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ON WORD AND DIVISIBILITY PROBLEMS
FOR ONE RELATOR SEMIGROUPS

SERGEI I. ADIAN

For semigroups presented by a single left irreducible defining relation
we describe an algorithm that computes the shortest proof of divisibil-
ity of a given word by a given letter of the semigroup alphabet. It is
guaranteed that the algorithm terminates each time the given word is in
fact divisible by the given letter in that semigroup. The problem of ter-
mination of this algorithm is of crucial importance for applications. In
particular, it yields a complete solution to the well-known word problem
for one relator semigroups.

I have described this algorithm in 1976 while trying hard to find a
positive solution of the now famous but still open problem of decidability
of the word problem for one relator semigroups. It was published in
volume 15 of Algebra and Logic in a paper dedicated to the memory
of Mikhail Ivanovich Kargapolov after his untimely death [1]. Shortly
before that, during an algebraic conference in Novosibirsk, he announced
a contest for the young participants to solve this problem. In his book
Algorithms and Recursive Functions [3], A.I. Maltsev mentioned that
this problem was “nearly solved” by S.I. Adian, however by now it is
clear that the problem is notoriously difficult and, quoting P. S. Novikov,
“contains something transcendental”. Its solution is a task for the future
generations of mathematicians.
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REBUILDING EPISTEMIC LOGIC

SERGEI ARTEMOV

All three foundational pillars on which Epistemic Logic rests: modal
language, Kripke-style semantics, and proof theory need rebuilding and
modernization.

1. Modal language alone does not support such central topics in Epis-
temology as “knowledge vs. justified true belief” discussion, (cf. [7, 5, 6],
etc.) due to a lack of justification objects in epistemic logic. Situation is
gradually improving with the introduction of Justification Logic ([1, 2])
but there is still a long way to go. We provide examples of situations
in which Justification Logic methods offer a superior epistemic analysis.
In a more general setting, it is the Justification Logic framework which
has introduced much needed hyperintensionality into Epistemology [4].

2. Kripke semantics of possible worlds for epistemic logic is based on
a hidden assumption of common knowledge of the model, CKM, mani-
fested in the condition “if a sentence is valid at all possible states, then it
is known”. In social scenarios, however, agents may possess asymmetric
knowledge of the situation and CKM as a uniform assumption should
be resisted. What we need here is a new theory of epistemic modeling
in a general setting without assuming common knowledge of the model.
We introduce epistemic models which do not rely on CKM [3]. Con-
ceptually, such general epistemic models can be viewed as observable
fragments of comprehensive Kripke models.

3. A well-principled notion of epistemic theory as an axiomatic de-
scription of a given scenario incorporated into the possible worlds en-
vironment is conspicuously absent. Moreover, given an informal verbal
description of a situation, a typical epistemic user cherry-picks a “nat-
ural model” and simple-mindedly regards it as a formalization of the
original description, i.e. uses a model in lieu of a theory and ignores the
fact that there might be different “natural models” of the same descrip-
tion. In this respect, a systematic confusion of a theory and a model in
Epistemic Logic resembles the pre-Godelian state of mathematical logic,
without a clear distinction between theories and models. We describe
a framework of hypertheories for epistemic reasoning with partial in-
formation. Remarkably, natural semantic counterparts of hypertheories
are epistemic models from (2), not Kripke models.

Together with epistemic models, hypertheories provide a new and
balanced syntactic/semantic foundation for epistemic reasoning.
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THE MECHANIZATION OF MATHEMATICS

JEREMY AVIGAD

The phrase “formal methods” is used to describe a body of methods
in computer science for specifying, developing, and verifying complex
hardware and software systems. The word “formal” indicates the use
of formal languages to write assertions, define objects, and specify con-
straints. It also indicates the use of formal semantics, that is, accounts
of the meaning of a syntactic expression, which can be used to specify
the desired behavior of a system or the properties of an object sought.
Finally, the word “formal” suggests the use of formal rules of inference,
which can be used to verify claims or guide a search.

Such methods hold great promise for mathematical discovery and ver-
ification of mathematics as well. In this talk, I will survey some applica-
tions, including verifying mathematical proofs, verifying the correctness
of mathematical computation, searching for mathematical objects, and
storing and communicating mathematical results.

Interactive theorem proving involves the use of computational proof
assistants to construct formal proofs of mathematical claims, using the
axioms and rules of a formal foundation that is implemented by the
system. The user of such an assistant generally has a proof in mind
and works interactively with the system to transform it into a formal
derivation. Proofs are presented to the system using a specialized proof
language, much like a programming language. I will discuss the current
state of the field, and some recent milestone formalizations.

One place for formal verification is especially useful is in the case
of mathematical proofs that rely on substantial uses of computation,
where the associated code is subtle and susceptible to error. I will discuss
various strategies that are employed to make such computational results
more reliable.

The use of formal search methods to establish theorems of core math-
ematics is less common, but nonetheless I will discuss a few notable
successes to date, as well as prospects for the future.

