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University Paris-Est, Paris, France

Email: sebastien.biebler@u-pem.fr

Blank, Mikhail

Institute for Information Transmission Problems RAS and Higher School of Economics, Moscow, Russia

Email: blank@iitp.ru

Brooks, Simon

Avraham Bar Ilan University, Ramat Gan, Israel

Email: brookss@math.biu.ac.il

Buchstaber, Victor

Steklov Mathematical Institute, Moscow, Russia

Email: buchstab@mi-ras.ru

Bulgakova, Tatiana

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Email: dejteriy@gmail.com

Burago, Dmitri

PSU, USA

Email: burago@math.psu.edu

Burian, Sergey

St. Petersburg State University, St. Petersburg, Russia

Email: burianserg@yandex.ru

Chasco, Maria Jesus

Universidad de Navarra, Pamplona, Spain

Email: mjchasco@unav.es

Chemlal, Rezki

Bejaia University, Bejaia, Algeria

Email: rchemlal@gmail.com

Chernov, Vladimir

Dartmouth College, Hanover, USA

Email: vladimir.chernov@dartmouth.edu

Chtioui, Hichem

University of Sfax, Sfax, Tunisia

Email: Hichem.Chtioui@fss.rnu.tn

Damian, Florin

Moldova State University and Inst. of Math. and Comp. Sci., Chisina̋u, Moldova

Email: fl damian@yahoo.com

Deev, Rodion

Courant Institute, New York, USA

Email: rodion@cims.nyu.edu

Degtyarev, Alexander

Bilkent University, Ankara, Turkey

Email: degt@fen.bilkent.edu.tr

6



Dubashinskiy, Mikhail

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia

Email: mikhail.dubashinskiy@gmail.com

Dynnikov, Ivan

Steklov Mathematical Institute RAS, Moscow, Russia

Email: dynnikov@mech.math.msu.su

Erokhovets, Nikolai

Moscow State University, Moscow, Russia

Email: erochovetsn@hotmail.com

Finashin, Sergey

Middle East Technical University, Ankara, Turkey

Email: serge@metu.edu.tr

Gabai, David

Princeton University, USA

Email: gabai@math.princeton.edu

Garg, Mukta

Bharati Vidyapeeth College of Engineering, Delhi, India

Email: mukta.garg2003@gmail.com

Gaifullin, Alexander

Steklov Mathematical Institute of RAS, Moscow, Russia

Email: agaif@mi-ras.ru

Gekhtman, Ilya

University of Toronto, Toronto, Canada

Email: ilyagekh@gmail.com

Golubyatnikov, Vladimir

Sobolev Institute of Mathematics, Novosibirsk, Russia

Email: vladimir.golubyatnikov1@fulbrightmail.org

Gordon, Evgeny

Email: gordonevgeny@gmail.com

Gorodkov, Denis

Steklov Mathematical Institute of RAS, Moscow, Russia

Email: denis.gorod@gmail.com

Gugnin, Dmitry

Moscow State University, Moscow, Russia

Email: dmitry-gugnin@yandex.ru

Gurevich, Boris

Moscow State University, Moscow, Russia

Email: bmgbmg2@gmail.com

Gusev, Nikolay

Moscow Institute of Physics and Technology, Moscow, Russia

Email: n.a.gusev@gmail.com

Han, Hyelim

Yonsei University, Seoul, Korea

Email: hlhan@yonsei.ac.kr, cugir@hanmail.net

Hayat, Claude

Institut de Mathmatiques de Toulouse, Toulouse, France

Email: Claude.hayat@math.univ-toulouse.fr

Horiguchi, Tatsuya

Osaka University, Osaka, Japan

Email: tatsuya.horiguchi0103@gmail.com

7



Itenberg, Ilia
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ABSTRACTS

Semen Abramyan. Higher Whitehead products in moment-angle complexes
and substitution of simplicial complexes

(Joint work with Taras Panov [2])

Higher Whitehead products are important invariants of unstable homotopy type. They have been studied since

the 1960s in the works of homotopy theorists such as Hardie [7], Porter [12] and Williams [13].

The appearance of moment-angle complexes and, more generally, polyhedral products in toric topology

at the end of the 1990s brought a completely new perspective on higher homotopy invariants such as higher

Whitehead products. The homotopy fibration of polyhedral products

(1) pD2, S1qK Ñ pCP8qK Ñ pCP8qm

was used as the universal model for studying iterated higher Whitehead products in [1]. Here pD2, S1qK � ZK

is the moment-angle complex, and pCP8qK is homotopy equivalent to the Davis–Januszkiewicz space [3,4].

The form of nested brackets in an iterated higher Whitehead product is reflected in the combinatorics of the

simplicial complex K .

There are two classes of simplicial complexes K for which the moment-angle complex is particularly nice.

From the geometric point of view, it is interesting to consider complexes K for which ZK is a manifold.

This happens, for example, when K is a simplicial subdivision of sphere or the boundary of a polytope. The

resulting moment-angle manifolds ZK often have remarkable geometric properties [10]. On the other hand,

from the homotopy-theoretic point of view, it is important to identify the class of simplicial complexes K for

which the moment-angle complex ZK is homotopy equivalent to a wedge of spheres. We denote this class

by B∆. The spheres in the wedge are usually expressed in terms of iterated higher Whitehead products of

the canonical 2-spheres in the polyhedral product pCP8qK . We denote by W∆ the subclass in B∆ consisting

of those K for which ZK is a wedge of iterated higher Whitehead products. The question of describing the

class W∆ was studied in [11] and formulated explicitly in Problem 8.4.5 [4]. It follows from the results of [11]

and [5] that W∆ � B∆ if we restrict attention to flag simplicial complexes only, and a flag complex K belongs

to W∆ if and only if its one-skeleton is a chordal graph. Furthermore, it is known that W∆ contains directed

MF -complexes [6], shifted and totally fillable complexes [8,9]. On the other hand, it has been recently shown

in [1] that the class W∆ is strictly contained in B∆. There is also a related question of realisability of an iterated

higher Whitehead product w with a given form of nested brackets: we say that a simplicial complex K realises

an iterated higher Whitehead product w if w is a nontrivial element of π�pZK q. For example, the boundary of

simplex K � B∆p1, . . . ,mq realises a single (non-iterated) higher Whitehead product rµ1, . . . , µms, which maps

ZK � S2m�1 into the fat wedge pCP8qK .

In this talk we will discuss combinatorial approach to the question of realsability of an iterated higher

Whitehead product. Using the operation of substitution of simplicial complexes, for any iterated higher White-

head product w we describe a simplicial complex B∆w that realises w. Furthermore, for a particular form of

brackets inside w the complex B∆w is the smallest one realising w. We also give a combinatorial criterion for

the nontriviality of the product w.

The work was partially supported by the Russian Academic Excellence Project ‘5-100’, by the Russian

Foundation for Basic Research (grant no. 18-51-50005), and by the Simons Foundation.
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Andrei Alpeev. Decay of mutual information for unique
Gibbs measures on trees

In a recent paper by A. Backhausz, B. Gerencser and V. Harangi, it was shown that factors of independent

identically distributed random processes on trees obey certain geometry-driven inequalities. In particular, the

mutual information shared between two vertices decays exponentially, and there is an explicit bound for this

decay. I will show that all of these inequalities could be verbatim translated to the setting of factors of processes

driven by unique Gibbs measures. As a consequence, we show that correlations decay exponentially for unique

Gibbs measures on trees.

Mikhail Anikushin. Convergence and Strange Nonchaotic Attractors
in Almost Periodic Systems

Our attention will be focused on an extension of a result of V. V. Zhikov [4] concerning almost periodic ODEs

on the plane. The latter result states that under positive Lyapunov stability of the system (=equicontinuity on

compact sets of the solving operators) either all bounded solutions are almost periodic and their frequencies lie

in some common enumerable set or there is only one almost periodic solution. We show how one can extend

this result to higher dimensional systems via using some reduction principle originated by R. A. Smith [1, 3].

For the differential equations that can be written as a control system in Lure form the condition allowing to

reduce dimensions can be effectively verified by using frequency-domain methods. In fact, within the conditions

of Zhikovs theorem when the first case is realized it is possible to obtain the convergence of all bounded in the

future solutions to some of almost periodic ones. Along with direct applications we hope that this kind of results

will be useful for understanding of sensitive dependence on initial conditions in almost periodic systems with a

strange nonchaotic attractor (SNA). It was proved in [2] that some classical SNAs have sensitive dependence on

initial conditions, however the largest Lyapunov exponent is negative (that is often accepted as non-chaoticness).

To show sensitive dependence the authors used some dichotomy for transitive maps.
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Anton Ayzenberg. Orbit spaces of equivariantly formal torus actions
(Based on joint works with M. Masuda and V. Cherepanov)

Assume that a compact torus T acts on a smooth closed manifold X, and the action has nonempty finite set

of fixed points. We assume that the action is cohomologically equivariantly formal, which is equivalent, under

the given assumption on fixed points, to the vanishing of odd degree cohomology of X. We say that the action

is in j-general position, if, at each fixed point x, every j of the weights of the tangent representation TxX are

linearly independent. In my talk, I will discuss the following results.

(1) If an equivariantly formal action onX is in j-general position, then its orbit space is pj�1q-acyclic. This

result generalizes several known results listed below. 1. The result of Masuda–Panov asserting that the

orbit space of an equivariantly formal torus action of complexity zero is an acyclic space. 2. The result

of Buchstaber–Terzic asserting that G4,2{T 3 � S5 and F3{T 2 � S4, where G4,2 is the Grassmann

manifold of complex 2-planes in C4 and F3 is the manifold of complete complex flags in C3. 3. The

general result of Karshon–Tolman asserting that the orbit space of a complexity one Hamiltonian

action in general position is homeomorphic to a sphere. 4. The result of the author, asserting that

HP 2{T 3 � S5 and S6{T 2 � S4, where S6 � G2{SUp3q is the almost complex sphere. Now we have

a homological explanation, why the orbit spaces of many natural manifolds are homeomorphic to

spheres.

(2) The pj � 1q-acyclicity of the orbit space is the only homological constraint on the orbit space of

equivariantly formal actions. For any finite polyhedron L there exists an equivariantly formal action

in j-general position whose orbit space is homotopy equivalent to the pj � 2q-fold suspension of L.

Moreover, such example can be found in the class of Hamiltonian torus actions of complexity one.

(3) Finally, for torus actions of complexity one in general position, we present a criterion of equivariant

formality in terms of the topology of the orbit space.
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Malkhaz Bakuradze. All extensions of C2 by C2n � C2n are good for
the Morava K-theory

This talk is concerned with analyzing the 2-primary Morava K-theory of the classifying spaces BG of the

groups G in the title. In particular it answers affirmatively the question whether transfers of Euler classes of

complex representations of subgroups of G suffice to generate Kpsq�pBGq. Here Kpsq denotes Morava K-theory

at prime p � 2 and natural number s ¡ 1. The coefficient ring Kpsq�pptq is the Laurent polynomial ring in

one variable, F2rvs, v�1
s s, where F2 is the field of 2 elements and degpvsq � �2p2s � 1q. Not all finite groups

are good as it was originally conjectured in [2]. For an odd prime p a counterexample to the even degree was

constructed in [3]. The problem to construct 2-primary counterexample remains open.
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Polina Baron. The Measure of Maximal Entropy for Minimal Interval
Exchange Transformations with Flips on 4 Intervals

The main object of our research (see [3] for more details) is the set of all minimal interval exchange

transformations with flips on 4 subintervals (4–fIETs). An n–fIET is a piecewise isometry of an interval to itself

with a finite number of jump discontinuities such that this isometry reverses the orientation of at least one of

the intervals of continuity (called a flip). The interval exchange transformations with flips generalise the notion

of the interval exchange transformations (n–IETs). Moreover, in a way, the fIETs are in between the IETTs

and the linear involutions, which can be viewed as a further generalization. Interval exchange transformations

with flips are a great tool to study billiards with flips in polygons (see [10]), oriented measured foliations on

nonorientable surfaces (see [5]), vector fields on nonorientable surfaces (see [6]), and triangle tiling billiards

(see [7]).

Let us give a more thorough definition of minimal interval exchange transformations with flips.

Definition 1. Let S � p0, 1qzta1, . . . , an�1u � \n�1
i�0 Ii, where Ii � pai, ai�1q, a0 � 0, an � 1, ai ¤ ai�1 @i, be

a disjoint union of n ¥ 2 oriented intervals. A bijection T : S Ñ S is called an interval exchange transformation
on n subintervals, or an n–fIET for short, if it acts as a translation on every subinterval Ii. T is called an
interval exchange transformation with flips on n subintervals, or an n–fIET for short, if it also changes the
orientation of at least one Ii.

Figure 1. Examples of IETs without (left) and with flips (right).

Definition 2. A map f : X Ñ X is called minimal if all its orbits are dense in X.

Several ergodic properties of linear involutions were uncovered by Boissy and Lanneau in [4]. The ergodic

properties of IETs are well known and profoundly studied by many famous mathematicians, such as Yoccoz,

Veech, Forni, Avila, and many more. It was proved that almost all irreducible IETs are minimal (see [8])

and, moreover, uniquely ergodic (see [9]). However, A. Nogueira proved that almost all fIETs are, in fact, not

minimal (see [10]). In other words, the typical fIET has a periodic point. The ergodic properties of fIETs are

in many ways unclear and yet to be studied.

Rauzy induction is a case of Euclidian type renormalization algorithm introduced for IETs in 1979 by Rauzy,

and for fIETs in 1989 by Nogueira. Every n–fIET has a combinatorial type tπ � pπt, πbq, F � pFt, Fbqu. Here

πt and πb are permutations of intervals, and Ft, and Fb are sets of flipped intervals. Combinatorial types of

irreducible fIETs are vertices of Rauzy graph. The oriented edges of this graph are given by the action of Rauzy

induction. The connected components of the obtained graph are called Rauzy diagrams.

The parameter space σ for minimal 4–fIETs is a fractal (see [10] and [11]). We aim to study the invariant

measures on σ. The measure of maximal entropy on σ is a projection via Abramov–Rokhlin formula (see [1])

of the measure of maximal entropy for the suspension flow associated with σ, and this suspension flow is a

Teichmüller flow. We prove the following

Theorem 3. In the case of interval exchange transformations with flips on 4 intervals, the Gibbs measure
corresponding to the potential µ0 � ϕk0 � �k0r is the unique measure of maximal entropy for the suspension
flow.

