Frobenius manifolds and Frobenius algebra-valued integrable systems

Dafeng Zuo (USTC)

Russian-Chinese Conference on Integrable Systems and Geometry 19-25 August 2018

The Euler International Mathematical Institute

Outline:

Part A. Motivations

Part B. Some Known Facts about FM

Part C. The Frobenius algebra-valued KP hierarchy

Part D. Frobenius manifolds and Frobenius algebra-valued Integrable systems

Part A. Motivations

KdV equation : $4 \mathbf{u}_{\mathrm{t}}-12 \mathbf{u u}_{\mathrm{x}}-\mathbf{u}_{\mathrm{xxx}}=\mathbf{0}$
Lax pair: $L_{t}=\left[L_{+}^{\frac{3}{2}}, L\right], \quad L=\partial^{2}+2 u$
tau function: $u=(\log \tau)_{x x}$

Bihamiltonian structure(BH): (\{•, $\cdot\}_{2} \Longrightarrow$ Virasoro algebra)
$\{\tilde{f}, \tilde{g}\}_{1}=2 \int \frac{\delta f}{\delta u} \frac{\partial}{\partial \mathbf{x}} \delta \overline{\delta u} d x, \quad\{\tilde{f}, \tilde{g}\}_{2}=-\frac{1}{2} \int \frac{\delta f}{\delta u}\left(\frac{\partial^{3}}{\partial \mathbf{x}^{3}}+2 \mathbf{u} \frac{\partial}{\partial \mathbf{x}}+2 \frac{\partial}{\partial \mathbf{x}} \mathbf{u}\right) \frac{\delta g}{\delta u} d x$.
Dispersionless \Longrightarrow Hydrodynamics-type $\mathrm{BH} \Longrightarrow$ Frobenius manifold

Natural generalization

Lax pair/tau function/BH: $\mathrm{KdV} \Longrightarrow \mathrm{GD}_{n} / \mathrm{DS} \Longrightarrow \mathrm{KP}$ (other types)
$\{\cdot, \cdot\}_{2}:$ Virasoro $\Longrightarrow W_{n}$ algbra $\Longrightarrow W_{\infty}^{(N)}$ algebra

Lax pair/tau function/BH: $\quad \mathrm{dKdV} \Longrightarrow \mathrm{dGD}_{n} \Longrightarrow \mathrm{dKP}$
$\{\cdot, \cdot\}_{2}:$ Witt algebra $\Longrightarrow w_{n}$ algbra $\Longrightarrow w_{\infty}^{(N)}$ algebra

FM: $A_{1} \Longrightarrow A_{n-1} \Longrightarrow$ Infinite-dimensional analogue (?)

Other generalizations: the coupled KdV

$4 v_{t}-12 v^{v} v_{x}-v_{x x x}=0, \quad 4 w_{t}-12(v w)_{x}-w_{x x x}=0$.
tau function: $v=\left(\log \tau_{0}\right)_{x x}, w=\left(\frac{\tau_{1}}{\tau_{0}}\right)_{x x}$.
R. Hirota, X.B.Hu and X.Y.Tang, J.Math.Anal.Appl.288(2003)326

BH: A.P.Fordy, A.G.Reyman and M.A.Semenov-Tian-Shansky, Classical r-matrices and compatible Poisson brackets for coupled KdV systems, Lett. Math. Phys. 17 (1989) 25-29.
W.X.Ma and B.Fuchssteiner, The bihamiltonian structure of the perturbation equations of KdV Hierarchy. Phys. Lett. A 213 (1996) 49-55.
P.Casati and G.Ortenzi, New integrable hierarchies from vertex operator representations of polynomial Lie algebras. J.Geom.Phys. 56(2006) 418-449.

Johan van de Leur,J.Geom.Phys., h57(2007)435-447.

$$
\mathcal{F}_{2}^{0}=\left\{\left(\begin{array}{cc}
a_{0} & 0 \\
a_{1} & a_{0}
\end{array}\right)\right\}, \quad \mathcal{F}_{3}^{0}=\left\{\left(\begin{array}{ccc}
a_{0} & 0 & 0 \\
a_{1} & a_{0} & 0 \\
a_{2} & a_{1} & a_{0}
\end{array}\right)\right\}, \cdots, \mathcal{F}_{m}^{0}, \cdots
$$

-valued Lax pair

When $m=2$, it gives the Coupled KdV equation
$4 \mathrm{v}_{\mathrm{t}}-12 \mathrm{v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{xxx}}=0, \quad 4 \mathrm{w}_{\mathrm{t}}-12(\mathrm{vw})_{\mathrm{x}}-\mathrm{w}_{\mathrm{xxx}}=0$.

Question: To construct BH for the coupled KP hierarchy and study the related W-type algebras and Frobenius manifolds.