Finally, I will briefly discuss projects like the Formal Abstracts project,
which aim to provide digital infrastructure to support mathematical ac-
tivity.
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THE CONCEPT OF PROOF

MATTHIAS BAAZ

The concept of proof is one of the most fundamental building blocks
of mathematics. The Hilbertian revolution at the beginning of the 20th
century is based on an atomic notion of proof which is the foundation
of the axiomatic method:

“A proof is a finite sequence of formulas Aq,..., A, such that each
A; is instance of an axiom or follows by direct application of a rule from
Ail, . 7A7;k with all ’ij <1,

No scientific revolution is however total, but there is a trend to disre-
gard all alternatives to the successful method. In this lecture we discuss
more global notions of proof, where subproofs are not necessarily proofs
themselves. Examples are among others:

1. protoproofs in the sense of Euler’s famous solution to the Basel
problem, which uses analogical reasoning and where additional
external justifications are necessary;

2. circular notions of proof, where the concept of proof itself inco-
operates induction. The most significant example is Pierre de
Fermat’s Methode de Descente, for a modern setting cf. [1];

3. sound proofs based on locally unsound rules cf. [2];

4. proofs based on abstract proof descriptions prominent e.g. in
Bourbaki, where only the choice of a suitable result makes a
verification possible cf. [3].

We discuss the benefits of these alternative concepts and the possibil-
ity that innovative concepts of proof adapted to the problems in question
might lead to strong mathematical results and constitute a novel area
of Proof Theory.
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ON THE COMPUTATIONAL CONTENT
OF THEOREMS

VASCO BRATTKA

To analyze the computational content of theorems is a research topic
at least since Turing’s seminal work on computable numbers in which
he started the investigation of computable versions of theorems in anal-
ysis. In the sequel this topic was taken up by many other researchers
such as Specker, Lacombe, Shore and Nerode, Pour-El and Richards [2],
and Weihrauch [4]. A related but formally different approach has been
started by Friedman and Simpson [3] who have characterized axioms
that are sufficient and often necessary to prove certain theorems in
second-order arithmetic. In recent years the interaction between these
two research trends has been intensified and overlaps in what is called
Weihrauch complexity. Weihrauch complexity is a computability theo-
retic approach to the classification of the computational content of theo-
rems that yields results that can be seen as a uniform and resource sen-
sitive version of reverse mathematics. The benefit of this theory is that
it yields fine grained computational results that answer typical ques-
tions from the computable analysis perspective, while being compatible
with reverse mathematics. Sometimes results can be imported from re-
verse mathematics and computable analysis, but often completely new
methods and techniques are required. We will present a survey on this
approach that is based on a recent survey article [1] on this topic.
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10
ENCOUNTERS WITH INFINITY

MARTIN DAVIS

Questions about the ontological status of the objects about which
mathematicians reason have been with us since ancient times. In my
talk T will emphasize the role of mathematical practice in expanding
the realm of mathematical discourse. I will begin with the example of
Godel’s struggles with the philosophical consequences of his two main
discoveries: the inevitability of undecidability and the consistency of the
continuum hypothesis.

I will then present a number of revealing examples from the history
of mathematics. The solution in terms of radicals of cubic equations
seemed to force practitioners to work with square roots of negative num-
bers although these were thought to be impossible. Torricelli considered
the region bounded above by a rectangular hyperbola, below by one of
its asymptotes, and to the left by a perpendicular from the hyperbola to
that asymptote. He was able to show that while that region is of infinite
extent and has an infinite area, the solid formed by revolving it about
the asymptote has a finite volume. This provided a shock to the world
of 17th century mathematics, contradicting what Aristotle had taught
about infinity.

Leibniz’s infinitesimal calculus yielded useful answers although rea-
soning with his infinitesimals seemed to lead to contradictions. By as-
suming that the relationships between the zeros and the coefficients of
a polynomial would hold as well for an infinite power series, Euler was
able to obtain the sum of the series Y -, 1/n?. In solving a partial dif-
ferential equation for heat conduction, Fourier used trigonometric series
with a quite unjustified expansive freedom. This led Dirichlet to the
modern notion of a function as an arbitrary mapping.

Cantor’s investigation of uniqueness theorems for trigonometric series
led him to develop his transfinite ordinal numbers. Contemporary set
theorists were able to resolve hitherto intractable problems concerning
the hierarchy of projective sets by invoking the determinacy of projective
sets as a new axiom. More recently, assumptions about the hierarchy of
large cardinals was used to prove this axiom.
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THE COMPUTABILITY VIA DEFINABILITY
IN SEMANTIC MODELING

SERGEI S. GONCHAROV*

This is joint work with D.I. Sviridenko and A. Nechesov.