As a preparation to prove this theorem, we had to study the Rauzy graph for 4–fIETs and show that it

contains only one, up to relabeling the intervals, minimal Rauzy diagram (that is, the component with minimal

vertices). We proved that this Rauzy diagram is topologically transitive, and the topological Markov shift on

this diagram is topologically mixing and satisfies big images and preimages property, which is an analogue to the

recurrence of the Markov chain. The same result can be obtained experimentally with the aid of Paul Mercat’s

computer program.
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Remark 4. It is notable that in the case of 6 intervals the computer program states that at least one of the
Rauzy diagrams is not topologically transitive. Therefore, the topological Markov shift on this diagram is not
topologically mixing and does not satisfy the big images and preimages property.

Our work is based upon the article [2] by Artur Avila, Pascal Hubert and Alexandra Skripchenko, who

prove a very similar statement for a particular family of systems of isometries. To prove the main theorem,

we exploit the results on fIETs obtained by Alexandra Skripchenko and Serge Troubetzkoy in [11], and the

approach to thermodynamical formalism for countable Markov shifts developed by Omri Sarig.

This result is a first step towards exploring more advanced ergodic properties of minimal interval exchange

transformations with flips. Currently, we are in the process of researching mixing for 4–fIETs. In collaboration

with Alexandra Skripchenko, we aim to continue the research, obtain an analogue of the combinatorial criteria

for minimal linear involutions (see [4]) in the case of the fIETs, and expand the results to higher numbers of

intervals. We also hope to find geometrical interpretations of interval exchange transformations with flips.

Hypothesis 5. For every minimal n–fIET there exists a translation surface corresponding to it.

Acknowledgements. This research was done as a part of the author’s undergraduate thesis. The author

is deeply grateful to professor Alexandra Skripchenko for thoughtful guidance and supervision of the aforemen-

tioned thesis. The author also thanks Pascal Hubert, Paul Mercat and Olga Paris–Romaskevich for fruitful

discussions and advice, and Paul Mercat especially for his wonderful computer program, mentioned earlier in

the abstract.
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Yury Belousov. A new algorithm of obtaining semimeander diagrams
for knots

A plane diagram of a knot is said to be semimeander if it is the union of two simple smooth arcs. Every

knot has a semimeander diagram. We introduce a new algorithm of obtaining a semimeander diagram for a

given knot. This algorithm is more efficient in comparison with known similar algorithms.

Introduction

Definition 1. A plane diagram of a knot is said to be semimeander if it is the union of two simple smooth
arcs (an arc is said to be simple if it is non-self-intersecting).
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Theorem 2. Every knot has a semimeander diagram.

This theorem has been independently discovered several times by different methods and in distinct terms

(for detailed historical reference see [2]). Theorem 2 allows us to define a knot invariant: the semimeander

crossing number.

Definition 3. Recall that the crossing number crpKq of a knot K is the smallest number of crossings in any
diagram of K. The semimeander crossing number cr2pKq of K is the smallest number of crossings in any
semimeander diagram of K.

The semimeander crossing number was introduced in [1], where the following estimate was proved:

Theorem 4. For each knot K, the following inequality is fulfilled:

cr2pKq ¤ 4
?

6
crpKq

.

The key ingredient of the proof is an algorithm transforming a minimal diagram of a given knot K to

a semimeander diagram with at most 4
?

6
crpKq

crossings. This algorithm is based on two geometric transfor-

mations of diagrams, which could be seen in terms of the Gauss code. As it was recently understood, these

transformations are special cases of a more general procedure. This procedure underlies the new algorithm, to

the description of which we now pass.

The description of the algorithm

Suppose we are given a diagram D of a knot K and a simple arc J in D such that no endpoint of J is a

crossing of D (the interior of J is allowed to contain crossings of D). A crossing x of D is said to be reducible

(with respect to J) if there exists a simple curve γ with endpoints at ai and bi for some i P t1, 2u (see Fig. 1)

such that the interior of γ intersects D only transversally and all intersections between D and γ lie on J . In this

case, γ is called a reduction curve for x. The reduction cost for a reducible crossing x is the minimum number

of intersection points between γ and J among all reduction curves γ for x.

a1 b1

a2

b2

x

Figure 1. A neighborhood of a crossing

Now, for a given diagram D of a knot K we can obtain a semimeander diagram using the following steps.

(1) Choose a simple arc J in D such that no endpoint of J is a crossing of D.

(2) If J contains all crossings of D then D is semimeander. Otherwise, we find a reducible crossing x with

the smallest reduction cost (say, p).

(3) Choose any reduction curve γ for x such that the number of intersections between γ and J is equal

to p.

(4) Replace the arc of D connecting the endpoints of γ and containing x with γ (over/undercrossings in

the new crossings should be set in the obvious way).

(5) Repeat steps 2–4 until our diagram becomes semimeander.

The proof that the described algorithm is correct is straightforward. Firstly, notice that step 4 reduces the

number of crossings that do not lie on J . Secondly, if J does not contain all crossings of D, there exists at least

one reducible crossing (this is so because two procedures introduced in [1] are special cases of this procedure

and any of them can be applied to every non-semimeander diagram).

Remark 5. The algorithm can be rewritten in terms of the dual graph of a knot diagram. This allows us to
easily find reduction costs for all crossings and also to find corresponding reduction curves (for example, using
Dijkstra’s algorithm).

The reported study was funded by RFBR according to the research project n. 17-01-00128 A.
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Mohan Bhupal. Open book decompositions of links of minimally
elliptic singularities

I will discuss some results that allow one to obtain an explicit Milnor open book decomposition supporting

the canonical contact structure on the link of any minimally elliptic singularity whose fundamental cycle Z

satisfies �3 ¤ Z � Z ¤ �1.

Pavel Bibikov. Theory of differential invariants in algebraic
classification problems

(The results of this work were obtained in collaboration with V. V. Lychagin)

In the present work we suggest a new approach to study classification problems in classical invariant theory.

We show the main ingredients of this approach on the following example. Consider the space of binary forms

of degree n on the complex field C. The group GL2pCq acts on this space in the following way: the semi-simple

part SL2pCq acts by linear coordinate transformations, and center C� acts by homotheties. The question is,

when are two given binary forms equivalent with respect to this action?

This problem was set by Bool in 1841, and this was the debut of the classical invariant theory. A lot of

great mathematicians such as Cayley, Hermite, Eisenstein, Gordan, Shioda, Hilbert, Noether, etc. took part

in the solution of this problem for some small degrees n, and in 2010 this problem was solved for n ¤ 10 and

n � 12. Moreover, Popov proved that the number of polynomial invariants for this problem grows exponentially

on n, so it is impossible to describe these invariants in the general situation.

Our approach uses not algebraic but differential-geometric methods. Namely, we consider binary forms

as solutions of the Euler differential equation xfx � yfy � nf and study the action of the group GL2pCq on

this differential equation. The invariants of such action are called differential invariants, and it is possible to

describe the whole algebra of these invariants.

Theorem 1. The algebra of differential invariants for the action of the group GL2pCq on the Euler differential

equation is freely generated by differential invariant H � uxxuyy � u2
xy

u2
and invariant derivation ∇ � uy

u

d

dx
�

ux

u

d

dy
.

Using this theorem it is possible to obtain an equivalence criterion for two binary forms. Namely, for

a given non-zero binary forms f consider three differential invariants I1 :� H, I2 :� ∇H and I3 :� ∇2H

and their restrictions I1pfq, I2pfq and I3pfq, which are just homogeneous fractions in two variables. Hence,

there exists a unique (up to a multiplication on a constant) polynomial Ff of a lowest degree such that

Ff pI1pfq, I2pfq, I3pfqq � 0. This polynomial is called the dependence polynomial of a binary form f .

Theorem 2. Two non-zero binary forms f1 and f2 of the same degree are GL2pCq-equivalent iff Ff1 � Ff2 .

This result shows that it is appropriate to use the theory of differential invariants in different algebraic

problems. We also show some generalizations of this idea. Namely, we consider the following problems.

1. What will happen, if we consider not complex but real binary forms?

2. What will happen, if we consider not binary but ternary forms (i.e. forms in three variables)? Or p-forms

for arbitrary p?

3. What will happen, if we consider the linear action of another classical algebraic group (Sp, So, SL, etc.)?

4. What will happen, if we consider an arbitrary representation ρ : G Ñ GLpV q of a semi-simple group G

in vector space G?

It appears that there exist exact answers to all these questions. We will briefly show the ideas for the last

one.

Let G be a connected semi-simple complex Lie group, and let

ρλ : GÑ GLpV q
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be its irreducible representation with highest weight λ.

First, let us fix a Borel subgroup B in group G and consider homogeneous complex flag manifold M :� G{B.

Secondly, consider the action B : G of Borel group B on G by the right shifts:

g ÞÑ gb�1,

where g P G and b P B.

Finally, let us define the bundle product E :� G �B C � G � C{ �, where the equivalence relation � is

defined by the following:

pg, cq � pgb�1, χλpbqcq,
and where χλ P XpT q is the character corresponding to the highest weight λ of the maximal torus T � B.

We introduce one–dimensional bundle

πλ : E ÑM, πλpg, cq � gB.

Holomorphic sections of this bundle are just holomorphic functions f : GÑ C, which satisfy the relation

fpgbq � χλpbqfpgq,
for all g P G and b P B.

Group G acts in bundle πλ by left shifts. This action prolongs to the action on the space of holomorphic

sections of bundle πλ:

gpfqpg1q � fpg�1g1q.
According to Borel–Weil–Bott theorem, if λ is dominant weight of group G, then this action is isomorphic

to representation ρλ.

Therefore, the study of orbits of irreducible representations of semisimple complex Lie groups with the

highest weight λ is equivalent to the study of the orbits of these actions on the space of holomorphic sections

of bundle πλ.

Let us illustrate this idea in case G � SL2pCq. It is known, that dominant weights of group SL2pCq equal

λ � n
2α, where α is the positive root of Lie algebra sl2pCq and n ¥ 0 is a non–negative integer. The Borel group

B � B2pCq consists of upper–triangular matrices, and character χλ acts on it in the following way:

χλ

�
a b

0 a�1



� an.

Then

M � SL2{B2 � CP 1.

If we denote the homogeneous coordinates on M by px : yq, then holomorphic sections of bundle πλ are just

homogeneous polynomials of degree n in variables x and y.

Thus, the study of invariants of representations of group SL2pCq is reduced to the classification of SL2pCq-
orbits of binary forms.

Finally, we note that our results make it possible to separate the regular G-orbits for the algebraic action

of the arbitrary reductive group G on algebraic manifold Ω, if there exists at least one regular G-orbit in Ω.

Indeed, according to the Sumihiro linearization theorem every affine algebraic manifold Ω with an algebraic

action of algebraic group G allows embedding to a vector space V with a linear G-action as G-invariant sub-

manifold. If this manifold contains regular G-orbit, then the restriction of G-invariants of V on Ω generate

G-invariants of Ω.

Hence, our results can be applied to the calculation of invariants (differential and algebraic) and separation

of the orbits for the action of connected semi-simple algebraic group G on an affine algebraic manifold Ω.

Michael Blank. Topological properties of measurable semigroup actions
We discuss two questions from this subject: recurrence property and shadowing of pseudo-trajectories. The

first of them is based on the representation of trajectories of the semigroup as realizations of a certain Markov

chain for which necessary and sufficient conditions for the recurrence were obtained recently in [1].

To this end it is worth to emphasize that a direct generalization of the recurrence notion does not work

well in the case of the semigroup action and one needs to make proper corrections which will be discussed in

detail. Examples of free semigroups such that each generator is recurrent a.e., but the corresponding semigroup

has no strictly recurrent points; as well the opposite case when each generator has no recurrent points, but the

semigroup is strictly recurrent everywhere, will be presented.
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Remark that in the absence of continuity of the dynamical system under study the only classical result about

the recurrence is the celebrated Poincare lemma, which claims that for any measurable set almost all points

(with respect to a dynamically invariant measure) return to this set eventually. Even in the case of a single

generator the support of the dynamically invariant measure may be very small or (in some exceptional cases)

even in the compact phase space there are no invariant measures. Such exceptional situations are becoming

typical for free semigroups having at least two measurable generators. Therefore technically the first step is to

find a replacement for the Poincare lemma. We find necessary and sufficient conditions for this replacement.

To study the shadowing property one again needs to make some modifications to the standard definitions.

We study both the cases of uniformly small perturbations and perturbations which are small only on average

(like Gaussian noise). In both cases we find conditions under which free semigroups with Anosov type generators

demonstrate both the (on average) shadowing and its absence. In a sense we have a kind of phase transition

here because both types of behavior are observed in a one-parameter family of semigroups. Technically these

results are based on a new way of proving the so called ”direct product structure” property for Anosov type

maps, especially in the non-local case. These constructions are new even in the case of a single map and allows

to study non-invertible maps having local hyperbolic properties.
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Shimon Brooks. Quantum chaos and rotations of the sphere
(Based on joint work with E. Lindenstrauss and E. Le Masson)

We consider the round sphere S2, and study joint eigenfunctions of the Laplacian and an averaging operator

over generators of a free subgroup satisfying mild non-degeneracy conditions. We show several ways in which

these eigenfunctions are spread out, and do not concentrate too much in small sets, in contrast to eigenfunctions

of the Laplacian alone, which can exhibit such localization.

The first result is a form of Quantum Ergodicity, which says that most joint eigenfunctions tend to equidis-

tribute on the sphere. The second result gives non-trivial bounds on the Lp norms of an eigenfunction, analogous

to the Hassell-Tacy bounds for Laplace eigenfunctions on a manifold of negative curvature. In both cases, the

underlying technology is estimates for wave propagation on large graphs that do not have too many short

cycles.

Victor Buchstaber. Vladimir Abramovich Rokhlin and algebraic topology
The book [1] incorporates 12 papers on algebraic topology written by Vladimir Abramovich Rokhlin. Add

to them the survey [2], one of the �rst in the world surveys on bordism groups, and the paper [3], where the
joint results of S. P. Novikov and V. A. Rokhlin are presented.

In connection with the title of the survey [2], we note that the well known terms �bordism� and �cobordism�
appeared only in [4]. The �inner homology� groups in terminology of the survey [2] are actually the scalar groups
of bordisms and cobordisms theories. In [4], references to the papers of V. A. Rokhlin are given, and the crucial
notion of �exact Rokhlin sequence� is introduced in bordisms theory.