Method: Adler-Gelfand-Dickey scheme

A conjectural construction :

$$
\operatorname{tr}(A)=\text { the trace of }\left(\begin{array}{cccc}
\frac{1}{m} & \frac{1}{m-1} & \cdots & 1 \\
0 & \frac{1}{m} & \ddots & \frac{1}{2} \\
& \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{m}
\end{array}\right) A, \quad A \in \mathcal{F}_{m}^{0}
$$

Observation: $\left(\mathcal{F}_{m}^{0}, \operatorname{tr}, I_{m}\right)$ is a Frobenius algebra.

Part B.
 Some Known Facts about FM

Definition 1. A Frobenius algebra $\{\mathcal{A}, \circ, e, \operatorname{tr}\}$ over $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$ satisfies the following conditions:
(i). $\circ: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a commutative, associative algebra with unity e;
(ii). $\operatorname{tr} \in \mathcal{A}^{\star}$ defines a non-degenerate inner product $\langle a, b\rangle=\operatorname{tr}(a \circ b)$.

Since $\operatorname{tr}(a)=\langle e, a\rangle$ the inner product determines the form tr and visaversa. This linear form tr is often called a trace form (or Frobenius form).

Example 2. Given $\varepsilon \in \mathbb{R}$, let $\mathcal{F}_{N}^{\varepsilon}$ be an N-dimensional commutative associative algebra over \mathbb{C} with a basis $e_{1}, e_{2}, \cdots, e_{N}$ satisfying

$$
e_{i} \circ e_{j}= \begin{cases}e_{i+j-1}, & i+j \leq N+1 \\ \varepsilon e_{i+j-1-N}, & i+j>N+1\end{cases}
$$

We introduce N "basic" trace forms $\operatorname{tr}: \mathcal{F}_{N}^{\varepsilon} \rightarrow \mathbb{C}$ defined by

$$
\operatorname{tr}\left(\sum_{j=1}^{N} a_{j} e_{j}\right)=a_{k}+a_{N}\left(1-\delta_{k}^{N}\right) \delta_{0}^{\varepsilon}, \quad k=1, \cdots, N
$$

Obviously, all $\left\{\mathcal{F}_{N}^{\varepsilon}, \operatorname{tr}, e_{1}, \circ\right\}$ are Frobenius algebras of the rank N. The algebra $\mathcal{F}_{N}^{\varepsilon}$ has a matrix representation as follows

$$
e_{1} \mapsto \Theta^{0}=\operatorname{Id}_{N}, \quad e_{j} \mapsto \Theta^{j-1}, \quad j=2, \cdots, N
$$

where $\Theta=\left(\Theta_{i}^{j}\right) \in g l(N, \mathbb{C})$ with the element $\Theta_{i}^{j}=\delta_{i}^{j+1}+\varepsilon \delta_{i}^{1} \delta_{N}^{j}$ and $\Theta^{0}=\operatorname{Id}_{N}$ is the $N^{t h}$-order identity matrix.

Definition 3. (B.Dubrovin) The $\operatorname{set}\{M, \circ, e,\langle\rangle, E$,$\} is a Frobenius$ manifold if each tangent space $T_{t} M$ carries a smoothly varying Frobenius algebra with the properties:
(i). \langle,$\rangle is a flat metric on M$;
(ii). $\nabla e=0$, where ∇ is the Levi-Civita connection of \langle,$\rangle ;$
(iii). the tensors $c(u, v, w):=\langle u \circ v, w\rangle$ and $\nabla_{z} c(u, v, w)$ are totally symmetric;
(iv). A vector field E exists, linear in the flat-variables, such that the corresponding group of diffeomorphisms acts by conformal transformation on the metric and by rescalings on the algebra on $T_{t} M$.

These axioms imply the existence of the prepotential F which satisfies the WDVV-equations of associativity in the flat-coordinates of the metric (strictly speaking only a complex, non-degenerate bilinear form) on M. The multiplication is then defined by the third derivatives of the prepotential:

$$
\frac{\partial}{\partial t^{\alpha}} \circ \frac{\partial}{\partial t^{\beta}}=c_{\alpha \beta}^{\gamma}(\mathrm{t}) \frac{\partial}{\partial t^{\gamma}}
$$

where

$$
c_{\alpha \beta \gamma}=\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\gamma}}
$$

and indices are raised and lowered using the metric $\eta_{\alpha \beta}=\left\langle\frac{\partial}{\partial t^{\alpha}}, \frac{\partial}{\partial t^{\beta}}\right\rangle$.

Witten-Dijgraff-Verlinde-Verlinde equations

2-D TFT: find free energy $F=F\left(t^{1}, \cdots, t^{n}\right)$ satisfying WDVV equations of associativity (1991):

$$
\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\delta} \partial t^{\gamma}}=\frac{\partial^{3} F}{\partial t^{\delta} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\alpha} \partial t^{\gamma}}
$$

with a quasihomogeneity condition

$$
\mathcal{L}_{E} F=(3-d) F+\text { quadratic polynomial in } \mathrm{t},
$$

and

$$
\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{1}}=\eta^{\alpha \beta}
$$

$\left(\eta^{\alpha \beta}\right)$: constant nondegenerate.