The construction of computability on abstract structures was founded
in the theory of semantic programming in [1-6]. We will discuss some
problems in this approach connected with computability and definabil-
ity. The main idea of this construction was created on the base of
restricted quantifiers. In [1-4] construction of a programming language
of logical type was proposed for creating the programming systems that
provide control of complex systems in which control under different con-
ditions depends on the type of the input data represented by formalisms
of logical type on the basis of logical structures. For constructing an en-
richment of the language with restricted quantifiers, we extend the con-
struction of conditional terms. We show that the so-obtained extension
of the language of formulas with restricted quantifiers over structures
with hereditary finite lists is a conservative enrichment. For construct-
ing some computability theory over abstract structures, in [6-7], Yu. L.
Ershov considered a superstructure of hereditarily finite sets. From the
problems in Computer Science the superstructure of hereditarily finite
lists was constructed in [3], and the computability theory was developed
in terms of Y-definability in this superstructure. From the standpoint
of constructing a programming language, such an approach seems more
natural for accompanying logical programs since for a specific implemen-
tation of a language of logical type on sets, we must externally define the
sequence of an efficient exhaustion of their elements. In choosing a list
of elements, the order is already contained in the model, and we have a
definition in the model of operations that explicitly define the work with
the list items. However, from the viewpoint of the construction of pro-
grams, taking into account the complexity of their implementation, it is
preferable to consider their constructions based on the Ag-construction
while retaining sufficiently broad logical means of definitions, and on
the other hand, ensuring more imperative constructions in the required
estimates of performance complexity.

In this talk, we consider the questions of definability on the basis
of the Ag-formulas whose verification of truth has bounded complexity

*Supported by grant RNF-17-11-01176.
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with respect to the basic terms and relations in the basic model, as well
as the implementation of the list operations in the superstructure.

We will define some new construction for new extension of the notion
of term be conditional terms, bounded recursion and some bounded Ag-
definable function in such way that each term in this definition will give
computable function are polynomial if basic function and relations in our
superstructure have polynomial complexity and for each Aj-formulas in
with these terms we have polynomial algorithm to verify their truth [8].

The next theorem about this construction gives us these possibilities.

Theorem (about conservatism). There exists some algorithm for con-
struction by Af-formula ¢ Ag-formulas 1 without non-standard terms
such that

HW (M) | (V0)(¢ (v) & ¢ (V).
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LOGIC IN COMPUTER SCIENCE, COMPUTER
ENGINEERING AND MATHEMATICS

YURI GUREVICH

In software industry, engineers do formal logic day in and day out,
even though they may not and usually do not realize that. As a rule,
they have not studied logic. Instead, they studied calculus which they
use rarely, if ever.

We illustrate why logic is so relevant to computer science and to
computer industry and why it is so hard for software engineers to pick
it up.

At the end we discuss the uses of formal logic in mathematics and
the prospects of logic in mathematics departments.
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IN PURSUIT OF A MEDIEVAL MODEL THEORY

WILFRID HODGES

Logicians have always worked with some notion of logical conse-
quence. Usually their notion of logical consequence belongs to one of
the following two types. We say that 6 is a logical consequence of the
premises & if:

(Proof-theoretic) There is a pattern of inference steps (a
‘derivation’) that leads from ® to 6.

(Model-theoretic) Every interpretation making ® true (i.e.
every model of ®) also makes 6 true.

The difference between ‘There is’ and ‘Every’ implies that these two
notions of consequence will be used in very different ways.

The proof-theoretic notion goes back to Aristotle. The model-theoretic
notion was introduced as a basic notion of model theory in papers of
Abraham Robinson and Tarski in 1949-1954, after Tarski had called
the attention of philosophers to this notion in a paper of 1936. In fact
truth-tables (Wittgenstein and Post around 1920, Peirce a little ear-
lier) had already introduced a propositional version of model-theoretic
consequence. For countable first-order logic, the agreement between
proof-theoretic and model-theoretic notions of consequence was stated
and proved in Godel’s doctoral dissertation in 1929. In these ways the
notion began to be used in Western logic in the 20th century, over two
thousand years after Aristotle had first introduced logic. Why so late?

During the last six months it came to light that in the mid 12th
century Abu al-Barakat al-Baghdadi, a Jew based in Baghdad, had a
system of syllogistic logic up and running, in which he used only the
model-theoretic notion of consequence. Barakat was already known as
a perceptive philosopher and physicist—he was the first to state that
bodies fall with constant acceleration. But it was not realised that he
broke the mould in logic too. The present talk will be to some extent a
preliminary report on this discovery.

In brief, Barakat showed how we can deduce the conclusion of a
productive syllogism (i.e. one that has a conclusion) by listing represen-
tatives of all possible models of the premises, and looking to see what
propositions are true in all these models. He also invented a notation to
accompany these calculations. His notation is interesting as the earliest
known system of logical diagrams for proving consequences, anticipating
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Leibniz by 500 years. Unlike the diagrams of Leibniz, Euler and Venn,
Barakat’s diagrams represent models, not propositions.