Topics of V. A. Rokhlin's papers include:


 The 2�torsions in bordism groups of oriented manifolds;

 The mappings of the pn� 3q-dimensional sphere into the n-dimensional sphere;

 The embeddings of 3-dimensional manifolds in R5;

 The necessary and su�cient condition for an orientable closed manifold M4 to be the boundary of the
oriented manifold W 5;


 The formula 3τpM4q � xP1pM4q, rM4sy, connecting the signature of a manifold M4 with its �rst
Pontryagin class;


 The divisibility by 16 of signature for any closed almost parallelizable manifold M4;

 The external and the internal de�nitions of the characteristic Pontryagin cycles and the characteristic
Pontryagin classes;


 The combinatorial invariance of the rational Pontryagin classes;

 Problems of homotopical and topological invariance of the rational Pontryagin classes;

 The integer Pontryagin classes and smoothing problems of combinatorial manifolds;

 Problems of realization of 2-dimensional cycles in 4-dimensional manifolds;
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 The additivity of the signature with respect to the connected sum of manifolds M4k
1 and M4k

2 along
the common connected component of their boundaries.

These papers were published in the period of the explosive development of mathematics (1951 � 1971).
During these years, many fundamental problems of algebraic topology were solved. It became possible due to
the revealment of the implicit connections of algebraic topology with real and complex algebraic geometries,
functional analysis, the theory of di�erential equations, commutative and homological algebra. Moreover, those
connections opened new areas of research in mathematics and physics. Rokhlin's papers signi�cantly contributed
to the success of algebraic topology (see [5] � [8]).

Many papers of V. A. Rokhlin were devoted to the theory of 4-dimension manifolds. Over the years, it
became clear that this theory is fundamentally di�erent from the theory of manifolds of other dimensions. The
role of the results of V. A. Rokhlin in creating the rich and �wild world� of 4-dimension manifolds is amply
presented in [9].

The talk will focus on the role of V. A. Rokhlin's results in the development of algebraic topology right
up to the present moment. We will discuss the results of the papers [10] � [16], which consider the problems
directly connected with results of V. A. Rokhlin, as well as new problems, the statements of which are closely
related to the ideas of V. A. Rokhlin.
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Dmitri Burago. Examples of exponentially many collisions in
a hard ball system

(Based on joint work with S. Ivanov)

20 years ago the topic of my talk at the ICM was a solution of a conjecture which goes back to Boltzmann
and Ya. Sinai. It states that the number of collisions in a system of n identical balls colliding elastically in empty
space is uniformly bounded for all initial positions and velocities of the balls. The answer is affirmative and
the proven upper bound is (poly) exponential in n. Little was known about how many collisions can actually
occur. In R1, npn � 1q{2 is a realizable maximum. The only non-trivial (and counter-intuitive) example in
higher dimensions I am aware of is an observation by Thurston and Sandri who gave an example of 4 collisions
between 3 balls in R2. Recently, Sergei Ivanov and me proved that there are examples with exponentially many
collisions between n identical balls in R3, even though the exponents in the lower and upper bounds do not
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match. The example is not very explicit, we just prove its existence. A few related problems around entropy
and other dynamical invariants will also be discussed.

Sergey Burian. Dynamics of mechanisms near singular points
Singular geometry theories could be applied to the studying of the motion of mechanisms with configuration

space singularities. It is motivated by the following way: in the case when the configuration space X of
mechanical system is a the smooth manifold, the motion equations in Lagrangian or Hamiltonian form could
be interpretated as a vector fields on (co)tangent bundles of X. In general case, we could construct the “vector
fields” on the “(co)tangent” bundle of the space X, which is not a smooth manifold.

The formulation of classical differential geometry constructions in the terms of observation functions algebra
could be founded in the book [1]. Also there are point-based singular geometry methods which suppose that
a singular space X has the topological structure: diffeology, differential spaces, Frölicher spaces. The overview
and comparison of this theories is presented in the work [2].

In the previous works, the case of one-dimensional singularities was studied [3][4]. This means that the
configuration space of the mechanism consists of some smooth curves with (locally) unique common point.
Some problems of the using of the Frölicher space structure in the motion description are analyzed in [5]. In
the current report we study the case of two-dimensional singularities.

The construction of one-dimensional singular pendulum is the following. We consider the planar mechanism
(in the fixed plane Π) of double pendulum with rods AB with length l1 and BC with length l2. Suppose l1 ¡ l2.
The point A is fixed. Then we impose additional constraint to the displacement of the point C. The vertex
C must lie on the fixed curve γ. In general points, configuration space of the planar singular pendulum in
one-dimensional. The singular configurations of this mechanism could arise when two rods AB and BC become
co-directed. If the distance function d � |AC| has the local minimum or maximum at these configurations, then
the mechanism could continue the motion in two different ways after coming across the singular configuration:
by the curve c1 or by the curve c2. Curves c1 and c2 could have transversal intersection at common point s or
they could have tangency singularity.

We could consider the tangent space at singular point s of the configuration space like as the classes of
smooth curves in X. Then the space of directions is the union of two lines for the traversal intersection case and
is one-dimensional linear space for the tangent case. There are difficulties for the construction of the choosing
“smooth” coordinates, such as a map h : U Ñ X, where U is the subset of some Euclidean space.

Now we consider some modification of the planar singular pendulum. Assume that the plain Π contains
vertical axes Oz in the (physical) space R3. The location of the plane Π in the space R3 is fixed. But the rods
AB and BC move in the space. The motion of the vertex C is planar: C moves along the curve γ � Π � R3.
The construction is presented in the Fig.1.

Figure 1. Space singular pendulum.

Consider the angles for of the space singular pendulum. Let u be the angle between the point C in the
plane Π and axes Oz (or the line AO). Denote θ the angle between the lines AB and AC, and let ξ be the
rotation angle of point B relative to the plane Π. We consider the case of oriented angles u, θ and ξ with the
anti-clockwise orientation. The system of the space singular pendulum has two degrees of freedom in a general
point.
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Suppose that the curve γ could be parametrized by the angle u: then we have γ � γpuq. For a given value
of u, the location of the vertex C is unique defined. The coordinates of point B could be derived from the
triangular ABC. They are given by the rotation angle ξ of triangular ABC. The couple pu, ξq describes the
geometric configuration of the space singular pendulum.

Let px1, y1, z1q and px2, y2, z2q be the coordinates of the points B and C. We find the dependance of this
coordinates on the variables u, θ and ξ. The coordinates of the point B could be founded in the following
way. We start from the point B1 � pl1 cos θ, 0, l � 1 sin θq on the plane Π. Then we rotate the point B1 along
the Oz-axis on the angle ξ and get B2. Finally, we rotate C2 for the angle u in the plane Π with the center
A. To sum up, we get the following parametrization of the configuration space X � R3 of the space singular
pendulum:

x3
1 � l1 cos θ cosu� cos ξpl1 sinu sin θq � |AO|;
y3

1 � l1 cos θ sinu� cos ξpl1 cosu sin θq;
z3

1 � sin ξpl1 sin θq;
x2 � dpuq cosu;

y2 � dpuq sinu;

z2 � 0.(1)

For any ξ the coordinates p0, 0, ξq map to the one singular point s. This point is equal to the singular point of
the planar singular pendulum. Consider the velocity vector of the system in the case uÑ 0, θ Ñ 0:

p 9x1, 9y1, 9z1, 9x2, 9y2, 9z2q|pu�0,θ�0q � p0, l1 � l1θ
1 cos ξ, l1θ

1 sin ξ, 0, dp0q, 0q 9u.
This means that the velocity vector of the point B is dependent on the limit value of ξ. In general case, the
space X has conical singularity at singular point s. In the case of θ1puq � 0 we get that the velocity vectors of
space singular pendulum are the linear shell of the vector

p0, l1, 0, 0, dp0q, 0q.
In this case, the space X has cuspidal singularity at point s.

The angle θ could be founded from the triangular ABC:

θpuq � � arccos

�
l21 � dpuq2 � l22

2l1dpuq

�
.

In order to derive the derivation of θ let us compute sin2 θ. From the geometric point of view, sin θ � 0 if
the rods AB and BC are co-directed. In this case, two roots of the equation sin θ � 0 are d1 � l1 � l2 and
d2 � l1 � l2. After some calculation we get:

sin2 θ � ppl1 � l2q � dq � pd� pl1 � l2qq � pd� p�l1 � l2qq � pd� p�l1 � l2qq
4l21d

2
.

Consider the curve γ with the properties: d1p0q � d2p0q � d3p0q � 0, but dp4q � 0. By the Hadamard lemma,

dpuq � pl1 � l2q � u4gpuq,
so that gpuq is a smooth function and the value of g at point u � 0 is positive. Then we can select a “singular”
factor in θ1puq:

(2) θ1puq � F puq � d 1puqapl1 � l2q � dpuq � F puq � u
3p4gpuq � ug1puqq

u2
a
gpuq ,

where F puq is smooth function, F p0q � 0. Therefore θpuq is the smooth function too.
As a consequence, we could fix one smooth geometric branch θ (2) of the space singular pendulum. Then

in the formulas (1) coordinates functions
r � px1, y1, z1, x2, y2, z2q

are smooth functions of the parameters pu, ξq.
Proposition 1. The coordinates pu, ξq give us the smooth parametrization of the configuration space X of
space singular pendulum.

Suppose that points B and C are massive but rods AB and BC are mass-less. The dynamics of space
singular pendulum could be derived by Lagrangian or Hamiltonian approach. The kinetic energy T is the
smooth function as a square of 9r. Potential energy V is the smooth function of r. has the smooth coefficients.
This mean that the Lagrange equations for Lagrangian function L � T � V

d

dt

BL
B 9q �

BL
Bq � 0.
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is the smooth vector field on the tangent bundle of the pu, ξq-plane.
We could generalize this example of the space singular pendulum in the following way. Consider the space

X in the arbitrary Euclidean space Rn with a unique conical (or cuspidal) singular point s. Suppose that we
have the surjective map h : U Ñ X. Let U � px1, x̄q and for all z the image hpz, 0q � s. The problem is to
define vector field on the singular space X which is corresponded to the vector field on U . The motion in the
U is smooth and thus the motion in R6 is smooth.
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Rezki Chemlal. Measurable factors of one dimensional cellular automata
We are interested in ergodic properties of one dimensional cellular automata. We show that an ergodic

cellular automaton cannot have irrational eigenvalues. We show also that a cellular automaton with almost
equicontinuous points according to Gilman’s classification has an equicontinuous measurable factor.

Introduction

Let A be a finite set; a word is a sequence of elements of A. The length of a finite word u � u0...un�1 P An
is |u| � n. We denote by AZ the set of bi-infinite sequences over A. A point x P AZ is called a configuration.
For two integers i, j with i   j we denote by x pi, jq the word xi...xj .

For any word u we define the cylinder rusl �
 
x P AZ : x pl, l � |u|q � u

(
where the word u is at the position l.

The cylinder rus0 is simply noted rus. The cylinders are clopen (closed open) sets.
Endowed with the distance d px, yq � 2�n with n � min ti ¥ 0 : xi � yi orx�i � y�iu, the set AZ is a

topological compact separated space.
The shift map σ : AZ Ñ AZ is defined as σ pxqi � xi�1, for any x P AZ and i P Z. The shift map is a

continuous and bijective function on AZ. The dynamical system
�
AZ, σ

�
is commonly called full shift.

A cellular automaton is a continuous map F : AZ Ñ AZ commuting with the shift. By the Curtis-Hedlund-
Lyndon, theorem [2] for every cellular automaton F there exist an integer r and a block map f from A2r�1 to
A such that F pxqi � f pxi�r, ..., xi, ...xi�rq . The integer r is called the radius of the cellular automaton.

Endowed with the sigma-algebra on AZ generated by all cylinder sets and µ the uniform measure which
gives the same probability to every letter of the alphabet,

�
AZ,B, F, µ

�
is a measurable space. The uniform

measure is invariant if and only if the cellular automaton is surjective [2].
A cellular automaton

�
AZ,B, F, µ

�
is ergodic if there is no F�invariant subset of positive measure. It is

said weakly mixing if F � F is ergodic. A cellular automaton
�
AZ,B, F, µ

�
is mixing if , for any measurable

U, V � AZ we have lim
nÑ8µ pU X F�n pV qq � µ pUqµ pV q .

A cellular automaton pBZ, Gq is a measurable factor of pAZ, F q, if there exists a surjective measurable map π
from AZ to BZ such that π � f � g � π.

We denote by L2
µ the set of measurable functions g : AZ Ñ C for which }f}2 �

�³
AZ |g|2 dµ

	 1
2

is finite.

Let
�
AZ,B, F, µ

�
be a cellular automaton where µ is an invariant measure. We say that the function g P L2

µ

is a measurable eigenfunction associated to the measurable eigenvalue λ P C if g � F � λF a.e.
By definition any eigenvalue must be an element of the unit circle. As any eigenvalue can be written in the

form exp p2Iπαq; we will say that an eigenvalue is rational if α P Q and irrational otherwise.
A cellular automaton is ergodic iff any eigenfunction is of constant module and weakly mixing iff it admits 1

as unique eigenvalue and that all eigenfunctions are constant.

Gilman’s classification

Gilman [3,4] introduced a classification using Bernoulli measures which are not necessarily invariant.

Definition 1. Let F be a cellular automaton and ri1, i2s a finite interval of Z. For x P AZ. We define Bri1,i2s pxq
by:

Bri1,i2s pxq �
 
y P AZ,@j : F j pxq pi1, i2q � F j pyq pi1, i2q

(
.
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For any interval ri1, i2s the relation R defined by xRy if and only if @j : F j pxq pi1, i2q � F j pyq pi1, i2q is an
equivalence relation and the sets Bri1,i2s pxq are the equivalence classes.

Definition 2. Let pF, µq a cellular automaton equipped with a shift ergodic measure µ, a point x is µ�equiconti-
nuous if for any m ¡ 0 we have:

lim
nÑ8

µ
�rx p�n, nqs XBr�m,ms pxq

�
µ prx p�n, nqsq � 1.

We say that F is µ�almost expansive if there exist m ¡ 0 such that for all x P AZ : µ
�
Br�m,ms pxq

� � 0.

Definition 3. Let pF, µq denote a cellular automaton equipped with a shift ergodic measure µ. Define classes
of cellular automata as follows :
1- pF, µq P A if F is equicontinuous at some x P AZ.
2- pF, µq P B if F is µ�almost equicontinuous at some x P AZ but F R A .
3- pF, µq P C if F is µ�almost expansive.