Example 4. Suppose $c_{i j}^{k}$ are the structure constants for the Frobenius algebra \mathcal{A}, so $e_{i} \circ e_{j}=c_{i j}^{k} e_{k}$ and $\eta_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. For such an algebra one obtains a cubic prepotential

$$
\begin{aligned}
F & =\frac{1}{6} c_{i j k} t^{i} t^{j} t^{k}, \\
& =\frac{1}{6} \operatorname{tr}(\mathbf{t} \circ \mathbf{t} \circ \mathbf{t}), \quad \mathbf{t}=t^{i} e_{i}
\end{aligned}
$$

The Euler vector field takes the form $E=\sum_{i} t^{i} \frac{\partial}{\partial t^{i}}$ and $E(F)=3 F$. The notation \mathcal{A} will be used for both the algebra and the corresponding Frobenius manifold.

On the Frobenius manifold M, its cotangent space $T_{t}^{*} M$ also carries a Frobenius algebra structure, with an invariant bilinear form $\left\langle d t^{\alpha}, d t^{\beta}\right\rangle^{*}=$ $\eta^{\alpha \beta}$ and a product given by

$$
d t^{\alpha} \cdot d t^{\beta}=c_{\gamma}^{\alpha \beta} d t^{\gamma}, \quad c_{\gamma}^{\alpha \beta}=\eta^{\alpha \epsilon} c_{\epsilon \gamma}^{\beta} .
$$

Let

$$
g^{\alpha \beta}=i_{E}\left(d t^{\alpha} \cdot d t^{\beta}\right)
$$

then $\left(d t^{\alpha}, d t^{\beta}\right)^{*}=g^{\alpha \beta}$ defines a symmetric bilinear form, called the intersection form, on $T_{t}^{*} M$.

The above two bilinear forms on $T^{*} M$ compose a pencil $g^{\alpha \beta}+\mu \eta^{\alpha \beta}$ of flat metrics with parameter μ, hence they induces a bi-hamiltonian structure $\{,\}_{2}+\mu\{,\}_{1}$ of hydrodynamic type on the loop space $\left\{S^{1} \rightarrow M\right\}$.

Furthermore, on the loop space one can choose a family of functions $\theta_{\alpha, p}(t)$ with $\alpha=1,2, \ldots, n$ and $p \geq 0$ such that

$$
\theta_{\alpha, 0}=\eta_{\alpha \beta} t^{\beta}, \quad \theta_{\alpha, 1}=\frac{\partial F}{\partial t^{\alpha}}, \quad \frac{\partial^{2} \theta_{\alpha, p}}{\partial t^{\lambda} \partial t^{\mu}}=c_{\lambda \mu}^{\epsilon} \frac{\partial \theta_{\alpha, p-1}}{\partial t^{\epsilon}} \text { for } p>1
$$

The principal hierarchy associated to M is the following system of Hamiltonian equations

$$
\frac{\partial t^{\gamma}}{\partial T^{\alpha, p}}=\left\{t^{\gamma}(x), \int \theta_{\alpha, p} d x\right\}_{1}, \quad \alpha, \gamma=1,2, \ldots, n ; p \geq 0
$$

in which x is the coordinate of S^{1}. This hierarchy can be written in a bi-hamiltonian recursion form if certain nonresonant condition is fulfilled. (See ref.Dubrovin-Zhang 2001)

Example 5. $F(u)=\frac{1}{6} u^{3}, \quad E=u \frac{\partial}{\partial u}, \quad e=\frac{\partial}{\partial u}, \quad \eta^{11}=1 . \quad$ Denote $T_{n}:=n!T^{\alpha, n}, \theta_{n}:=\theta_{\alpha, n}$, then $\theta_{n}=\frac{1}{(n+1)!} u^{n+1}$. So the principal hierarchy is given by

$$
\frac{\partial u}{\partial T_{n}}=u_{x} u^{n}, \quad n=1,2, \cdots \quad \rightsquigarrow \text { dispersionless } K d V
$$

with two compatible Poisson structure

$$
\mathbf{P}_{1}=\frac{\partial}{\partial \mathbf{x}}, \quad \mathbf{P}_{2}=\frac{\partial}{\partial \mathbf{x}} \mathbf{u}+\mathbf{u} \frac{\partial}{\partial \mathbf{x}}
$$

which gives a flat pencil $\eta^{11}+\mu g^{11}$ on the Frobenius manifold \mathbb{C}.

Conversely, under certain conditions one can obtain the prepotential F from the two compatible hydrodynamical Poisson structure.

Part C.
The Frobenius algebra-valued KP hierarchy

Problem: To study the Frobenius algebra-valued KP hierarchy.

For an \mathcal{A}-valued operator $P=\sum_{i} P_{i} \partial^{i}, P_{+}$is the pure differential of the operator P and

$$
P_{-}=P-P_{+}, \quad \operatorname{res}(P)=P_{-1}, \quad P^{*}=\sum_{i}(-1)^{i} \partial^{i} P_{i}, \quad \partial=\frac{\partial}{\partial x}
$$

Let

$$
\begin{equation*}
L=\mathrm{I}_{m} \partial+U_{1} \partial^{-1}+U_{2} \partial^{-2}+\cdots \tag{1}
\end{equation*}
$$

be an \mathcal{A}-valued Ψ DO with coefficients U_{1}, U_{2}, \cdots being smooth \mathcal{A} valued functions of an infinitely many variables $t=\left(t_{1}, t_{2}, \cdots\right)$ and $t_{1}=x$.

