)!!
χλ(2n)

χλ
(12n)

= (−1)n(n−1)/2
∏
f odd f !!

∏
f ′ even f

′!!∏
f odd,f ′ even(f − f ′)

where

fi = λi + 2n− i, i = 1, . . . ,2n.



Fermionic picture for Hermitian matrix model partition function

U = exp

(∑
n≥1

∑
p+q=2n−1

(−1)p · (−1)[(p+1)/2]
(n− 1

[p/2]

)(2n− 1)!!

(2n)!

·N
q∏

j=1

(N + j) ·
p∏

k=1

(N − k) · ψ−q−1/2ψ
∗
−p−1/2

)
|0〉

= exp

(
N(N + 1)/2 · ψ−3/2ψ

∗
−1/2 +N(N − 1)/2 · ψ−1/2ψ

∗
−3/2

+ N(N + 1)(N + 2)(N + 3)/8 · ψ−7/2ψ
∗
−1/2

+ N(N + 1)(N + 2)(N − 1)/8 · ψ−5/2ψ
∗
−3/2

− N(N + 1)(N − 1)(N − 2)/8 · ψ−3/2ψ
∗
−5/2

− N(N − 1)(N − 2)(N − 3)/8 · ψ−1/2ψ
∗
−7/2 + · · ·

)
|0〉



One-point function for Hermitian matrix model partition

function and Harer-Zagier numbers

G(1)(ξ) = 1 ·N2ξ−3 + (2N3 +N)ξ−5 + (5N4 + 10N2)ξ−7

+ (14N5 + 70N3 + 21N)ξ−9

+ (42N6 + 420N4 + 483N2)ξ−11

+ (132N7 + 2310N5 + 6468N3 + 1485N)ξ−13

+ (429N8 + 12012N6 + 66066N4 + 56628N2)ξ−15 + · · ·

The coefficients are the Harer-Zagier numbers εg(n) =number

of ways to glue a 2n-gon to get a Riemann surface of genus g:

εg(n) =
(2n)!

(n+ 1)!(n− 2g)!
· coefficient of x2g in

(
x/2

tanh(x/2)

)n+1

.



A formula for Harer-Zagier numbers using Stirling numbers

For n ≥ 1, we then have:

[n/2]∑
g=0

εg(n)Nn+1−2g

=
∑

p+q=2n−1

(−1)p · (−1)[(p+1)/2]
(n− 1

[p/2]

)(2n− 1)!!

(2n)!

·N
q∏

j=1

(N + j) ·
p∏

k=1

(N − k).



Spectral curve and quantum spectral curve for Hermitian

matrix model

The red numbers are Catalan numbers .

The spectral curve for Hermitian matrix model is the following

curve (Z.):

x = −
1√
2
y +

√
2N

y
.



Thank you very much for your

attentions!