Statement of results

In the following pF, νq will denote a surjective cellular automaton equipped with the uniform measure.

Lemma 4. Let pF, νq be a surjective cellular automaton of radius r with ν�equicontinuous points. Then
the set σ�pBr�r,rs pxq X

�
Br�r,rs pxq

�
is of positive measure for every integer p. Moreover for each point y P

σ�pBr�r,rs pxq X
�
Br�r,rs pxq

�
the sequence F k pyq p�r, rq is eventually periodic.

Proposition 5. Let pF, νq be a surjective cellular automaton with ν� equicontinuous points then F have a
measurable equicontinuous factor which is a cellular automaton.

Proof. Let r be the radius of the cellular automaton and let x be a ν-equicontinuous point. Then we have
ν
�
Br�r,rs pxq

� ¡ 0. Using Lemma 4 for every y P σ�pBr�r,rs pxq X
�
Br�r,rs pxq

�
the sequence F k pyq p�r, rq is

eventually periodic.
As the number of words of length 2r � 1 is finite, so there exists a common period p and preperiod p0 for

all points of σ�pBr�r,rs pxq X
�
Br�r,rs pxq

�
.

For some y P σ�pBr�r,rs pxq X
�
Br�r,rs pxq

�
consider the finite set

P �  
F k pyq p�r, rq : p0 ¤ k ¤ p0 � p� 1

( � tpk : p0 ¤ k ¤ p0 � p� 1u .
Let us define the measurable sets �Wk � F�1 tpku , : p0 ¤ k ¤ p0 � p� 1.

Consider the alphabet A � pZ{ pp� 1qZq and let the function π be defined by:

@x P AZ :

"
π pxqi � pxi � 1qmod p : x P �Wk : k0 ¤ k ¤ k0 � p.
p : otherwise.

The function π is measurable and it is associated to the equicontinuous cellular automaton defined by:

@x P pZ{ pp� 1qZqZ : C pxqi �
" pxi � 1qmod p if x � p;
p if x � p.

�

Proposition 6. Let
�
AZ,B, F, ν

�
an ergodic cellular automaton, then F cannot have any irrational eigenvalue.

Proof. Suppose there is a subset G of AZ such that ν pGq � 1 and g is the eigenfunction associated to
e2iπα with α P RzQ. As ν is ergodic the eigenfunction g is of constant module denoted by r � |g pxq| .

The function h � g � σ�n
g

is an invariant function for F and by ergodicity it is constant.

Consider the family of sets Gn pεq defined by:

Gn pεq � tx P G : @y P G : x p�n, nq � y p�n, nq ñ |g pxq � g pyq|   εu .
As α is irrational for every δ small enough there exist an integer p such that: Bδ

�
e2iπpα

�XBδ �e2iπp�pqα� �
∅. Let us consider two words w1, w2 satisfying:#

@x P rw1s XGn pεq : g pxq P Bδ
�
re2iπpp�qqα� .

@x P rw2s XGn pεq : g pxq P Bδ
�
re2iπpqqα� .

Let be the words w1uw2 and w1uw1 with |u| � n; we have then:#
@x P rw1uw2s XGn pεq : g pxq P Bδ

�
re2iπpp�qqα� .

@x P rw2uw1s XGn pεq : g pxq P Bδ
�
re2iπqα

�
.
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From an other side we have:#
@x P rw1uw2s XGn pεq : g

�
σ�n�|w1| pxq� P Bδ �re2iπqα

�
.

@x P rw2uw1s XGn pεq : g
�
σ�n�|w1| pxq� P Bδ �re2iπpp�qqα� .

Consequently: #
@x P rw1uw2s X E pεq ñ h pxq P Bδ

�
e2iπpα

�
.

@x P rw2uw1s X E pεq ñ h pxq P Bsδ
�
e2iπp�pqα� .

Thus h cannot be constant and F cannot be ergodic. �
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Vladimir Chernov. Causality and Legendrian linking in higher dimensional
and causally simple spacetimes

Recently Nemirovski and myself showed that causal relation of two events in a globally hyperbolic spacetime
is equivalent to the non triviality of the Legendrian link of the spheres in the space of all light rays formed by
the lights rays through the two event points. The result was obtained under the condition that the universal
cover of a Cauchy surface of the spacetime is not compact. In this talk we review these results and discuss the
generalization of them to the case of Cauchy surfaces with compact universal coverings. The last results are
based on the contact Bott–Samelson Theorem of Fraunfelder, Labrousse and Schlenk. If time permits we will
discuss possible relations between causality and linking in causally simple spacetimes which are more general
than globally hyperbolic ones.

Hichem Chtioui. Prescribing scalar curvatures on n-dimensional
manifolds, 4 ¤ n ¤ 6

(Based on joint work with A. Alghanemi, M. Soula)

We provide existence and multiplicity theorems for the scalar curvature problem on Riemannian manifolds
of dimensions 4 and 5 and 6. Our approach is based on the critical points theory of Bahri and uses the positive
mass theorem of Schoen-Yau.

Introduction

On a closed Riemannian manifold pMn, g0q, n ¥ 3, with a non negative scalar curvature Rg0 , let K be
a given function. We address to the problem of finding suitable conditions on K to be realized as the scalar

curvature of a conformal metric g on Mn. Setting g � u
4

n�2 g0, where u is a smooth positive function on Mn.
The problem is then reduced to solve the nonlinear PDE

"
�Lg0u � Kpxqun�2

n�2 ,
u ¡ 0 on Mn,

(1)

where �Lg0u � � 4pn�1q
n�2 ∆g0u�Rg0u is the conformal Laplacien of pMn, g0q.

In the current note, we deal with manifolds pMn, g0q of dimensions 4 and 5 which are not conformally
diffeomorphic to Sn as well as manifolds pMn, g0q of dimensions 6 under some conditions on the Weyl tensor.
Our aim is to provide existence and multiplicity results for the problem when the prescribed function K satisfies
the so-called ”β-flatness condition” near its critical points. The main novelty here is that the flatness order
β � βpyq allows in p1,8q for any critical point y of K.

Let Gp�, �q be the Green function of �Lg0 on Mn and let Hp�, �q be its regular part. We associate to any

a PMn a conformal metric ga � u
4

n�2
a g0 on Mn such that in the conformal normal coordinates txku1¤k¤n near

a; we have
detpgapxqq � 1�Op|x� a|N q, @x P Bpa, ρ0q.
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Here |x� a| denotes the geodesic distance between x and a with respect to the the metric ga and N is a fixed
positive integer larger enough.
It is known that in dimension n � 3, 4, 5 or if Mn is locally conformally flat the expression of the Green function
Gp�, �q simplifies considerably in the conformal normal coordinates near a. Namely we have

Gpa, xq � |x� a|2�n �Aa �Op|x� a|q, where Aa � Hpa, aq.
pfqβ Assume that K is a C1-function satisfying at any of its critical point y the following: There exists a real
number β � βpyq such that in the conformal normal coordinates system near y, K is expressed as follows:

Kpxq � Kpyq �
ņ

k�1

bk|xk � yk|β � op|x� y|βq,

with bk � bkpyq � 0, @k � 1, . . . , n, if βpyq ¤ n� 2. Moreover,$'''&'''%
ņ

k�1

bkpyq � 0, if βpyq   n� 2,

�n c1
wn�1

°n
k�1 bk

Kpyqn�2
2

�Ay � 0, if βpyq � n� 2,

Here c1 �
»
Rn

|z1|β |z|2 � 1

p1� |z|2qn�1
dz and wn�1 � |Sn�1|.

Let K be the set of the critical points of K and define

K n�2 � ty P K , βpyq   n� 2u, K �
 n�2 � ty P K n�2, �

ņ

k�1

bkpyq ¡ 0u,

Kn�2 � ty P K , βpyq � n� 2u, K �
n�2 � ty P Kn�2, � nc1

wn�1

°n
k�1 bk

Kpyqn�2
2

�Ay ¡ 0u

and
K¡n�2 � ty P K, βpyq ¡ n� 2u.

For any p-tuple of distinct points τp :� pyl1 , . . . , ylpq P pK �
n�2qp, 1 ¤ p ¤ 7K �

n�2, we define the following
symmetric matrix Mpτpq � pmijq1¤i,j¤p such that

mii � mpyli , yliq �
nc1
wn�1

°n
k�1 bkpyliq
Kpyliq

n
2

� Ayli
Kpyliq

, @i � 1, . . . , p.

mij � mpyli , ylj q � � Gpyli , ylj q
rKpyliqKpylj qs

n�2
2

, @i � j.

pAq Assume that for any p-tuple of distinct points τp P pK �
n�2qp, the least eigenvalue ρpτpq of Mpτpq is non

zero.
Setting

C8 n�2 :� tτp � pyl1 , . . . , ylpq P pK �
 n�2qp, p ¥ 1 and yli � ylj ,@i � ju,

C8n�2 :� tτp � pyl1 , . . . , ylpq P pK �
n�2qp, p ¥ 1, yli � ylj ,@i � j and ρpτpq ¡ 0u,

and define for any p-tuple of distinct points τp � pyl1 , . . . , ylpq

ipτpq � p� 1�
p̧

j�1

n�ripyjq,
where ripyjq � 7tbkpyjq, 1 ¤ k ¤ n, s.t., bkpyjq   0u.

Here are our existence and multiplicity Theorems.

Theorem 1. Let n � 4, 5. Suppose pMn, g0q is not conformally diffeomorphic to Sn and K is a positive
function on Mn for which pAq and pfqβ , β P p1,8q hold. If¸

τpPC8 n�2

�
C8n�2

� pC8
 n�2�C8n�2q

p�1qipτpq � 1 � 0,

then p1.1q admits at least one solution.
Moreover for generic K and if β P pn�2

2 ,8q, the number of the solution of p1.1q is lager or equals to��� ¸
τpPC8 n�2

�
C8n�2

� pC8
 n�2�C8n�2q

p�1qipτpq � 1
���.
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Theorem 2. Let n � 6. Suppose K is positive smooth function on Mn and denote y0 a global maximum of
K. If the Weyl tensor at y0, Wg0py0q is non zero and all partial derivatives of K of order strictly less than n� 2
vanish at y0, then p1.1q has at least one solution.

Moreover for generic K satisfying pfqβ-condition, with β P pn�2
2 ,8q, if Wg0pyq � 0 for any critical point y

of K, then the number of the solutions of p1.1q is larger or equals to��� ¸
τpPC8 n�2

p�1qipτpq � 1
���.

Florin Damian. On involutions without fixed points
on the hyperbolic manifold

We discuses methods of synthetic geometry that permit to construct easy new examples of hyperbolic
manifolds and to describe their geometry. However in some cases we can find a manifolds with geodesic
boundary. If the symmetry group of this boundary of co-dimension one, contains an involution without fixed
point, then one can complete the construction.

In the communication we will give some example of hyperbolic n-manifold Mn (n � 2, 3, 4, 5) which possess
such isometric involution. Some of them was obtained as metrical reconstruction of manifolds described in [1-4].
The factorization of these manifolds by the above involutions yield complete manifolds whose volume is two
times less that the volume of the initial manifolds, for example for reconstructed Davis hyperbolic 4-manifold.
Also we will give some examples of hyperbolic manifolds for which the constructed manifolds Mn are geodesical
boundaries.

This investigation lead to an ”intermediate” way of representing the hyperbolic manifold by an equidistant
polyhedron [5] over compact basis as a submanifold of co-dimension one.
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Alexander Degtyarev. Slopes of colored links
(The subject is a joint work in progress with Vincent Florens and Ana G. Lecuona)

We introduce a new invariant, called slope, of a link in an integral homology sphere. More precisely, given
a link K YL � S with a distinguished component K, the slope K{L is a P1-valued function defined on a dense
Zariski open subset of the variety of admissible characters

A :�  
ω : H1pS r Lq Ñ C�

�� ωrKs � 1
(
.

The domain of definition contains all unitary admissible characters, and the value of K{L at each unitary
character is real.

The slope function is rational (possibly identical 8) on a Zariski open dense subset of the domain—at least
away from the zeroes of the first nonvanishing order of L. Generically, the slope is the ratio of two Conway
potentials:

pK{Lqpωq � �∇1
KYLp1,

?
ωq

2∇Lp
?
ωq P CY8,

where 1 stands for the derivative with respect to the first argument, viz. the one corresponding to K. Thus,
K{L can be regarded as a multivariate generalization of the Kojima–Yamasaki η-function. However, the slope
is still well defined and becomes really interesting when this ratio does not make sense (i.e., a common root or,
better yet, both potentials vanishing identically): l’Hôpital’s rule does not apply, and our experiments with the
link tables show that the slope can distinguish links with equal higher Alexander polynomials. Still, the slope
is an invariant of the link group (together with the peripheral data). Among other approaches (e.g., Seifert
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surfaces or, more generally, C-complexes), it can be computed by means of the Fox calculus. Combined with
the Wirtinger presentation, this gives us a simple algorithm computing the slope in terms of the link diagram.

The original motivation for this work was our formula [1] for the multivariate signature (defined following
the approach suggested by Rokhlin and Viro) of the splice L1 Y L2 of two colored links K 1 Y L1 � S1 and
K2 Y L2 � S2. The signature is almost additive:

σLpω1, ω2q � σK1YL1pυ2, ω1q � σK2YL2pυ1, ω2q � δλ1pω1qδλ2pω2q,
where υ� :� ω�rK�s and the correction term δλ1pω1qδλ2pω2q depends only on the combinatorial characteristics
of the links (their linking vectors λ1, λ2). This formula holds unless υ1 � υ2 � 1, i.e., unless both characters ω1,
ω2 are admissible. In the exceptional case, which was left open in [1], the formula takes the form

σLpω1, ω2q � σL1pω1q � σL2pω2q � δλ1pω1qδλ2pω2q �∆σpκ1, κ2q,
where the extra correction term

∆σpκ1, κ2q :� sg κ1 � sg
� 1

κ1
� κ2

	
depends on the slopes κ� :� pK�{L�qpω�q. (For the purpose of this statement, we disambiguate 8 �8 to 0
and let sg8 � 0.) Note that this extra term is the only contribution of the knots K 1, K2 along which the links
are spliced. Note also that both slopes are well defined and real as the characters involved are unitary.