Definition. The \mathcal{A}-KP hierarchy is the set of equations

$$
\begin{equation*}
\frac{\partial L}{\partial t_{r}}=\left[B_{r}, L\right], \quad B_{r}=L_{+}^{r}, \quad r=1,2, \cdots \tag{2}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\frac{\partial B_{l}}{\partial t_{r}}-\frac{\partial B_{r}}{\partial t_{l}}+\left[B_{l}, B_{r}\right]=0 \tag{3}
\end{equation*}
$$

Example 3.1. $[r=2, l=3]$ Using $B_{2}=\mathrm{I}_{m} \partial^{2}+2 U_{1}$ and $B_{3}=\mathrm{I}_{m} \partial^{3}+3 U_{1} \partial+$ $3 U_{2}+3 U_{1, x}$, the system (3) becomes

$$
U_{1, t_{2}}=U_{1, x x}+2 U_{2, x}, \quad 2 U_{1, t_{3}}=2 U_{1, x x x}+3 U_{2, x x}+3 U_{2, t_{2}}+6 U_{1} U_{1, x} .
$$

If we eliminate U_{2} and rename $t_{2}=y, t_{3}=t$ and $U=U_{1}$, we obtain

$$
\begin{equation*}
\left(4 U_{t}-12 U U_{x}-U_{x x x}\right)_{x}-3 U_{y y}=0 . \tag{4}
\end{equation*}
$$

When we choose a \mathcal{F}_{2}^{0}-valued smooth function $U=\left(\begin{array}{cc}u_{0} & 0 \\ u_{1} & u_{0}\end{array}\right)$, the system (4) reads the coupled KP equation (e.g., P.Casati and G.Ortenzi 2006)

$$
\left\{\begin{array}{l}
\left(4 u_{0 t}-12 u_{0} u_{0 x}-u_{0 x x x}\right)_{x}-3 u_{0 y y}=0, \\
\left(4 u_{1 t}-12 u_{0} u_{1 x}-12 u_{0 x} u_{1}-u_{1 x x x}\right)_{x}-3 u_{1 y y}=0 .
\end{array}\right.
$$

Especially if $u_{0 y}=u_{1 y}=0$, the coupled KP equation reduces to the coupled KdV equation (e.g.,A.P.Fordy et al 1989; Ma W.X et al,1996; Hirota-Hu-Tang 2003)

$$
4 u_{0 t}-12 u_{0} u_{0 x}-u_{0 x x x}=0, \quad 4 u_{1 t}-12 u_{0} u_{1 x}-12 u_{0 x} u_{1}-u_{1 x x x}=0 .
$$

We have shown that (Ian and Zuo 2015, JMP)
(1). The \mathcal{A}-KP hierarchy has an \mathcal{A}-valued τ function
(2). The \mathcal{A}-KP hierarchy admits bi-Hamiltonian structures
(3). Local matrix generalizations of the classical \mathbf{W}-algebras

Example 3.2. [The coupled KdV equation]. Assume that $\tau=\left(\begin{array}{cc}\tau_{0} & 0 \\ \tau_{1} & \tau_{0}\end{array}\right)$ is its \mathcal{F}_{2}^{0}-valued τ-function, then we have

$$
\left(\begin{array}{cc}
u_{0} & 0 \\
u_{1} & u_{0}
\end{array}\right)=U=\frac{\partial}{\partial x}\left(\tau_{x} \tau^{-1}\right)=\left(\begin{array}{cc}
\left(\log \tau_{0}\right)_{x x} & 0 \\
\left(\frac{\tau_{1}}{\tau_{0}}\right)_{x x} & \left(\log \tau_{0}\right)_{x x}
\end{array}\right)
$$

So $u_{0}=\left(\log \tau_{0}\right)_{x x}, u_{1}=\left(\frac{\tau_{1}}{\tau_{0}}\right)_{x x}$. Taking a τ-function $\tau_{0}=1+\exp (2 a x+$ $2 a^{3} t$) of the KdV equation, then for $A=\left(\begin{array}{cc}a & 0 \\ b & a\end{array}\right)$, the function $\tau=$ $\mathrm{I}_{2}+\exp \left(2 A x+2 A^{3} t\right)$, i.e.,

$$
\tau=\left(\begin{array}{cc}
1+\exp \left(2 a x+2 a^{3} t\right) & 0 \\
\left(2 b x+2 b^{3} t\right) \exp \left(2 a x+2 a^{3} t\right) & 1+\exp \left(2 a x+2 a^{3} t\right)
\end{array}\right)
$$

is a τ-function of the coupled KdV equation. Consequently, we obtain a solution given by

$$
u_{0}=\frac{a^{2}}{\cosh ^{2}\left(a x+a^{3} t\right)}, \quad u_{1}=\left(\frac{\left(2 b x+2 b^{3} t\right) \exp \left(2 a x+2 a^{3} t\right)}{1+\exp \left(2 a x+2 a^{3} t\right.}\right)_{x x}
$$

Hamiltonian structures of \mathcal{A}-KP : the canonical AGD method and the trace form $\operatorname{tr}: \mathcal{A} \longrightarrow \mathbb{K}$.