About a hundred years before Barakat, Ibn Stma (= Avicenna) started
to develop model-theoretical consequence for proving non-entailments—
similar to Hilbert’s Grundlagen der Geometrie, though done entirely
within logic. Unlike Barakat, Ibn Sina made significant mistakes. But
his models are more concrete than those of Barakat, and there are clear
signs that he took them to consist of a set on which relations are defined,
just as in today’s model theory.

In keeping with the interest in ‘perspectives’ at this meeting, we
discuss how this sudden appearance of model theory in the 11th and
12th centuries, and its equally sudden disappearance after the death of
Barakat, make sense within the history of logic as a whole. For example,
what logical tools needed to be developed to sustain model theory, and
why was there an incentive to build these tools in the 20th century but
not in the 13th? We note that Barakat’s ideas were in a sense already
implicit in Aristotle’s work in the 4th century BC. This raises further
questions: can we trace a development from Aristotle to Barakat? (The
6th century logician Paul the Persian is a likely intermediary.) Why was
there no development along these lines for maybe a thousand years after
Aristotle himself?

Saloua Chatti, Amirouche Moktefi, Seyed Mousavian, Lukas Muehle-
thaler, Moshe Pavlov, Richard Sorabji and Robert Wisnovsky have all
provided valuable input into this work, for which I thank them.
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HYPE: A SYSTEM OF HYPERINTENSIONAL LOGIC
(WITH AN APPLICATION TO SEMANTIC PARADOXES)

HANNES LEITGEB

This lecture introduces, studies, and applies a new system of logic
which is called ‘HYPE’. In HYPE, formulas are evaluated at states that
may exhibit truth value gaps (partiality) and truth value gluts (overde-
terminedness). Simple and natural semantic rules for negation and the
conditional operator are formulated based on an incompatibility rela-
tion and a fusion operation on states. The semantics is worked out in
formal and philosophical detail, and a sound and complete axiomatiza-
tion is provided both for the propositional and the predicate logic of
the system. The propositional logic of HYPE can be shown to contain
first-degree entailment, to have the Finite Model Property, to be de-
cidable, to have the Disjunction Property, and to extend intuitionistic
propositional logic conservatively when intuitionistic negation is defined
appropriately by HYPE’s logical connectives. Furthermore, HYPE’s
first-order logic is a conservative extension of intuitionistic logic with
the Constant Domain Axiom, when intuitionistic negation is again de-
fined appropriately. The system allows for simple model constructions
and intuitive Euler-Venn-like diagrams, and its logical structure matches
structures well-known from ordinary mathematics, such as from opti-
mization theory, combinatorics, and graph theory. HYPE may also be
used as a general logical framework in which different systems of logic
can be studied, compared, and combined. In particular, HYPE is found
to relate in interesting ways to classical logic and various systems of
relevance and paraconsistent logic, many-valued logic, and truthmaker
semantics. On the philosophical side, if used as a logic for theories of
type-free truth, HYPE is shown to address semantic paradoxes such as
the Liar Paradox by extending non-classical fixed-point interpretations
of truth by a conditional as well-behaved as that of intuitionistic logic.
Finally, HYPE may be used as a background system for modal oper-
ators that create hyperintensional contexts, though the details of this
application need to be left to follow-up work.

Acknowledgements. This work was partially supported by the Alexander
von Humboldt Foundation.
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UNIVERSALLY BAIRE SETS AND
BOREL CANONIZATION

MENACHEM MAGIDOR

Using the axiom of choice, one can construct sets of reals which are
quite pathological: e.g. non-measurable, not having the Baire property
etc. But the guiding principle of descriptive set theory is that if the set
is “nicely” definable then it is not pathological. An possible definition
of the maximal family of “nice” sets of reals (or of any Polish space) is
the family of Universally Baire sets, introduced in [4].

In this talk we shall survey the definition and some of the basic “nice-
ness” properties of the family of universally Baire subsets of a Polish
space. Some of these properties depends on the assumptions of strong
axioms of infinity. (“The existence of large cardinals”.)

As an example of the regularity properties of universally Baire sets,
we shall discuss the problem of Borel canonization. This problem was
introduced by Kanovei, Sabok and Zapletal ([5]). In the original setting
we are given an analytic equivalence relation F and an ideal I on the
reals. The problem is to find a Borel set B which is not in the ideal such
that FE restricted to B is Borel. In this generality the answer is “NO”,
but if we put some “nicety” conditions on I and the equivalence relation
E one can get a positive answer, assuming some large cardinals. (These
results are due to W. Chan and O. Drucker, independently: [3] and [1].)

In the talk we shall survey some possible generalizations of these
results. For instance when we assume that the relation E is universally
Baire. (Some of the results are joint results with W. Chan [2].)
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THE UNDECIDABILITY OF VARIOUS
AFFINE PAPPIAN GEOMETRIES:
WRONG PROOFS AND NEW TRUE THEOREMS

JOHANN A. MAKOWSKY

In his Ph.D. thesis [3], W. Rautenberg claimed to have proven that
the set of first order consequences of affine incidence geometry is un-
decidable. Although his proof is cited in many followup papers, his
proof is based on wrong reduction to the undecidablity of the first order
theory of fields. To the best of our knowledge, we have not found a
complete and correct proof in the literature. In this paper we analyze
his mistake, give a correct proof, and extend the result to many other
axiomatizations of geometry. These include the geometry of Hilbert and
Euclidean planes, Wu’s geometry [4] and Origami geometry [1]. We also
discuss applications to automated theorem proving. An important tool
is M. Ziegler’s Theorem proving that no finite subset of the theory of
real closed fields is decidable, [5], translated in [2].