Should time permit, I will also discuss further properties of the new invariant. For example, the slope is a
concordance invariant away from the so-called concordance roots. The concept of slope extends to a special class
of tangles; the corresponding signature formula generalizes and refines the skein relations for the signature.

The author was partially supported by the TÜBİTAK grant 118F413.
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Ivan Dynnikov. A method to distinguishing Legendrian and transverse knots
(The talk is based on recent joint works with Maxim Prasolov and Vladimir Shastin)

A smooth knot (or link) K in the three-space R3 is called Legendrian if the restriction of the 1-form α �
x dy � dz on K vanishes, where x, y, z are the standard coordinates in R3. If α|K is everywhere non-vanishing
on K, then K is called transverse.

Classification of Legendrian and transverse knots up to respectively Legendrian and transverse isotopy is
an important unsolved problem of contact topology. A number of useful invariants have been constructed in the
literature, but there are still small complexity examples in which the existing methods do not suffice to decide
whether or not the given Legendrain (or transverse) knots are equivalent.

We propose a totally new approach to solving the equivalence problem for Legendrian and transverse knots,
which allows to practically distinguish between non-equivalent knots in small complexity cases, and gives rise
to a complete algorithm in the general case.

Nikolai Erokhovets. Combinatorics and hyperbolic geometry of families of
3-dimensional polytopes: fullerenes and Pogorelov polytopes

By a polytope we mean a class of combinatorial equivalence of 3-dimensional convex polytopes. A k-belt
is a cyclic sequence of k faces such that faces are adjacent if and only if they follow each other, and no three
faces have a common vertex. A simple polytope different from the simplex ∆3 is cyclic edge k-connected (ck-
connected), if it has no l-belts for l   k, and strongly ck-connected (c�k-connected), if in addition any its k-belt
surrounds a face. By definition ∆3 is c�3-connected but not c4-connected. Any simple polytope (family Ps) is
c3-connected and at most c�5-connected. We obtain a chain of nested families:

Ps � Paflag � Pflag � PaPog � PPog � PPog�

The family of c4-connected polytopes coincides with the family Pflag of flag polytopes defined by the
property that any set of pairwise adjacent faces has a non-empty intersection. The family of c�3-connected
polytopes we call almost flag polytopes and denote Paflag. Results by A.V. Pogorelov (1967) and E.M. Andreev
(1970) imply that c5-connected polytopes (family PPog of Pogorelov polytopes) are exactly polytopes realizable
in the Lobachevsky space L3 as bounded polytopes with right dihedral angles, and the realization is unique up
to isometries. Andreev’s result implies that flag polytopes are exactly polytopes realizable in L3 as polytopes
with equal non-obtuse dihedral angles. An example of Pogorelov polytopes is given by k-barrels Bk, k ¥ 5,
see Fig. 1a). Results by T. Dǒslić (1998, 2003) imply that the family PPog contains fullerenes, that is simple
polytopes with only pentagonal and hexagonal faces.
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The family PaPog of c�4-connected polytopes we call almost Pogorelov polytopes, and the family PPog�

of c�5-connected polytopes – strongly Pogorelov. G. D. Birkhoff (1913) reduced the 4-colour problem to the
family PPog� .

A simple polytope with all faces except for the n-gon being pentagons and hexagons is called an n-disk-
fullerene.

Proposition 1 ([1], [2]). Any 3-disk-fullerene belongs to Paflag, any 4-disk-fullerene – to PaPog, and any
7-disk-fullerene – to PPog. For each n ¥ 8 there exist an n-disk-fullerene in PPog� and an n-disk fullerene not
in Paflag.

T. E. Panov remarked that Andreev’s results should imply that almost Pogorelov polytopes correspond to
right-angled polytopes of finite volume in L3. Such polytopes may have 4-valent vertices on the absolute, while
all proper vertices have valency 3.

Theorem 2 ([3]). Cutting of 4-valent vertices defines a bijection between classes of combinatorial equivalence
of right-angled polytopes of finite volume in L3 and almost Pogorelov polytopes different from the cube I3 and
the pentagonal prism M5 � I.

We develop a theory of combinatorial construction of families of polytopes. The main idea is to build a
family by a given set of operations from a small set of initial polytopes. A classical result by V. Eberhard (1891)
states that any simple polytope can be obtained from the simplex ∆3 by cuttings off vertices, edges and pairs
of adjacent edges.

Proposition 3 ([3]). A simple polytope belongs to Paflag if and only if it can be obtained from the simplex
with at most two vertices cut by cuttings off vertices, edges and pairs of adjacent edges not equivalent to cutting
off a vertex of a triangle, and if and only if it is obtained by simultaneous cutting off a set of vertices of ∆3 or
a flag polytope.

Results by A. Kotzig (1969) imply that a simple polytope is flag iff it can be obtained from I3 by cuttings
off edges and pairs of adjacent edges of at least hexagonal faces. The family PaPog contains I3, M5 � I, and
the 3-dimensional Stasheff polytope As3, which is the cube with three pairwise disjoint orthogonal edges cut. A
result by D. Barnette (1974) implies that a simple polytope belongs to PaPogztI3,M5�Iu iff it can be obtained
from As3 by cuttings off edges not lying in quadrangles and pairs of adjacent edges of at least hexagonal faces.
Unlike the case of flag polytopes, not any quadrangle of a polytope in PaPog is obtained by cutting off an
edge of a polytope of the same family. However, results by D. Barnette imply that if a polytope in PaPog has
quadrangles, then at least one quadrangle can be obtained in this way. A matching of a polytope is a set of its
pairwise disjoint edges. A matching is perfect, if it covers all the vertices. Let P8 be the cube with two disjoint
orthogonal edges cut.

Theorem 4 ([3]). Any almost Pogorelov polytope P � I3,M5 � I is obtained by cutting off a matching of a
polytope in PaPog \ tP8u producing all the quadrangles.

A polytope in L3 is ideal, if all its vertices lie on the absolute. It has a finite volume.

Corollary 5 ([3]). Any ideal right-angled polytope P is obtained from some polytope Q P PaPog \ tP8u by
the contraction of edges of some perfect matching not containing opposite edges of any quadrangle.

a) b)

k-gon k-gon

Figure 1. a) canonical perfect matching of the k-barrel; b) k-antiprism.

Example 6. The k-barrel has a canonical perfect matching drawn on Fig. 1a). The corresponding ideal
polytope is called a k-antiprism, see Fig. 1b).

An operation of an edge-twist is drawn on Fig. 2. Two edges on the left lie in the same face and are disjoint.
Let us call an edge-twist restricted, if both edges are adjacent to an edge of the same face. In the survey (2017)
A. Yu. Vesnin combining results by I. Rivin (1996) on ideal polytopes and by G. Brinkmann, S. Greenberg,
C. Greenhill, B.D. McKay, R. Thomas, P. Wollan (2005) on quadrangulations of a sphere stated that any ideal
right-angled polytope can be obtained from a k-antiprism, k ¥ 3, by edge-twists.
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Figure 2. An edge-twist.

Theorem 7 ([3]). A polytope is realizable as an ideal right-angled polytope iff it either is a k-antiprism, k ¥ 3,
or can be obtained from the 4-antiprism by restricted edge-twists.

Results by I. Rivin (1994) imply that a realization of a polytope as an ideal polytope in L3 is unique up to
isometrices.

Conjecture 8. An edge-twist increases the volume of a right-angled polytope in L3.

All k-barrels, k ¥ 5, belong to PPog� . Results by D. Barnette (1974,1977), J. W. Butler (1974) and results
from [1] imply that a simple polytope different from these barrels belongs to PPog iff if it can be obtained from
the 5- or the 6-barrel by cuttings off pairs of adjacent edges of at least hexagonal faces and connected sums
with the 5-barrel (Fig. 3), and to the family PPog� iff it can be obtained from the 6-barrel by cuttings off
pairs of adjacent edges of at least hexagonal faces. T. Inoue (2008) showed that both operations increase the
hyperbolic volume and enumerated the first 825 bounded right-angled polytopes in the order of the increasing
volume (2015).

Figure 3. A connected sum with the 5-barrel.

For fullerenes there is a stronger result than for Pogorelov polytopes. There is a 1-parametric series of
fullerenes obtained from the 5-barrel by connected sums with the 5-barrel along pentagons surrounded by
pentagons. It consists of the 5-barrel and the so-called p5, 0q-nanotubes. Results by F. Kardoš, R. Skrekovski
(2008) and, independently, by K. Kutnar, D. Marušič (2008) imply that all the other fullerenes lie in PPog� .

Theorem 9 ([1]). Any fullerene different from the 5-barrel and the p5, 0q-nanotubes can be obtained from the
6-barrel by a sequence of cuttings off pairs of adjacent edges of at least hexagonal faces in such a way that
intermediate polytopes are either fullerenes or 7-disk-fullerenes with the heptagon adjacent to a pentagon.

The difficulty is that the construction of the family PPog� does not guarantee that intermediate polytopes
are close to fullerenes.

Theorem 10 ([2]). A 7-disk-fullerene is not in PPog� iff it is obtained from a fullerene by a sequence of
connected sums with the 5-barrel. Any 7-disk-fullerene from PPog� can be obtained from the 6-barrel by a
sequence of cuttings off pairs of adjacent edges of at least hexagonal faces in such a way that intermediate
polytopes have pentagonal, hexagonal and at most two heptagonal faces.

The research is partially supported by the RFBR grants 17-01-00671 and 18-51-50005.
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Sergey Finashin. Chirality of real cubic fourfolds
(Based on joint work with V. Kharlamov)

In our previous work [1] we have classified real non-singular cubic hypersurfaces in the 5-dimensional pro-
jective space up to equivalence that includes both real projective transformations and continuous variations of
coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer
to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to
their mirror reflection.

Both deformation equivalence relations emerge naturally in the study of real non-singular projective hyper-
surfaces in the framework of 16th Hilbert’s problem. More precisely, the pure deformation equivalence assigns
hypersurfaces to the same equivalence class if they can be joined by a continuous path (called a real deforma-
tion) in the space of real non-singular projective hypersurfaces of some fixed degree. Another one is the coarse
deformation equivalence, in which real deformations are combined with real projective transformations.

If the dimension of the ambient projective space is even, then the group of real projective transformations is
connected, and the above equivalence relations coincide. By contrary, if the dimension of the ambient projective
space is odd, this group has two connected components, and some of coarse deformation classes may split into
two pure deformation classes. The hypersurfaces in such a class are not pure deformation equivalent to their
mirror images and are called chiral. The hypersurfaces in the other classes are called achiral, since each of them
is pure deformation equivalent to its mirror image.

The first case where a discrepancy between pure and coarse deformation equivalences shows up is that of real
non-singular quartic surfaces in 3-space (achirality of all real non-singular cubic surfaces is due to F. Klein [6]).
In this case it was studied in [4,5], where it was used to upgrade the coarse deformation classification of real
non-singular quartic surfaces obtained by V. Nikulin [10] to a pure deformation classification.

Real non-singular cubic fourfolds is a next by complexity case. Their deformation study was launched
in [1], where we classified them up to coarse deformation equivalence. Then in [2] we began studying of
the chirality phenomenon and gave complete answers for cubic fourfolds of maximal, and almost maximal,
topological complexity. The approach, which we elaborated and applied in [2] relies on the surjectivity of the
period map for cubic fourfolds established by R. Laza [7] and E. Looijenga [9].

Recall that according to [1] there exist precisely 75 coarse deformation classes of real non-singular fourfold
cubic hypersurfaces X � P 5 (throughout the paper X stands both for the variety itself and for its complex
point set, while XR � X X P 5

R denotes the real locus). These classes are determined by the isomorphism
type of the pairs pconj� : MpXq Ñ MpXq, h P MpXqq where MpXq � H4pX;Zq is considered as a lattice,
h P MpXq is the polarization class that is induced from the standard generator of H4pP 5;Zq, and conj� is
induced by complex conjugation conj : X Ñ X. This result can be simplified further and expressed in terms
of a few simple numerical invariants. Namely, it is sufficient to consider the sublattice M0

�pXq � MpXq,
M0
�pXq � tx P MpXq : conj�x � x, xh � 0u, and to retain only the following three invariants: the rank ρ of

M0
�, the rank d of the 2-primary part discr2M0

� of the discriminant discrM0
�, and the type, even or odd, of the

discriminant form on discr2M0
�.

Thus, to formulate the pure deformation classification of real non-singular cubic fourfolds, it is sufficient to
list the triples of invariants (ρ, d, parity) which specify the coarse deformation classes and to indicate which of
the coarse classes are chiral, and which ones are achiral.

Theorem 1. Among the 75 coarse deformation classes precisely 18 are chiral, and, thus, the number of pure
deformation classes is 93. The chiral classes have pairs pρ, dq satisfying ρ � d ¤ 12. The only achiral classes
with ρ� d ¤ 12 are three classes with 4 ¤ ρ � d ¤ 6 and one class with pρ, dq � p8, 4q and even pairity.

A complete description of the pure deformation classes is presented in Table 1, where the coarse deformation
classes are marked by letters c and a: by c, if the class is chiral, and by a, if it is achiral. We use ρ and d as
Cartesian coordinates and employ bold letters to indicate even parity, while keeping normal letters for odd. For
some pairs pρ, dq there exist two coarse deformation classes, one with even discriminant form, and another with
odd, and in this case, we put the even one in brackets.

In fact, the values of ρ and d determine the topology of the real locus of the cubic fourfold and are
determined by it. Namely, for all pairs pρ, dq except one the real locus of the fourfold is diffeomorphic to
RP4#apS2�S2q#bpS1�S3q, where a � 1

2 pρ�dq, b � 1
2 p22�ρ�dq. The exception is pρ, d,parityq � p12, 10, evenq,

in which case the real locus is diffeomorphic to RP4\S4 (see [3]). Comparing this with Table 1 we come to the
following conclusion.

Corollary 2. Chirality of a cubic X � P 4 is determined by the topological type of its real locus XR unless
XR � RP4#2pS2 � S2q#5pS1 � S3q, or equivalently, pρ, dq � p8, 4q. If pρ, dq � p8, 4q, then X is achiral in the
case of even parity, and chiral in the case of odd. �

35



Table 1. Pure deformation classification via chirality

d
11 a
10 a a(a)
9 a a a
8 a(a) a a(a) a
7 a a a a a
6 a a(a) a a(a) a a
5 a c a a a a a
4 a c c(a) a a(a) a a(a) a
3 c c c c a a a a a
2 c c(c) c c c a(a) a a a a(a)
1 c c c a a a
0 c c a

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ρ
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David Gabai. The 4-dimensional light bulb theorem;
extensions and applications

The 4-dimensional light bulb theorem asserts that a smooth 2-sphere in S2�S2 that is homotopic to x�S2

and intersects S2 � y transversely once is smoothly isotopic to x� S2. We will discuss this theorem as well as
extensions and applications.