The space of functionals: $\tilde{\mathcal{D}}=\left\{\tilde{f}=\int \operatorname{tr} F(V) d x \mid \operatorname{tr} F(V) \in \mathcal{D}\right\}$.
For $V=\sum_{q=1}^{m} v_{q} e_{q}$, the variational derivative $\frac{\delta F}{\delta V}$ is defined by
$\tilde{\mathbf{f}}(\mathbf{v}+\delta \mathbf{v})-\tilde{\mathbf{f}}(\mathbf{v})=\int \operatorname{tr}\left(\frac{\delta \mathbf{F}}{\delta \mathbf{V}} \circ \delta \mathbf{V}+\mathbf{o}(\delta \mathbf{V})\right) \mathbf{d} \mathbf{x}=\int \sum_{\mathbf{q}=1}^{\mathbf{m}}\left(\frac{\delta \mathbf{f}}{\delta \mathbf{v}_{\mathbf{q}}} \delta \mathbf{v}_{\mathbf{q}}+\mathbf{o}(\delta \mathbf{v})\right) \mathbf{d} \mathbf{x}$,
where $f(v)=\operatorname{tr} F(V), \delta V=\sum_{q=1}^{m} \delta v_{q} e_{q} \in \mathcal{A}$ and $\frac{\delta f}{\delta v_{q}}=\sum_{j=0}^{\infty}(-\partial)^{j} \frac{\partial f}{\partial v_{q}^{(j)}}$.

The first and the second Poisson brackets of the $\mathcal{A}-K P$ hierarchy associated with the \mathcal{F}_{m}^{0}-valued $\Psi \mathrm{DO} L^{n}$ are given by

$$
\begin{aligned}
\{\tilde{f}, \tilde{g}\}^{n(\infty)} & =\operatorname{tr} \int \operatorname{res} H^{n(\infty)}\left(\frac{\delta f}{\delta \mathcal{L}}\right) \frac{\delta g}{\delta \mathcal{L}} d x \\
& =\operatorname{tr} \int \operatorname{res}\left(\left[\mathcal{L}_{-},\left(\frac{\delta f}{\delta \mathcal{L}}\right)_{+}\right]_{-}\left[\mathcal{L}_{+},\left(\frac{\delta f}{\delta \mathcal{L}}\right)_{-}\right]_{+}\right) \frac{\delta g}{\delta \mathcal{L}} d x
\end{aligned}
$$

and

$$
\begin{aligned}
\{\tilde{f}, \tilde{g}\}^{n(0)} & =\operatorname{tr} \int \operatorname{res} H^{n(0)}\left(\frac{\delta f}{\delta \mathcal{L}}\right) \frac{\delta g}{\delta \mathcal{L}} d x \\
& =\operatorname{tr} \int \operatorname{res}\left(\left(\mathcal{L} \frac{\delta f}{\delta \mathcal{L}}\right)+\mathcal{L}-\mathcal{L}\left(\frac{\delta f}{\delta \mathcal{L}} \mathcal{L}\right)+\right) \frac{\delta g}{\delta \mathcal{L}} d x
\end{aligned}
$$

where $\frac{\delta \mathbf{f}}{\delta \mathcal{L}}=\sum_{\mathbf{i}=-\infty}^{\mathbf{n}-\mathbf{1}} \partial^{-\mathbf{i}-1} \frac{\delta \mathbf{F}}{\delta \mathbf{V}_{\mathbf{i}}}$. and $\tilde{f}=\operatorname{tr} \int f(V) d x, \tilde{g}=\operatorname{tr} \int g(V) d x$.

Theorem. The \mathcal{A}-KP hierarchy $\frac{\partial L}{\partial t_{r}}=\left[B_{r}, L\right]$ admits a bi-Hamiltonian representation given by

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial t_{r}}=H^{n(0)}\left(\frac{\delta h_{r}}{\delta \mathcal{L}}\right)=H^{n(\infty)}\left(\frac{\delta g_{r}}{\delta \mathcal{L}}\right) \tag{5}
\end{equation*}
$$

with the Hamiltonians

$$
\tilde{h}_{r}=\frac{n}{r} \operatorname{tr} \int \operatorname{res} L^{r} d x \quad \text { and } \quad \tilde{g}_{r}=-\frac{m}{r+n} \operatorname{tr} \int \operatorname{res} L^{n+r} d x,
$$

where $H^{n(0)}(X)=(\mathcal{L} X)_{+} \mathcal{L}-\mathcal{L}(X \mathcal{L})_{+}$and $H^{n(\infty)}(X)=\left[\mathcal{L}_{-}, X_{+}\right]_{-}$ $\left[\mathcal{L}_{+}, X_{-}\right]_{+}$.