Acknowledgements. I am thankful to J. Baldwin for many valuable com-
ments.
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ON CONSTRUCTIVE VERSIONS OF
INDEPENDENCE-FRIENDLY LOGIC

SERGEI P. ODINTSOV

This talk presents the recent results of the joint work of the author,
S. O. Speranski and I. Yu. Shevchenko, which are partly presented in [9]
and partly are in progress.

The independence-friendly first-order logic (IF-FOL) suggested in [4]
has generated numerous dependence and independence logics — whose
specific operators can be easily defined in terms of so-called teams (see
[5, 6]). Recall that a team is a family of assignments of elements of the
domain of a first-order structure to individual variables, or a family of
valuations of propositional variables in the set of truth values; usually
it is assumed that all members of a team have the same domain. The
logic IF-FOL is an extension of first-order logic (FOL) by means of in-
dependent quantifiers of the form 32\ X where {} U X is a finite set of
individual variables. The validity of a formula 32\ X ¢ in a structure 91
on a team T means that the formula ¢ is valid in 9 on a team T’ =
{s(xz/f(s))|s €T} where f is a function from T to the domain of 9t
such that f (s) = f (s’) whenever s (y) = s’ (y) for all y € dom (s)\ X —
in this way, the value of s on x is independent of its values on the va-
riables in X. Equivalently, IF-FOL can be easily interpreted using sko-
lemisations, so as Skolem terms for occurences of 32\ X do not contain
variables from X.

The logic IF-FOL admits a game theoretical interpretation too. To
obtain a game theoretical semantics (GTS) for IF-FOL, we have to pass
from standard games used to interpret formulas in FOL to games with
imperfect information. Hintikka [3, Chapter 6] motivates the game the-
oretical approach to interpreting IF-FOL as follows:

The approach presented in this book has a strong spi-
ritual kinship with constructivistic ideas. This kinship
can be illustrated in a variety of ways. One of the basic
ideas of constructivists like Michael Dummett [1, 2] is
that meaning has to be mediated by teachable, learn-
able, and practicable human activities. This is precisely
the job which semantical games do in game-theoretical
semantics.

*Here s(z/a) denotes the assignment with domain dom (s) U {z} such that
s(z/a) (z) = a, and s (z/a) (y) = s (y) for y # .
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In fact this statement made by Hintikka motivated us to compare GTS
for FOL and IF-FOL with one standard constructive semantics, namely
with the modification of realizability semantics suggested by D. Nelson
[8]. To be more precise, let oy and N be the signature of Peano arith-
metic and its standard model, i.e.

oy = {0,5,+,x,=} and N := (N;0N N 4N N =Ny

For any e € N, assignment s in 91 and first-order oy-formula ¢ with
FV (¢) C dom (s), D. Nelson [8] inductively defines

e®s,¢ and e@s, .

If e® s, ¢ (respectively e@ s, ¢), then the number e is called a positive
(negative) realization for ¢ under s. Roughly speaking, each positive
(negative) realization of ¢ under s encodes an effective verification (re-
spectively falsification) procedure for ¢ in 9 under s. Negation can be
viewed as a kind of switch between verification and falsification proce-
dures in Nelson’s semantics, which is similar to how it behaves in GTS,
where the players switch their roles when they see —. This observation
explains our choice of constructive semantics for comparing with GTS.
On this way we obtain the following results.

i. First, omitting the requirements of constructivity in the definition
of realizations, we define, for any pair s, ¢ with F'V (¢) C dom (s), two
families of set theoretical objects ST (s,¢) and S~ (s,¢). In GTS for
FOL, two strategies of the same player are called equivalent if the sets
of histories played according to these strategies coincide. It turns out
that there is a natural one-to-one correspondence between elements of
ST (s, $), where ¢ is implication-free, and winning strategies for Eloise
(the initial verifier in GTS) up to the equivalence just defined. Simi-
larly, there is a natural bijection between ST (s, ¢) and the equivalence
classes of winning strategies for Abelard (who is the initial falsifier). By
distinguishing effective objects in ST (s,¢) and S~ (s, ¢) and codifying
them by natural numbers we get back to positive and negative Nelson’s
realizations for ¢ under s. In this sense Nelson’s realizability restricted
to the implication-free first-order formulas can be viewed as an effective
version of GTS for FOL.

ii. Next we propose a realizability interpretation for IF-FOL. More
precisely, for any e € N, team T of assignments in 9 and IF-FOL-oy-
formula ¢ with FV (¢) C dom (T'), we inductively define

elP]T,¢ and e[N|T,q.
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We show that the resulting realizability semantics is related to GTS for
IF-FOL in exactly the same way as Nelson’s restricted realizability to
GTS for FOL.

iii. Finally, we show that the team realizability interpretation for IF-
FOL appropriately generalises Nelson’s restricted realizability interpre-
tation for the implication-free first-order formulas. In fact, we establish
that for ‘effective’ teams and implication-free first-order formulas, team
realizations can be identified with computable sequences of Nelson’s re-
alizations.