Alexander Gaifullin. Combinatorial computation of Pontryagin classes
The definition of the Pontryagin classes of a manifold substantially uses the smooth structure on it. By a

well-known example due to Milnor, integral Pontryagin classes are not invariant under PL homeomorphisms.
However, in 1957 Rokhlin and Schwarz proved that rational Pontryagin classes are invariant under PL homeo-
morphisms. (A year later the same result was obtained independently by Thom.) Later this result was improved
considerably by Novikov who showed that rational Pontryagin classes are topological invariants.

The Rokhlin-Schwarz-Thom result on combinatorial invariance of rational Pontryagin classes raised a prob-
lem on explicit computation of the rational Pontryagin classes of a manifold from a triangulation of it. In the
context of a smooth manifold with smooth triangulation this problem was solved for the first Pontryagin class
in a famous work of Gabrielov, Gelfand, and Losik (1975). However, their approach gave no answer in a purely
combinatorial situation, i.e., for a triangulated manifold without given smoothing.

In 2004 the author suggested another approach based on the usage of bistellar moves, and constructed
a purely combinatorial local formula for the first rational Pontryagin class of a triangulated manifold. More
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precisely, this result gave explicit description of all local combinatorial formulae for the first rational Pontryagin
class, but no effective choice of a particular formula was made. Recently, Gorodkov and the author have
constructed effectively a particular local combinatorial formula for the first rational Pontryagin class. The key
ingredient is the study of the redistribution of the combinatorial Gaussian curvature of a triangulated 2-sphere
under bistellar moves.

Mukta Garg. Some stronger forms of transitivity in G-spaces
The theory of dynamical systems attempts to describe the behaviour of all particles in the phase space.

However, in a real physical system, sometimes it becomes almost impossible to determine the exact position
of particles, so that, instead of points one tries to study the behaviour of open subsets of the space and
accordingly estimate the dynamics of the underlying system. This leads to the notion of topological transitivity.
The concept of topological transitivity was first used by G. D. Birkhoff in 1920. Topological transitivity is
an important dynamical property because of its strong connection with chaos. It guarantees that for any
pair of non-empty open sets, there is an iterate of the first that overlaps the second. Different forms of
transitivity, like total transitivity, weakly mixing, strong mixing are defined in the literature. We have extended
these notions to maps on topological transformation groups. Observing their interrelations, duly supported
by examples/counterexamples, we have obtained several interesting results related to these notions including
conditions for their equivalences.

Ilya Gekhtman. Geometric and probabilistic boundaries of random walks,
metrics on groups and measures on boundaries in negative curvature

Consider a geometrically finite isometry group of a pinched negatively curved contractible manifold. There
are two natural averaging procedures on this group: averaging with respect to balls in the manifold and taking
a finitely supported random walk. These correspond to two natural measures on the boundary the Patterson-
Sullivan measure (which for symmetric manifolds is in the Lebesgue measure class) and the harmonic measure
which is the limit of convolution powers of the random walk. These two measures satisfy conformality properties
with respect to two metrics on the lattice: the metric induced by the orbit map d and the so called Green metric
dG associated to the random walk, which is quasi-isometric to the word metric.

In turn, they correspond to two measures on the unit tangent bundle (the measure of maximal entropy and
the harmonic invariant measure) and closed geodesics on the quotient manifold satisfy two different equidistri-
bution properties with respect to the two measures.

We show that the harmonic and Patterson-Sullivan measures are singular unless the two metrics are roughly
similar: |d � c1dG|   c2 for uniform constants c1, c2. Thus, they are always singular when the isometry group
contains parabolics.

Everything can be generalized to geometrically finite actions on proper Gromov hyperbolic spaces, such as
Hilbert geometries.

Furthermore, our techniques can be generalized to show that when the fundamental group contains parabol-
ics, harmonic measures for finitely supported random walks are singular to any Gibbs measure associated to a
Hoelder potential.

The latter involves proving a weighted analogue of Guivarch’s fundamental inequality relating entropy, drift
and volume growth which incorporates the potential function; such a formula is new even in the cocompact
setting.

Most of this is based on two papers: one joint with Gerasimov-Potyagailo-Yang and another with Tiozzo.

Vladimir Golubyatnikov. Non-uniqueness of periodic trajectories in some
piece-wise linear dynamical systems

Introduction

We study dynamical systems of a special type as models of gene networks functioning. One of the main
aims of our considerations is description of conditions of existence, (non)-uniqueness and stability of cycles in
the phase portraits of these dynamical systems. Biological interpretations of these models are exposed in [2,5].
The following piece-wise dynamical system is one of the typical models of this kind.

dX1

dt
� L1pX4q �X1;

dX2

dt
� Γ2pX1q �X2;

dX3

dt
� Γ3pX2q �X3;

dX4

dt
� Γ4pX3q �X4.

(1)
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Here, Γi are step-functions: ΓipXi�1q � αi ¡ 0 for 0 ¤ Xi�1; ΓipXi�1q � �1 for 0 ¥ Xi�1 ¥ �1, i � 2, 3, 4,
and the step-function L1 is decreasing: L1pX4q � α1 ¡ 0 for �1   X4   0, L1pX4q � �1 for 0 ¤ X4. Non-
negative quantities Xi � 1, denote concentrations of four components of the gene network, positive parameters
αi characterize velocities of synthesis of these components. Here and below i � 1, 2, 3, 4. Decreasing function
L1 describes negative feedback and increasing functions Γi correspond to positive feedbacks there.

The system (1) was constructed in [2], where the variables and equations were interpreted in details: the
subtrahends in the equations correspond to degradations of the biological components, non-negative summand
L1pX4q in the first equation describes the velocity of synthesis of the “first” component with concentration
X1� 1 as a function of concentration X4� 1 of the “previous” component in this circular gene network. Other
equations of the system are interpreted similarly.

1. Discretization of the phase portrait of the system (1)

Let Q be the parallelepiped r�1, α1s � r�1, α2s � r�1, α3s � r�1, α4s. The point O � p0, 0, 0, 0q is located
in its interior. Trajectories of the points of Q do not leave it as tÑ8.

The proof of this fact consists in verifications of signs of the derivatives dXi{dt on the faces Xi � �1 and
Xi � αi of Q, see for example [1,5] where this was proved for dynamical systems analogous to (1) in various
dimensions.

The work [4] was devoted to so called symmetric dynamical systems: α1 � α2 � α3 � α4. Now, we study
asymmetric case, whese all the parametres αi are different in general.

The coordinate planes Xi � 0 subdivide the domain Q to 16 smaller parallelepipeds (or blocks) which we
denote by binary multi-indices tε1ε2ε3ε4u, where εi � 0, if Xi   0, and εi � 1, if Xi ¡ 0.

It was shown in [1,4] that for arbitrary dimensions of the “billiards-like” systems of the type (1), their
trajectories are piece-wise linear with angle points on the planes Xi � 0.

Proposition 1. For any two adjacent blocks B1, B2 of subdivision of Q, trajectories of points of their common
3-dimensional face F � B1 XB2 pass through this face in one direction only, either from B1 to B2 pdenoted as
B1 Ñ B2q, or from B2 to B1 pdenoted as B2 Ñ B1q.

As above, the proof consists in calculation of the signs of dXi{dt at the points of the hyperplane Xi � 0
containing the face F .

Denote by G oriented graph with vertices tε1ε2ε3ε4u, i.e., four-dimensional cube with edges oriented ac-
cording to the Proposition 1.

It was shown in [2] that the system (1) has a stable cycle C1 which passes through the blocks following the
arrows of the State Transition Diagram:

(2)

t1111u ÝÝÝÝÑ t0111u ÝÝÝÝÑ t0011u ÝÝÝÝÑ t0001u��� ���
t1110u ÐÝÝÝÝ t1100u ÐÝÝÝÝ t1000u ÐÝÝÝÝ t0000u

Actually, this is a subgraph of G. Let W1 be the interior of the union of the blocks of (2). Trajectories of the
points of interiors of these blocks can pass to one adjacent block only, according to the arrow. Hence, W1 is a
positively invariant domain of the system (1).

Denote by W3 the interior of the union of remaining eight blocks, connected by the diagram

(3)

t1101u ÝÝÝÝÑ t0101u ÝÝÝÝÑ t0100u ÝÝÝÝÑ t0110u��� ���
t1001u ÐÝÝÝÝ t1011u ÐÝÝÝÝ t1010u ÐÝÝÝÝ t0010u

As above, the arrows show possible transitions of trajectories from block to block.

Proposition 2. In contrast with the diagram (2), trajectories of the points of interiors of these blocks can pass
to three adjacent blocks.

This is why we write W3 here. For example, trajectories of the points of the block t1001u can pass to the
block t1101u, as it is shown in the diagram (3), but some of these trajectories pass to the blocks t0001u and
t1000u listed in the State Transition Diagram (2).

2. Description of trajectories in the domain W3

Let F0 � t1101u X t0101u, X1 � 0; F1 � t0101u X t0100u, X4 � 0;

F2 � t0100u X t0110u, X3 � 0; F3 � t0110u X t0010u, X2 � 0;

F4 � t0010u X t1010u, X1 � 0; F5 � t1010u X t1011u, X4 � 0;
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F6 � t1011u X t1001u, X3 � 0; F7 � t1001u X t1101u, X2 � 0;
be the common faces of adjacent bocks of the domain W3. Denote by

ϕ0 : F0 Ñ F1, ϕ1 : F1 Ñ F2, ϕ2 : F2 Ñ F3, ϕ3 : F3 Ñ F4, ϕ4 : F4 Ñ F5,

ϕ5 : F5 Ñ F6, ϕ6 : F6 Ñ F7, ϕ7 : F7 Ñ F8,� F0,

the shifts of the points of interiors of these faces along their trajectories of the system (1) inside each of the
blocks of the diagram (3), and let Φ : F0 Ñ F0 be the composition of these shifts. This is the Poincaré map of
the cycle which we are going to detect.

Remark 3. It follows from the Proposition 2 that trajectories of most of the points of the faces Fj hit the faces
of the blocks listed in the diagram (2) and then remain in the interior of W1, as it can be seen in the cases
of analogous dynamical systems, see [1,4]. So, we assume that the mappings ϕj : Fj Ñ Fj�1 are defined on
preimages of Fj�1. Here and below j � 0, 1, . . . , 7.

In interior of each of the blocks tε1ε2ε3ε4u, the system (1) is solved explicitly, for example, in the block
t1001u of the diagram (3) we have

(4)
dX1

dt
� �1�X1,

dX2

dt
� α2 �X2,

dX3

dt
� �1�X3,

dX4

dt
� �1�X4;

X1ptq � �1� pX0
1 � 1qe�t; X2ptq � α2p1� e�tq; X3ptq � �1� pX0

3 � 1qe�t; X1ptq � �1� pX0
4 � 1qe�t;

where X0
1 ¡ 0, X0

2 � 0, X0
3   0, X0

4 ¡ 0 are coordinates of a point of F0.

Let Oy
pjq
1 y

pjq
2 y

pjq
3 be the coordinate system in the plane Xi � 0 containing the face Fj such that the positive

octant of this coordinate system contains the face F0, and the axes are enumerated as follows: y
pjq
1 � �Xi�1 ¡ 0,

y
pjq
2 � �Xi�2 ¡ 0, y

pjq
3 � �Xi�3 ¡ 0 in the interior of Fj .

Let P p0q P intF0 be a point with coordinates X1 � 0, y
p0q
1 � X2, y

p0q
2 � �X3, y

p0q
3 � X4. Simple

calculations with the system (4) and its analogues, see for example [1,3], show that the trajectory T of the

point P p0q intersects the faces Fj of the diagram (3) at the points P pjq � T X Fj � pypjq1 , y
pjq
2 , y

pjq
3 q defined by

fractional linear functions:

P p1q � M0P
p0q

1� y0
3

; P p2q � M1P
p1q

α3 � y
p1q
3

; P p3q � M2P
p2q

1� y
p2q
3

; P p4q � M3P
p3q

α1 � y
p3q
3

;

P p5q � M4P
p5q

1� y
p4q
3

; P p6q � M5P
p5q

α3 � y
p5q
3

; P p7q � M6P
p6q

α2 � y
p6q
3

; P p8q � M7P
p7q

1� y
p7q
3

P F0.

(5)

The matrices Mj here are defined as follows:

M0 �
$'''''% 0 0 1

1 0 �1
0 1 �α3

,/////- ; M1 �
$'''''% 0 0 1

α3 0 �α1

0 α3 �1

,/////- ; M2 �
$'''''% 0 0 α3

1 0 �α4

0 1 �α1

,/////- . . .

remaining matrices have the form

Mj �
$'''''% 0 0 Dj

Cj 0 �Ej
0 Cj �Gj

,/////-
for some positive Cj , Dj , Ej , Gj , half of them is equal to 1.

The points P pjq are identified here with their position vectors OP pjq. The formulae (5) describe projective
transformations Fj Ñ Fj�1 defined on subsets of the faces Fj , as it was remarked above. In these faces, the
rays containing the origin O are mapped to the next faces to the rays containing O.

3. Construction of the Poincaré map in the domain W3

Let M� :�M7M6M5M4M3M2M1M0. Then the composition Φ : F0 Ñ F0 is defined by

ΦpP p0qq � M�P p0q

Hpy0
1 , y

0
2 , y

0
3q
,

where H is a non-homogeneous linear function of coordinates of the point P p0q strictly positive on the face F0.
One can verify that for each matrix Mj its inverse matrix M�1

j has non-negative elements, and that all elements

of the matrix M�1
� are positive. Hence, the matrix M� has an eigenvector e1 with positive coordinates, and

its eigenvalue λ1 is positive. Let ` be the ray codirectional with e1. After one round along the diagram (3)
trajectories of all points of ` return to ` and compose an invariant octahedral surface S with one vertex O.