Cor. The coupled KP ($\left.\mathcal{F}_{m}^{0}-\mathrm{KP}\right)$ hierarchy defined in [CO2006] has at least m "basic" different local bi-Hamiltonian structures.

If we restrict to $V_{n-1}=0$, the first Hamiltonian structure automatically reduces to this submanifold, but the second one is reducible if and only if

$$
\begin{equation*}
\operatorname{res}\left[\mathcal{L}, \frac{\delta f}{\delta \mathcal{L}}\right]=0 \tag{6}
\end{equation*}
$$

We denote the corresponding reduced brackets by $\{,\}^{n(\infty)}$ and $\{,\}_{D}^{n(0)}$. Assume that $V_{n}=e$ and $X_{i}=\frac{\delta f}{\delta V_{i}} \in \mathcal{A}$, then the condition (6) is equivalent to

$$
X_{n-1}=\frac{1}{n} \sum_{i=-\infty}^{n-2}\left(\binom{-i-1}{n-i} X_{i}^{(n-i-1)}+\sum_{j=i+1}^{n-1}\binom{-i-1}{j-i}\left(X_{i} V_{j}\right)^{(j-i-1)}\right) .
$$

Definition. In terms of the basis $\left\{v_{[i] q}\right\}$, the second Poisson bracket $\{,\}^{n(0)}$ for L^{n} and the reduced bracket $\{,\}_{D}^{n(0)}$ for L^{n} with the constraint $V_{n-1}=0$ will provide two kinds of W-type algebras, we call them the $\mathrm{W}_{\mathbb{K} \mathbb{P}^{(m, n)}}$-algebra and the $\mathrm{W}_{\infty}^{(m, n)}$-algebra respectively. Under the reduction $L_{-}^{n}=0$, the corresponding algebras are called the $\mathrm{W}_{\mathbb{G D}}^{(m, n)}$-algebra and the $\mathrm{W}_{(m, n)}$-algebra respectively. All of them are local matrix generalizations.

Example 3.3. Taking $\varphi(x)=\operatorname{tr} V_{n-2}(x)$, the reduced Poisson bracket is given by

$$
\{\varphi(x), \varphi(y)\}_{D}^{n(0)}=-\left(\frac{n^{3}-n}{12} \partial^{3}+\varphi \partial+\partial \varphi\right) \delta(x-y)
$$

This means that both the $\mathrm{W}_{\infty}^{(m, n)}$-algebra and the $\mathrm{W}_{(m, n)}$-algebra contain the Virasoro algebra as its subalgebra.

Example 3.4. Consider the $\mathcal{A}-\mathrm{KdV}$ hierarchy with the Lax operator $L^{2}=e \partial^{2}+V$, i.e., $L_{-}^{2}=0$. We denote $X=\partial^{-2} X_{1}+\partial^{-1} X_{0}$ and $Y=\partial^{-2} Y_{1}+\partial^{-1} Y_{0}$, and have

$$
H^{2(\infty)}=\left[X, L^{2}\right]_{+}=-2 X_{0}^{\prime}
$$

and
$H^{2(0)}(X)=\left(L^{2} \circ X\right)_{+} \circ L^{2}-L^{2} \circ\left(X \circ L^{2}\right)_{+}=2 V \circ X_{0}^{\prime}+X_{0} \circ V^{\prime}+\frac{1}{2} X_{0}^{\prime \prime \prime}$.
Thus two compatible Poisson brackets of the \mathcal{A}-KdV hierarchy are given by

$$
\{\tilde{f}, \tilde{g}\}^{2(\infty)}=2 \operatorname{tr} \int \frac{\delta f}{\delta V} \circ \frac{\partial}{\partial x} \frac{\delta g}{\delta V} d x
$$

and

$$
\{\tilde{f}, \tilde{g}\}_{D}^{2(0)}=-\frac{1}{2} \operatorname{tr} \int \frac{\delta f}{\delta V} \circ\left(e \frac{\partial^{3}}{\partial x^{3}}+2 V \frac{\partial}{\partial x}+2 \frac{\partial}{\partial x} V\right) \circ \frac{\delta g}{\delta V} d x
$$

In particular, if one chooses the algebra \mathcal{A} to be the algebra \mathcal{F}_{2}^{0}, one
obtains the $\mathcal{F}_{2}^{0}-\mathrm{KdV}$ equation for $V=v e_{1}+w e_{2}$ given by

$$
\begin{equation*}
4 v_{t}-12 \mathbf{v v}_{\mathrm{x}}-\mathrm{v}_{\mathrm{xxx}}=0, \quad 4 \mathrm{w}_{\mathrm{t}}-12(\mathrm{vw})_{\mathrm{x}}-\mathrm{w}_{\mathrm{xxx}}=0 \tag{7}
\end{equation*}
$$