In conclusion we shall discuss another approach to ‘effectivizing’ IF-
FOL, which is based on the notion of effective strategy (defined as a
computable function from sequences of actions to actions). A sketch
of this approach can be found already in [3, Chapter 6]. We shall also
discuss the equivalence of this approach and the one described above
(which is based on the possibility of codifying elements of ST (s, ¢) and
S~ (s, ¢) by natural numbers). Lastly, we shall describe a version of IF-
FOL with implication and discuss the possibility of defining a kind of
independent implication. Nelson’s realizability gives us a hint for such
a definition.
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LOGIC AND COMPLEXITY

PAVEL PUDLAK

The II; reflection principle for a theory T says that if a II; sentence
is provable in T, then it is true.* This principle can also be stated as
disjointness of two r.e. sets: the set of T-provable II; sentences and the
set of false II; sentences. We are interested in this kind of sentences
scaled down to nondeterministic polynomial time computations. For a
formal system P, Razborov defined the canonical disjoint NP pair of
the proof system P as the pair of sets

{(¢,0™) | Imr, 7 is a P-proof of ¢ of length < n},
{(¢,0™) | —¢ is satisfiable},

where ¢ denotes a Boolean formula and 0™ is padding [2]. P can be any
formal system in which one can prove Boolean tautologies, e.g. ZFC,
but we are mainly interested in well-known propositional proof systems.

There at least three good reasons why we are interested in canonical
pairs.

1. A canonical pair, as any disjoint NP pair, presents a compu-
tational problem of separating the two sets. We believe that
the computational complexity of this problem is inherently con-
nected with the logical strength of the system. We do not have
quantitative measures of hardness of separation of disjoint pairs,
but there is a natural concept of reduction that enables us to
compare disjoint N P pairs.

2. Canonical pairs are connected with the property of propositional
proof systems called feasible interpolation. The latter property
enables one to prove lower bounds for some weak proof systems
such as Resolution and Cutting-Planes. An important open
problem in proof complexity is: for how strong proof systems
can one use some form of feasible interpolation?

3. There are several types of finite combinatorial games whose com-
plexity has not been determined; namely, it is not known how
hard it is to decide which player has a winning strategy. How-
ever, it has been shown that they are reducible to some canonical
pairs of bounded depth Frege proof systems [1].

*This principle is equivalent to the consistency of T', but this fact is not important
here.
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In this lecture we will report on our work on characterization of cano-
nical pairs of bounded depth Frege proof systems. We will first describe
games by means of which we characterize the canonical pairs. Then we
will present a proof system equivalent to bounded depth Frege systems
that we use in our proof. The system is interesting on its own right
because of its symmetry and simplicity.

Our games generalize the standard concept of a game where two play-
ers play some symbols in the following way. After playing in the usual
way, the players play backward and rewrite the symbols played until
they arrive at the beginning of the play. According to a given param-
eter, they may play in the forward direction and backward direction
several times before the game ends. What is important is that one can
define a natural concept of positional strategy; such a strategy has a
short description and one can check if it is a winning strategy in poly-
nomial time. Thus we can define a disjoint NP pair by taking games in
which the first player has a positional winning strategy as one NP set
and taking similarly defined set for the second player as the other NP
set. These pairs are equivalent to the canonical pairs of bounded depth
Frege systems.

Our proof system is inspired by the system of Skelley and Thapen [3],
but it is more symmetric. The main rules are resolution and dual reso-
lution, and the rules can be applied internally (deep in a given formula).

Acknowledgements. The work was partially supported by the ERC ad-
vanced grant FEALORA.
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MODAL LOGIC MEETS SIMPLICIAL SETS

VALENTIN SHEHTMAN

Simplicial semantics for modal and superintuitionistic predicate logics
was introduced by Dmitry Skvortsov in the early 1990s as a “maximal”
Kripke-type semantics. The proofs of basic results on this semantics
— soundness and “maximality” theorems (sketchy) and completeness
theorem (for a certain class of logics) were given in [1]. The book [2]
(Chapter 5) contains a detailed proof of soundness for metaframe se-
mantics, which is a particular case of simplicial semantics®. In this note
we state some further results on completeness and incompleteness.

Let us briefly recall the main definitions.

Modal (predicate) formulas are constructed from predicate letters P}’
(countably many for each arity n > 0), a countable set of individual
variables, classical propositional connectives, quantifiers, and the modal
operator [1. Individual constants, function letters and equality are not
used.