Let z be a positive coordinate on the ray `, then the transformation Φ : `Ñ ` is described by

(6) Φpzq � λ1z

β �Kz
, where K ¡ 0, and β :� α1α2α3α4.
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Characteristic polynomial of the matrix M� has the form: P pλq � λ3 � 3βλ2 � I2λ� β3. So,

P pβq � βpI2 � 3β2q; P 1pβq � I2 � 3β2; P 1pλq � 0 for λ � 3β �
a

9β2 � 3I2
3

.

Proposition 4. detM� � β3, trM� � 3β. If all eigenvalues of M� are real then they coincide.

Let I2 � 3β2 ¡ 0. This inequality holds for example for α1 � α2 � α3 � α4. In this case P pλq grows
monotonically with λ, so the equation P pλq � 0 has a unique real root λ1 in the interval p0, βq, and the
equation z � Φpzq does not have positive solutions. Thus, trajectories of all points of the surface S are not
periodic, and they tend to O when tÑ8.

Let I2�3β2   0. This inequality holds for example for α1 � 300, α2 � α3 � α4 � 1. In this case P pβq   0,
P 1pβq   0, since P p0q   0 and P 1p0q ¡ 0, the equation P pλq � 0 has one root λ1 ¡ β. It follows from the
previous proposition that the interval p0, βq does not contain eigenvalues of the matrix M�. This matrix does
not have negative eigenvalues as well.

It follows from λ1 ¡ β that for some positive z0 we have Φpz0q � z0, thus, the point Z0 of the ray ` with
the coordinate z0 returns to itself after one round along the arrows of the diagram (3). So, the equation (6)
implies that such a point Z0 is unique, and hence, the dynamical system (1) has one more cycle C3 � S �W3.

If I2 � 3β2, then P pλq � pλ � βq3, and the matrix M� has unique (up to proportionality) eigenvector
e1 corresponding to λ1 � β. As above, the surface S is determined uniquely as well, and the equation z �
βz{pβ �Kzq has only the zero solution. Thus, for I2 � 3β2 the system (1) does not have cycles in the domain
W3.

Theorem 5. The surface S � W3 contains a cycle C3 of the system (1) if and only if I2 � 3β2   0. In this
case trajectories of points of S are attracted by C3.

One can verify that the cycle C1 � W1 has a nontrivial link in Q with the surface S, actually, this is the
Hopf link. This follows from consideration of two cyclic subgraphs of G described by the diagrams (2) and (3)
on the boundary of 4-dimensional cube. In the case α1 � α2 � α3 � α4 this observation was done in [4].

The author is indebted to N. B. Ayupova and Y. Yomdin for helpful discussions.
This work was supported by RFBR, grant 18-01-00057.
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Evgeny Gordon. On hyperfinite approximations of dynamical systems
A hyperfinite set is a set whose cardinality is a natural number that is infinitely large in the sense of

nonstandard analysis. In this talk we discuss some ergodic properties of permutations of hyperfinite sets and
their applications to approximation of dynamical systems on Lebesgue spaces. Though the hyperfinite spaces
inherit a lot of properties of finite spaces by the Transfer Principle of Nonstandard analysis and the proof of
the Birkhoff Ergodic Theorem is trivial for finite spaces, the proof of BET for hyperfinite spaces is not easier
than for the general case.

We show in this talk why it happens, and what actually does classical BET mean for hyperfinite spaces.
We also demonstrate some new effects of behaviour of ergodic means on the (discrete) time intervals have the
hyperfinite length comparable with the cardinality of the hyperfinite sets. We show how these effects can be
used in investigation of finite approximation of standard dynamical systems. Some of these effects have natural
interpretations for ”very big” finite spaces. They can be even monitored in finite simulations of continuous
dynamical systems. Their formulation in terms of nonstandard analysis are simple and intuitively clear, while
their standard formulation are inappropriate and very complicated, if not to say unreadable.

Dmitry Gugnin. Branched coverings of manifolds and n-valued Lie groups
In the talk we present a new construction of branched coverings of a rather wide series of manifolds over

the spheres. Even in the case of the covering space being the m-torus this construction is the first effective

40



construction (before was known only Alexander’s 1920 construction [1], which is ineffective and suites for an
arbitrary orientable PL manifold).

Let us take the standard sphere (of nonzero dimension):

Sm � tpx1, . . . , xm, xm�1q P Rm�1|x2
1 � . . .� x2

m � x2
m�1 � 1u.

Denote by τ : Sm Ñ Sm the standard involution of the sphere, which permutes its Northern and Southern poles:
τpx1, . . . , xm, xm�1q � px1, . . . , xm,�xm�1q.

Consider the product of k spheres of arbitrary dimensions

Sm1 � Sm2 � . . .� Smk , k ¥ 2.

On this manifold with the standard Cω-structure we have the action of commuting involutions τ1, τ2, . . . , τk
(the direct product of involutions). Therefore, we get some concrete Cω-action of the group Zk2 . Denote by Gk
the subgroup of index 2 in Zk2 consisting of even involutions.

Our manifold Sm1 � Sm2 � . . .� Smk lies in

Rpm1�1q�pm2�1q�...�pmk�1q �
tpx1,1, x1,2, . . . , x1,m1

, x1,m1�1, x2,1, . . . , x2,m2
, x2,m2�1, . . . , xk,1, . . . , xk,mk

, xk,mk�1qu
Denote by Km1,...,mk

the quotient space Sm1 � . . . � Smk{Gk, and by π — the canonic projection Sm1 �
. . .� Smk Ñ Km1,...,mk

.

Theorem 1. (See [4]) The quotient space Km1,...,mk
is a topological sphere of dimension m � m1�m2�. . .�mk.

Moreover, there exist a homeomorphism ψ : Km1,...,mk
Ñ Sm, where Sm is the standard m-sphere such that the

composition χ :� ψ � π is obtained by the following explicit formula:

χpx1,1, . . . , x1,m1 , x1,m1�1, x2,1, . . . , x2,m2 , x2,m2�1, . . . , xk,1, . . . , xk,mk
, xk,mk�1q :�

px1,1, . . . , x1,m1
, x2,1, . . . , x2,m2

, . . . , xk,1, . . . , xk,mk
;x1,m1�1 � x2,m2�1 � � �xk,mk�1qb

x2
1,1 � . . .� x2

k,mk
� x2

1,m1�1x
2
2,m2�1 � � �x2

k,mk�1

Definition 2. (see [3]) Suppose X is a path-connected Hausdorff space. The n-th symmetric product SymnX
is just the quotient Xn{Sn. An n-valued multiplication is just a continuous map µ : X �X Ñ SymnX. We set
µpx, yq � x � y for all x, y P X.

(The unit axiom) We say that an n-valued multiplication µ : X �X Ñ SymnX satisfies the unit axiom if
there exists an element e P X such that e � x � x � e � rx, x, . . . , xs for all x P X.

(Associativity) An n-valued multiplication µ : X � X Ñ SymnX is said to be associative if px � yq � z �
x � py � zq P Symn2

X for all x, y, z P X.
(Inverse map) An n-valued multiplication µ : X�X Ñ SymnX is said to have an inverse map if there exists

a continuous map inv : X Ñ X such that invpxq � x Q e and x � invpxq Q e for all x P X.
If the three axioms above are satisfied, then the quadruple pX,µ, e, invq is called an n-valued topological

group.
Let us give a more strict

Definition 3. An n-valued topological group pX,µ, e, invq is called an n-valued Lie group if X is a compact
smooth m-manifold and the inverse map is an involution.

If one takes the case m1 � . . . � mk � 1 in the above Theorem 1 he obtains the torus Tm and the group
Gk, k � m, acting on this compact Lie group by automorphisms. Therefore, the quotient Tm{Gm � Sm is a
new example of coset n-valued topological group, n � 2m�1 (see definitions in [3]).

Theorem 4. (See [4]) For any integer m ¥ 2 the sphere Sm admits the structure of a 2m�1-valued abelian Lie
group.

Remark 5. The case m � 2 here is just the classical 2-valued group on CP 1, discovered by Buchstaber in 1990
(see [2]).

Before Theorem 4 there was known a very little number of nontrivial examples of n-valued Lie groups,
n ¥ 2. Here is the list:

(1) CPm,m ¥ 1, n � pm� 1q! (abelian)
(2) SymmpT 2q,m ¥ 2, n � m! (abelian)
(3) S3, n � 2 (nonabelian)
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Boris Gurevich. On asymptotic behavior of equilibrium measures associated
with finite sub-matrices of an infinite nonnegative matrix: new examples
Every finite irreducible stochastic matrix determines a unique shift invariant probability Markov measure

on a sequence space with finite alphabet. The same holds for some infinite stochastic matrices, which are said to
be positive recurrent. Vere-Jones [1] generalized the notion of a positive recurrence to all nonnegative matrices
and proved that every positive recurrent matrix A (he used a slightly different term) is similar to a stochastic
matrix, also positive recurrent, which in its turn determines a shift invariant probability Markov measure µA

on a sequence space with infinite alphabet.
In [2] (see also [3]) µA is proved to be an equilibrium measure (as well as a Gibbs measure) corresponding to

a nearest neighbor interaction in a one-dimensional countable spin statistical physics system. This interaction
is determined by the matrix A, and while the equilibrium measure is well-defined for every non-negative A, it
exists if and only if A is positive recurrent. The set of positive recurrent matrices consists of two subsets, stable
positive and unstable positive matrices, this separation is also meaningful from a point of view of statistical
physics: if A is stable positive and An an arbitrary increasing sequence of finite sub-matrices of A that goes to
A (we call such a sequence exhaustive), then µAn tends to µA as n Ñ 8; at the same time for every unstable
positive A studied up to now, there are two exhaustive sequences An and A1n of finite sub-matrices such that

µAn Ñ µA and µA
1

n Ñ 0. All known and some new results in this direction will be presented in the talk.
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Tatsuya Horiguchi. The topology of Hessenberg varieties
Hessenberg varieties are subvarieties of the full flag variety introduced by De Mari-Procesi-Shayman around

1990. Particular examples are Springer fibres, the Peterson variety, and the permutohedral variety. The topology
of Hessenberg varieties is related with other research areas, such as geometric representation, the quantum
cohomology of flag varieties, hyperplane arrangements, and Stanley’s chromatic symmetric function in graph
theory. In this talk, I will give a survey of recent developments on Hessenberg varieties. The goal of this talk
is to advertise that Hessenberg varieties can be studied from various viewpoints.

Ilia Itenberg. Finite real algebraic curves
(Based on joint work with E. Brugallé, A. Degtyarev and F. Mangolte)

The talk is devoted to finite real plane algebraic curves, that is, real plane algebraic curves with finitely
many real points. We study the following question: what is the maximal possible number δpkq of real points of
such a curve provided that it has given degree 2k? This question is related to the first part of Hilbert’s 16-th
problem (topology of real algebraic varieties) and to Hilbert’s 17-th problem (more precisely, positivity of real
polynomials vs. their representation as sums of squares).

The Petrovsky inequalities result in the upper bound

δpkq ¤ 3

2
kpk � 1q � 1.

Currently, this bound is the best known. Furthermore, being of topological nature, it is sharp in the realm of
pseudo-holomorphic curves.

The exact value of δpkq is known only for k ¤ 4. The upper (Petrovsky inequality) and lower bounds for a
few small values of k are as follows:

k 1 2 3 4 5 6 7 8 9 10
δpkq ¤ 1 4 10 19 31 46 64 85 109 136
δpkq ¥ 1 4 10 19 30 45 59 78 98 123

The cases k � 1, 2 are obvious (union of two complex conjugate lines or conics, respectively). A finite real sextic
with 10 real points was constructed by D. Hilbert. In the talk, we prove the lower bounds for k � 4 and 5, as
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well as the asymptotic bound

δpkq Á 4

3
k2.

(The best previously known asymptotic lower bound δpkq Á 10
9 k

2 was obtained by M. D. Choi, T. Y. Lam and
B. Reznick.)

One can modify the above question asking for the maximal possible number δgpkq of real points of a finite
real plane algebraic curve of given degree 2k and given geometric genus g. The upper bound

δgpkq ¤ k2 � g � 1

is produced by a strengthening of the Petrovsky inequalities. We show that this bound is sharp for g ¤ k � 3
(in particular, the bound is sharp for rational curves of degree ¥ 6).

The constructions use the Viro patchworking technique and dessins d’enfants. Most results extend to curves
in ruled surfaces.

Alexander Kachurovskii. Fejer sums and the von Neumann
ergodic theorem

The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann
ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejér kernels), so this ergodic
theorem is, in fact, a statement about the asymptotics of the growth of the Fejér sums at zero for the spectral
measure of the corresponding dynamical system. As a result, well-known estimates for the rates of convergence
in the von Neumann ergodic theorem can be restated as estimates of the Fejér sums at the point for periodic
measures. For example, natural criteria for the polynomial growth and polynomial decrease in these sums can
be obtained. On the contrary, available in the literature, numerous estimates for the deviations of Fejér sums at
a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem. For example,
for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic
theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S. N. Bernstein’s more
than hundred-year old results in harmonic analysis.
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Vadim Kaimanovich. Free and totally non-free boundary actions
The fundamental Rokhlin Lemma states that all measure preserving transformations are “nearly periodic”.

In spite of this, any ergodic component is still either aperiodic or finite, so that the freeness assumption is
virtually automatic in the classical ergodic theory of single transformations (i.e., of Z-actions). This may be
the reason why the presence of non-trivial point stabilizers for actions of general countable groups was mostly
considered as an unpleasant nuisance until quite recently.

Below I present several results (joint with Anna Erschler, see [4], [5] for further background, references and
details) on the properties of the stabilizers of the action of a countable group G on its Poisson boundary BµG
determined by a step distribution µ. The main ones are:


 Theorem 3: a full description of the kernels for effectively free boundary actions (i.e., those that
become free after quotienting out their kernel), in particular, of the class of groups admitting a free
boundary action. This result encompasses both the characterization of amenability in terms of the
triviality of the Poisson boundary obtained by Furstenberg, Kaimanovich – Vershik and Rosenblatt in
the 70s and the recent identification of the class of groups admitting random walks with a non-trivial
boundary by Frisch – Hartman – Tamuz – Vahidi Ferdowsi [6].


 Theorem 8: the first example in which the boundary action is not effectively free, and, moreover, is
totally non-free, i.e., the stabilizers of almost all points of the Poisson boundary BµG are different, and
therefore BµG can be identified with the space of subgroups SubpGq. In this example G is the infinite
symmetric group (the group of finitely supported permutations of a countable set) endowed with an
appropriate probability measure µ.