Moreover, the system (7) can be written as

$$
\binom{v}{w}_{\mathrm{t}}=\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right)\binom{\frac{\delta H_{2}}{\delta v}}{\frac{\delta H_{2}}{\delta w}}=\left(\begin{array}{cc}
0 & J_{0} \\
J_{0} & J_{1}
\end{array}\right)\binom{\frac{\delta H_{1}}{\delta v}}{\frac{\delta H_{1}}{\delta w}}
$$

with Hamiltonians

$$
H_{1}=\int_{\mathbb{S}^{1}} v w d x, \quad H_{2}=\int_{\mathbb{S}^{1}}\left(\frac{3}{2} v^{2} w+\frac{1}{4} v w_{x x}\right) d x
$$

and

$$
\binom{v}{w}_{\mathbf{t}}=\left(\begin{array}{cc}
0 & \partial \\
\partial & -\partial
\end{array}\right)\binom{\frac{\delta \widetilde{H}_{2}}{\delta v}}{\frac{\delta \tilde{H}_{2}}{\delta w}}=\left(\begin{array}{cc}
0 & J_{0} \\
J_{0} & J_{1}-J_{0}
\end{array}\right)\binom{\frac{\delta \widetilde{H}_{1}}{\delta v}}{\frac{\delta \widetilde{H}_{1}}{\delta w}}
$$

with Hamiltonians

$$
\widetilde{H}_{1}=\int_{\mathbb{S}^{1}}\left(\frac{1}{2} v^{2}+v w\right) d x, \quad \widetilde{H}_{2}=\int_{\mathbb{S}^{1}}\left(\frac{3}{2} v^{2} w+\frac{1}{4} v w_{x x}+\frac{1}{2} v^{3}+\frac{1}{8} v v_{x x}\right) d x
$$

where $J_{0}=\frac{1}{4} \partial^{3}+v \partial+\partial v$ and $J_{1}=w \partial+\partial w$.

Example 3.5. [The \mathcal{F}_{m}^{0}-dBoussinesq hierarchy]. In this case, the Lax operator is given by

$$
\mathcal{L}=\mathrm{I}_{m} p^{3}+V_{1} p+V_{0}, \quad V_{0}, V_{1} \in \mathcal{F}_{m}^{0}
$$

The BH structure of the \mathcal{F}_{m}^{0}-dBoussinesq hierarchy is

$$
\begin{equation*}
\{\tilde{f}, \tilde{g}\}_{1}=3 \operatorname{tr} \int\left(X_{1} Y_{0}^{\prime}+X_{0} Y_{1}^{\prime}\right) d x, \quad \text { here } \quad X_{k}=\frac{\delta f}{\delta V_{k}}, Y_{k}=\frac{\delta f}{\delta V_{k}} \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\{\tilde{f}, \tilde{g}\}_{2} & =\frac{1}{3} \operatorname{tr} \int\left(X_{0} Y_{0}^{\prime}-X_{0}^{\prime} Y_{0}\right) V_{1}^{2} d x+\operatorname{tr} \int\left(X_{1}^{\prime} Y_{1}-X_{1} Y_{1}^{\prime}\right) V_{1} d x \\
& +\operatorname{tr} \int\left(2 X_{1}^{\prime} Y_{0}-X_{1} Y_{0}^{\prime}+X_{0}^{\prime} Y_{1}-2 X_{0} Y_{1}^{\prime}\right) V_{0} d x \tag{9}
\end{align*}
$$

When $m=1$, it is easy to get a Frobenius manifold as follows

$$
F(V)=\frac{1}{2} V_{0}^{2} V_{1}-\frac{1}{72} V_{1}^{4}, \quad e=\frac{\partial}{\partial \mathbf{V}_{0}}, \quad E=V_{0} \frac{\partial}{\partial \mathbf{V}_{0}}+\frac{2}{3} V_{1} \frac{\partial}{\partial \mathbf{V}_{1}}
$$

When $m=2$, we write

$$
V_{0}=\left(\begin{array}{cc}
v_{1} & 0 \\
v_{2} & v_{1}
\end{array}\right), \quad V_{1}=\left(\begin{array}{cc}
v_{3} & 0 \\
v_{4} & v_{3}
\end{array}\right) \in \mathcal{F}_{2}^{0}
$$

By using (8) and (9), we could get explicit formulas of $\left\{v_{i}(x), v_{j}(y)\right\}_{k}$, $k=1,2$. We can write

$$
\left\{v_{i}(x), v_{j}(y)\right\}_{1}=3 \eta^{i j}(v) \delta^{\prime}(x-y)+h_{1}\left(v ; v_{x}\right) \delta(x-y)
$$

and

$$
\left\{v_{i}(x), v_{j}(y)\right\}_{2}=3 g^{i j}(v) \delta^{\prime}(x-y)+h_{2}\left(v ; v_{x}\right) \delta(x-y)
$$

for known functions $h_{k}\left(v ; v_{x}\right)$, where $\eta^{i j}(v)$ and $g^{i j}(v)$ form a flat pencil of metrics given by

$$
\left(\eta^{i j}(v)\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

and

$$
\left(g^{i j}(v)\right)=\left(\begin{array}{cccc}
0 & -\frac{2}{9} v_{3}^{2} & 0 & v_{1} \\
-\frac{2}{9} v_{3}^{2} & \frac{2}{9} v_{3}^{2}-\frac{4}{9} v_{3} v_{4} & v_{1} & v_{2}-v_{1} \\
0 & v_{1} & 0 & \frac{2}{3} v_{3} \\
v_{1} & v_{2}-v_{1} & \frac{2}{3} v_{3} & \frac{2}{3}\left(v_{4}-v_{3}\right)
\end{array}\right)
$$