A modal predicate logic is a set of modal predicate formulas containing
classical predicate axioms, the axiom of K and closed under Modus Po-
nens, Generalization, [l-introduction, and predicate substitutions. QA
denotes the smallest predicate logic containing the propositional logic
A.

A predicate Kripke frame over a propositional frame F' = (W, R) is a
pair (F, D), in which D = (Dy),cw, Du # 9, and D, € D, whenever
uRv. The notion of validity for Kripke frames is standard and well-
known. By soundness theorem, the set of formulas valid in a certain
class of frames is always a modal predicate logic. Logics of this form are
called Kripke complete.

Many modal predicate logics are known to be Kripke incomplete, so
other Kripke-type semantics were proposed, in particular, Kripke sheaf
semantics, Ghilardi’s functor semantics, metaframe semantics, and sim-
plicial semantics — the strongest of them. It is defined as follows.

Let I,, ={1,...,n}, I = &, and let ¥,,, be the set of all maps from
I, to I,, (X0, consists of a single map @,, and X,,0 = @ for m > 0).

Alsolet ¥ = |J  X,un. There are specific maps:
m>0,n>0
0 € ¥p_1nsendsl,...,n — lrespectivelytol,...,i—1,i+1,...,n;

*The name ‘simplicial semantics’ was introduced in [2] as an allusion to algebraic
topology. ‘Simplicial frames’ from [2] correspond to ‘metaframes’ from [1], and ‘meta-
frames’ from [2] correspond to ‘Cartesian metaframes’ from [1].
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ot € X,41.n+1 prolongs o € ¥, with o™ (m+1) =n+ 1.

A simplicial frame based on a propositional Kripke frame F' is a tuple
F=(F,D, R,7), where D = (D"), - is a family of (non-empty) sets,
R = (R™),,> is a family of relations R" C D" x D™, with F = (D", R?);
T = (Ts) ey is a family of maps 7, : D" — D™ for o € .

If D™ is the Cartesian power of a set D (= D'), and 7, (a1, ...,a,) =
(a1,...,an) -0 := (Ag(1); -+ 0o(m)) for n >0, F is called a metaframe.

Remark. Simplicial sets are mathematical structures closely related
to simplicial frames. By definition [3], a simplicial set consists of non-
empty sets (D"),~; and maps 7, : D" — D™ corresponding to o :
I, — I,, that are monotonic w.r.t. <. 7, should also preserve compo-
sition and identity as in sound simplicial frames (cf. Theorem 1 below).
So a sound simplicial frame (without level 0) can be regarded as a sim-
plicial set with extra maps 7, corresponding to permutations I,, — I,
and with extra relations R,,.

A waluation in a simplicial frame F is a function £ sending every
predicate letter P} to a subset & (Pf') € D™. An assignment of length
n in F is a pair (x,a), where a € D", x is a list of different variables of
length n. For a formula A, an assignment (x,a) involving all its para-
meters and a model M = (F, §) the truth relation M,a/x E A is defined
by induction, in particular

o M,a/xFE P"(x-0)iff t,a €& (P") (for 0 € £,,1);
e M,a/x OB iff Vb € R" (a) M,b/x F B;
o M,a/xF 3yB iff Ic € D"+ (wézﬁc —a& M,c/xykE B),
where y does not occur in x;
e M,a/xF 3x;B iff M,msra/(x-0;') F 3z;B.
A formula is called wvalid in a simplicial frame if it is true under every

valuation and variable assignment (for its parameters); a formula is
strongly valid if all its substitution instances are valid.

Theorem 1 ([1]). LetF = (F, B, ﬁ,ﬂ) be a simplicial frame such that:
® Ty, 1S surjective;
e cvery m, for 0 € Y. is a p-morphism from (D™, R™) to
(D™ R™), i.e., m, (R™ (a)) = R™ (7, (a)) for every a;
e 7 preserves composition and sends identity maps to identity
maps;
. if”ﬁﬁﬁ (b) =7, (a), 0 € Xpun, then there exists c € D™ such

that m,+ () = b, Tgntt (c) =a.
n+1
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Then the set of formulas strongly valid in F is a modal predicate logic.

A simplicial frame satisfying these conditions is called sound. Note
that metaframes always satisfy the fourth condition.

A modal logic of some class of sound simplicial frames (respectively,
metaframes) is called simplicially complete (respectively, metaframe com-
plete).

Theorem 2 ([1]). If A is a canonical (d-persistent) propositional modal
logic, then QA is simplicially complete.

Now consider the propositional modal logics
D41 = K+UOp—=0O0Op+ OT 4+ 0OCp — Olp,
S4.1 = K+ UOp —0O0p+ Op — p+ OOCp — Slp,
SL4 (= K+ Up < Op+ Up — Op.

Theorem 3. Let A be a propositional modal logic between D4.1 and
SL4. Then QA is metaframe incomplete.

The crucial formula for the proof is
OOVaVy(OOP (x,y) — 32’y (P (2',y') AN OP (x,9))).