Observation: A direct calculation gives $(F(v), e, E)$ as follows

$$
e=\frac{\partial}{\partial v_{1}}
$$

and

$$
E=v_{1} \frac{\partial}{\partial v_{1}}+v_{2} \frac{\partial}{\partial v_{2}}+\frac{2}{3} v_{3} \frac{\partial}{\partial v_{3}}+\frac{2}{3} v_{4} \frac{\partial}{\partial v_{4}}
$$

and

$$
\begin{aligned}
F(v) & =\frac{1}{2} v_{1}^{2} v_{4}+\frac{1}{2} v_{1}^{2} v_{3}+v_{1} v_{2} v_{3}-\frac{1}{18} v_{3}^{3} v_{4}-\frac{1}{72} v_{3}^{4} \\
& =\operatorname{tr}\left(\frac{1}{2} \mathbf{V}_{0}^{2} \mathbf{V}_{1}-\frac{1}{72} \mathbf{V}_{1}^{4}\right)
\end{aligned}
$$

Here $\operatorname{tr}\left(\mathbf{a}_{1} \mathbf{e}_{1}+\mathbf{a}_{\mathbf{2}} \mathbf{e}_{\mathbf{2}}\right)=\mathbf{a}_{\mathbf{1}}+\mathbf{a}_{\mathbf{2}}$.

Part D. Frobenius manifolds and Frobenius algebra-valued Integrable systems

Question:

$\{$ Frobenius manifold $\} \leftrightarrow \rightarrow-\cdots \quad\{$ Principal hierarchy $\}$

Definition.[Lifting map] Let $\{\mathcal{A}, \circ, e, \operatorname{tr}\}$ be a Frobenius algebra over \mathbb{K} with the basis $e=e_{1}, e_{2}, \cdots, e_{m}$ and f an analytic function on \mathcal{M} (that is, analytic in the flat coordinates for \mathcal{M}). The \mathcal{A}-valued function \widehat{f} is defined to be:

$$
\widehat{f}=\left.f\right|_{t^{\alpha} \mapsto t}(\alpha i) e_{i}
$$

with $\widehat{f g}=\hat{f} \circ \hat{g}$ and $\hat{1}=e_{1}$. The evaluation $f^{\mathcal{A}}$ of \hat{f} is defined by

$$
f^{\mathcal{A}}=\operatorname{tr}(\widehat{f})
$$

where $\operatorname{tr} \in \mathcal{A}^{\star}$ is the Frobenius form.

Theorem.([Ian-Zuo 2017]) Let

$$
\begin{equation*}
u_{t}^{\alpha}=K^{\alpha}\left(u, u_{x}, \cdots\right), \quad u=\left\{u^{\alpha}(x, t)\right\} \tag{10}
\end{equation*}
$$

be a Hamiltonian system with the Hamiltonian $H[u]$, then the corresponding \mathcal{A}-valued system

$$
\begin{equation*}
\widehat{u_{t}^{\alpha}}=K^{\alpha}\left(\widehat{u, u_{x}}, \cdots\right) \tag{11}
\end{equation*}
$$

is also Hamiltonian with the Hamiltonian $\mathcal{H}[\widehat{u}]=\operatorname{tr}(\widehat{H[u}])$.

Cor. The $\mathcal{A}-K P$ hierarchy admits local bi-Hamiltonian structures.

Theorem. ([Ian-Zuo 2017]) Let F be the prepotential of a Frobenius manifold \mathcal{M} and let \mathcal{A} be a Frobenius algebra with 1-form tr. Then the function

$$
\mathbf{F}^{\mathcal{A}}=\operatorname{tr}(\widehat{\mathbf{F}})
$$

defines a Frobenius manifold, namely the manifold $\mathcal{M} \otimes \mathcal{A}$.
(The tensor product was due to Kaufmann, Kontsevich and Manin.)

Remark. This construction could be generalized to TQFT and Fmanifold.

References:
[1]. Ian Strachan and D.Zuo, Integrability of the Frobenius algebravalued Kadomtsev-Petviashvili hierarchy. J.Math.Phys. 56 (2015), no. 11, 113509, 13 pp.
[2]. Ian Strachan and D.Zuo, Frobenius manifolds and Frobenius algebra-valued integrable systems, Lett.Math.Phys. 107(2017)9961027.

THANKS