It is strongly valid in sound metaframes strongly validating QD4.1.
However, it is not provable in QSL4, because it can be refuted in a
simplicial frame strongly validating QSL4.

Corollary 4. The logics QD4.1, QS4.1, QSL4 are simplicially com-
plete, but metaframe incomplete.

In fact, completeness follows from Theorem 2 and incompleteness
from Theorem 3.
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AN EXTENSION OF A THEOREM OF ZERMELO

JOUKO VAANANEN

Zermelo [2] proved the following categoricity result for set theory.
Suppose M is a set and €1, €5 are two binary relations on M. If both
(M, €1) and (M, €3) satisfy the second order Zermelo-Fraenkel axioms
ZFC?, then (M, €,) = (M, €3). Of course, the same is not true for first
order ZFC. However, we show that if first order ZFC' is formulated
in the extended vocabulary {€1, €3}, then Zermelo’s result holds even
in the first order case. Similarly, Dedekind’s categoricity result [1] for
second order Peano arithmetic has an extension to a result about first
order Peano.
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CONNEXIVE CONDITIONAL LOGIC

HEINRICH WANSING*

Connexive logics are contra-classical logics. They are neither sub-
systems nor supersystems of classical logic, and what is characteristic of
them is that they validate the so-called Aristotle’s Theses and Boethius’
Theses:

(AT) ~(~A—= A),
(AT) ~(A— ~A),
(BT) (A— B)— ~(A— ~B),
(BT) (A— ~B)—~(A— B).

There are several ways of defining systems of connexive logic by making
use of various semantical constructions and proof-theoretical frame-
works, for surveys and some recent contributions see [3, 6, 7].

In this paper, first some propositional conditional logics based on
Belnap and Dunn’s paraconsistent four-valued logic of first-degree entail-
ment, FDE, are introduced semantically, which are then turned into
systems of connexive conditional logic. The general frame semantics
for conditional logics (see [1, 4, 5]) is generalized, so that it utilizes a
set of permissible extension/anti-extension pairs. Sound and complete
tableau calculi for the basic connexive conditional logics are presented.
Moreover, an expansion of these systems by a constructive implication
is considered, which gives us an opportunity to discuss recent related
work by Kapsner and Omori [2], motivated by the combination of in-
dicative and counterfactual conditionals. Tableau calculi for the basic
constructive connexive conditional logics are defined and shown to be
sound and complete with respect to their semantics. This semantics has
to ensure a persistence property with respect to the preorder that is
used to interpret the constructive implication.
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HIGHER TYPES OF RECURSION AND
LOW LEVELS OF DETERMINACY

PHILIP D. WELCH

We consider how one may lift Kleene’s theory of recursion in finite
types ([3]) to more expanded notions of recursion. Kleene himself in
[4] and [5] sought to show how his previous definitions using an equa-
tional calculus could also be grounded in an equivalent formulation using
Turing machines (thus perhaps providing backing for the higher type re-
cursive notions). ‘Kleene Recursion’ (at type 2) has come down to us as
a theory of hyperarithmetic sets of reals.

A notion of a more ‘generalized-recursion’ can roughly speaking be
obtained by replacing Turing machines in Kleene’s [4] and [5], by so
called infinite time Turing machines (ittm’s) [2]. The characteristics
of such conceptual devices have been investigated in [7] and they can
be shown to compute codes for an initial segment of the constructible
universe ([1]). This higher type involvement of ittm’s is an interesting
construction in its own right, and deserves, we believe, further investi-
gation. Here it is shown that there are applications of ittm-theory to
classical descriptive set theory. For, we can already give an exact char-
acterisation of complete ittm-semi-decidable sets formed relative to a
particular type 2 functional. (This results in a definition similar to one
already used by [6].)

This comes through a theorem connected with low level determinacy.
For the ‘Kleene recursion’ above, there were already connections with
open determinacy: Player I in an open, or ¥, game on Cantor or
Baire space has a hyperarithmetic, hence ‘Kleene recursive’, strategy. A
listing of the open games won by Player I formed a complete ‘Kleene
semi-decidable-in-oJ’ (for ordinary jump) set of integers.

We show the equivalence between the existence of winning strategies
for Gs, (or £9) games in Cantor or Baire space, and the existence of
functions generalized ittm-recursive in a certain higher type-2 functional
eJ’ (for extended jump). This allows us to lift in a natural fashion the
Kleenean results to this level: the list of X games won by Player [ is
now a complete generalized semi-decidable-in-eJ set of integers. (See

(8].)
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BETWEEN MODEL THEORY AND PHYSICS

BORIS ZILBER

There are several important issues in physics which model theory
have potential to help with. First of all, there is the issue of adequate
language and formalism, and closely related to this there is a more
specific problem of giving rigorous meanings to limits and integrals used
by physicists.

I will present a variation of positive model theory which addresses
these issues and will discuss some progress in defining and calculating
oscillating integrals of importance in quantum physics.
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