The Vershik transform

By SubpGq we denote the space of all subgroups of a countable group G. It is endowed with the natural
compact topology (as a subset of the power set 2G) and with the left continuous action of G by conjugations.
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Definition 1 ([9], Definition 4, also see the announcement [8]). The Vershik transform of a measure class
preserving action G

÷ pX,mq is the map

V : X Ñ SubpGq , x ÞÑ Stabx � tg P G : gx � xu .
It is measurable and equivariant, so that the image Vpmq is a quasi-invariant Borel measure on SubpGq. We
refer to the measure Vpmq and the action G

÷ �
SubpGq,Vpmq� as the Vershik transforms of the measure m and

of the action G

÷ pX,mq, respectively (Vershik himself used the term characteristic measure).

Vershik formulated the problem of the description of all purely non-atomic invariant probability measures on
SubpGq ([9], Problem 1), and solved it for the infinite symmetric group ([9], Theorem 1). Invariant probability
measures on SubpGq were also virtually simultaneously introduced and used in [3] and [1] (the first arXiv
versions of these papers were posted in 2010 and 2011, respectively). It is in the latter paper that the currently
predominant probabilistically flavoured term “invariant random subgroup” (IRS) for the invariant measures of
the action G

÷

SubpGq was coined (one does not talk about “invariant random points” instead of invariant
measures when dealing with dynamical systems though). See the surveys in [1], Section 1, and [7], Section 10,
for more history and the current state of the IRS theory.

In the language of Definition 1 an action G

÷ pX,mq is free (mod 0) if the Vershik transform Vpmq is the
δ-measure at the identity subgroup. More generally, we remind that an action G

÷ pX,mq is called effectively
free with the kernel H P SubpGq if H is normal, its action on the space pX,mq is trivial, and the arising action
of the quotient group G{H is free, i.e., equivalently, if Vpmq � δH . In particular, a free action is effectively
free with the trivial kernel H � teu, whereas a trivial action is effectively free with the full kernel H � G.
The opposite situation when the Vershik transform leaves the action space intact instead of collapsing it onto
a single point is described in the following

Definition 2 ([9], Definition–Theorem 1). An action G

÷ pX,mq is totally non-free if its Vershik transform is
an isomorphism of measure spaces, i.e., if the stabilizers of almost all points of the action space are different.

The Vershik transform of a totally non-free action is concentrated on the set SNpGq of self-normalizing
subgroups. Conversely, the action on SubpGq is totally non-free with respect to any quasi-invariant measure
concentrated on SNpGq, and in this case the Vershik transform is the identity map.

Notice that although Vershik considered the measure preserving actions only, his definitions are applicable
to actions with a quasi-invariant measure as well (and this is how we have formulated them above).

The Poisson boundary

It is classically known since von Neumann and Bogolyubov that amenable groups are precisely the ones for
which any continuous action on a compact space admits an invariant measure. Any non-amenable group has
actions without invariant measures, and the simplest example of this kind is the action of a finitely generated
free group on its boundary (� the space of infinite irreducible words).

It is always very convenient to have a natural “reference measure” to be able to work in the measure category,
and in the absence of a conventional invariant measure one can consider instead “invariance in the mean”, i.e.,
with respect to a weighted average of translations. The phenomenon of the absence of (holonomy) invariant
measures is also very well known in the theory of foliations, and it was the main motivation for Garnett’s
notion of a harmonic measure of a Riemannian foliation (in which the holonomy invariance is replaced with the
invariance with respect to the leafwise Brownian motion in precisely the same way).

A measure λ on an action space of a group G is called stationary with respect to a probability measure µ on
G (or, µ-stationary, in short) if it is preserved by the convolution with µ, i.e., λ � °

g µpgqgλ. If the measure µ
is non-degenerate, i.e., its support generates the whole group G as a semi-group, then any µ-stationary measure
is necessarily quasi-invariant. The Poisson boundary BµG is in a sense universal among all spaces with a µ-
stationary measure, in particular, if BµG is trivial (reduces to a single point), then any µ-stationary measure is
necessarily invariant. It is defined as the space of ergodic components of the time shift on the path space of
the associated random walk and is endowed with the µ-stationary harmonic measure ν issued from the group
identity.

A countable group admits a random walk with a trivial Poisson boundary if and only if it is amenable. On
the other hand, the Poisson boundary is trivial for any non-degenerate random walk on any hyper-FC-central (in
particular, abelian or nilpotent) group. In somewhat different terms, for any group G and any non-degenerate
measure µ the action of the hyper FC-centre FClimpGq on the Poisson boundary BµG is trivial.

We remind that the union FCpGq of all finite conjugacy classes of a group G is its normal subgroup called
the FC-centre. If it is trivial, then G is said to be a group with infinite conjugacy classes (ICC). The hyper-FC-
centre FClimpGq is the limit of the transfinite upper FC-series which consists of the kernels of the homomorphisms
G Ñ Gα along the transfinite sequence Gα�1 � Gα{FCpGαq starting from G � G0. Equivalently, FClimpGq
is the minimal normal subgroup of G with the property that the associated quotient group is ICC. A group is
called hyper-FC-central if it coincides with its hyper-FC-centre. This class contains all nilpotent groups, and a
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finitely generated group is hyper-FC-central if and only if it is virtually nilpotent. If FCpGq is finite, then the
quotient group G{FCpGq is ICC, and the hyper-FC-centre FClimpGq coincides with FCpGq. In this case FCpGq
is the maximal finite normal subgroup of G, i.e., coincides with the finite radical of G.

A striking recent result of Frisch – Hartman – Tamuz – Vahidi Ferdowsi [6] shows that, in fact, any countable
group which is not hyper-FC-central does admit non-degenerate measures with a non-trivial Poisson boundary.

The results

We simultaneously generalize both the aforementioned characterization of amenability in terms of the
triviality of the Poisson boundary and [6].

Theorem 3. The following conditions on a subgroup H � G are equivalent:

(i) there is a non-degenerate measure µ on G such that the action G
÷ BµG is effectively free with the

kernel H;
(ii) The subgroup H is amenable, normal, and the quotient G{H is either ICC or trivial.

Moreover, the measure µ in condition (i) can be chosen to be symmetric.

Corollary 4. Any countable group G admits a non-degenerate symmetric measure µ, for which the action
G

÷ BµG is effectively free with the kernel FClimpGq.

Corollary 5. A countable group G admits a non-degenerate symmetric measure µ such that the action
G

÷ BµG is free if and only if G is ICC.

In view of Theorem 3 it is natural to ask whether there exist Poisson boundaries for which the boundary
action would not be effectively free. It seems that in all previously known examples the boundary action is,
indeed, effectively free, although the verification of this in concrete situations may require some effort. Here we
state it for hyperbolic groups.

Proposition 6. If µ is a non-degenerate probability measure on a non-elementary word hyperbolic group G,
then the action G

÷ BµG is effectively free with the finite kernel FCpGq.
In the torsion free case this was proved in [2], Proposition 1.3. In the general case one can use the observation

(due to Olshanskii) that the kernel of the action of G on the hyperbolic boundary BG is its maximal finite
normal subgroup. Therefore, it coincides with the FC-centre FCpGq. Then the quotient group G{FCpGq is
also hyperbolic and has the same Poisson boundary as G because of the finiteness of FCpGq. Alternatively,
Proposition 6 follows from the following general property:

Proposition 7. Let µ be a non-degenerate probability measure on a countable group G, and let pB, λq be
an equivariant quotient of the Poisson boundary pBµG, νq. If the point stabilizers of the action G

÷ pB, λq are
almost surely finite, then FCpGq is finite, and the action of G on both spaces pB, λq, pBµG, νq is effectively free
with the kernel FCpGq.

Indeed, it is well-known that if µ is a non-degenerate measure on a word hyperbolic group G, then there
exists an equivariant quotient map from BµG to the hyperbolic boundary BG, whereas the stabilizers of the
action G

÷ BG are finite outside of a countable set of the fixed points of hyperbolic elements.
Finally, we shall give an example of a totally non-free Poisson boundary. Let G � SpXq be the infinite

symmetric group realized as the group of all finite permutations of an infinite countable set X. It is convenient
to define the group operation on G in the postfix notation by putting pg1g2qpxq � g2pg1pxqq and to let G act on
X on the right as x.g � gpxq. Then, given a finite alphabet Θ, one has the left action gθpxq � θpx.gq on the
space ΘX of all Θ-valued functions (configurations) on X.

Theorem 8. Let χ P ΘX be a configuration on an infinite countable set X with infinite preimage sets. There
exists a non-degenerate symmetric probability measure µ on the infinite symmetric group G � SpXq such that

(i) for almost every sample path pgnq of the associated random walk the translates gnχ pointwise converge
to a random limit configuration χ8;

(ii) the space of configurations ΘX endowed with the resulting limit distribution is isomorphic to the
Poisson boundary BµG;

(iii) the action G

÷ BµG is totally non-free.

(i) This property is easy to arrange and just means that for any initial point x P X the sample path px.gnq
of the induced random walk on X is almost surely eventually confined to the same element of the preimage
partition of χ (which depends both on x and pgnq).

(ii) This is the most difficult part of the argument. One has to make sure that the behaviour of the random
walk at infinity is completely described just by the limit configurations χ8, which is achieved by a judicious
choice of the measure µ.
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(iii) The stabilizer Stabθ of a configuration θ P ΘX is uniquely determined by its preimage partition.
Therefore, the Vershik transform V : θ ÞÑ Stabθ has finite preimages, which (in the case of the Poisson
boundary) is only possible if V is an isomorphism.
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Naohiko Kasuya. Non-Kähler complex structures on R4

Problem and Main Theorem

The author, Antonio J. Di Scala and Daniele Zuddas [2] constructed the first examples of non-Kähler
complex surfaces which are diffeomorphic to R4. In this abstract, we give a brief explanation of the construction
of the complex surfaces.

A complex manifold pM,Jq is said to be Kähler if there exists a symplectic form ω compatible with the
complex structure J , i.e., a symplectic form ω satisfying the following two conditions:

(1) ωpu, Juq ¡ 0 for any nonzero vector u P TM (tamedness),
(2) ωpu, vq � ωpJu, Jvq for any vectors u, v P TM (J-invariance).

Since any complex manifold is locally Kähler, the problem is the global existence of a compatible symplectic
form. In this sense, Kählerness or non-Kählerness is a global property of a complex manifold. Indeed, it is
well-known that a compact complex surface is Kähler if and only if its first Betti number is even. In general, it
follows from the Hodge theory that each odd degree Betti number of a compact Kähler manifold is even.

In the non-compact case, however, such statements are no longer true. It is easily checked that any open
oriented connected 4-manifold admits a Kähler complex structure. Also in higher dimensions, there exist Stein
manifolds whose first Betti number is odd by Eliashberg’s theorem [4]. Thus, if one wants to construct non-
compact non-Kähler complex manifolds, only topological informations are useless. On the other hand, we have
the following lemma, which is one of important keys to our construction.

Lemma 1. A complex manifold which contains a compact holomorphic curve representing trivial second ho-
mology is non-Kähler.

The proof of this lemma is quite easy. If a Kähler manifold pM,Jq contains a compact holomorphic curve
C, then the integration IntC ω is positive for any compatible symplectic form ω. Hence, a compact holomorphic
curve of a Kähler manifold represents a nontrivial second homology. Now, our problem is the following.

Problem 2. Is there any non-Kähler complex structure on R2n?

When n � 1, the answer is obviously negative, since any complex curve is Kähler. On the other hand, it
has been showed by Calabi and Eckmann [1] that the answer is affirmative when n ¥ 3. They constructed a
uncountable family of complex structures on the product of two odd dimensional spheres in the following way.

Let hp : S2p�1 Ñ CP p and hq : S2q�1 Ñ CP q be the Hopf fibrations, and take the product map hp,q : S2p�1�
S2q�1 Ñ CP p�CP q, which is a T 2 fiber bundle. Now take the standard atlas tU1i � U2ju p0 ¤ i ¤ p, 0 ¤ j ¤ qq
of CP p�CP q, and the elliptic curve Spτq of modulus τ . By an explicit holomorphic gluing of U1i�U2j �Spτq,
they constructed a complex structure on S2p�1 � S2q�1 such that hp,q is a holomorphic elliptic bundle. This is
the famous Calabi-Eckmann manifold Mp,qpτq. By removing a point on each sphere and taking the product, an
open subset Ep,qpτq �Mp,qpτq which is diffeomorphic to R2p�2q�2 is obtained. If p and q are both positive, then
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Ep,qpτq contains most elliptic fibers of hp,q. Hence, Ep,qpτq gives a non-Kähler complex structure on R2p�2q�2

by Lemma 1. Notice that their arguments are not valid when n � 2, since M0,1pτq is a Hopf surface and E0,1pτq
is an open subset of C2. Therefore, another approach is needed for the case where n � 2.

In order to manage the case where n � 2, we focus on some example in the 4-dimensional topology found
by Yukio Matsumoto [7] and Kenji Fukaya. It is a genus-one achiral Lefschetz fibration from S4 to S2 which
has only two singularities of opposite signs. We call it the Matsumoto-Fukaya fibration. Since it contains one
negative Lefschetz singularity, there seems no relation with complex geometry at first glance. However, if we
remove a 4-ball containing the only one negative singularity from S4, we can construct a complex structure on
the complement such that the restriction of the fibration is holomorphic. Since the complement is diffeomorphic
to R4 and contains elliptic curves as the regular fibers, it gives a non-Kähler complex structure on R4. This is
the outline of our construction. Namely, our main theorem is the following.

Theorem 3. For any pair pρ1, ρ2q of real numbers satisfying 1   ρ2   ρ�1
1 , there exist a complex manifold

Epρ1, ρ2q and a surjective holomorphic map f : Epρ1, ρ2q Ñ CP 1 such that

(1) Epρ1, ρ2q is diffeomorphic to R4,
(2) the only singular fiber f�1p0q is an immersed holomorphic sphere with one node,
(3) a regular fiber is either an embedded holomorphic torus or an embedded holomorphic cylinder.

Moreover, if Epρ1, ρ2q and Epρ11, ρ12q are biholomorphic, then pρ1, ρ2q � pρ11, ρ12q.
In the next section, we show the construction of Epρ1, ρ2q. First, as an application of the Matsumoto-Fukaya

fibration, we obtain a nontrivial topological decomposition of R4 into two pieces which gives the blueprint for
the construction. According to the decomposition, we prepare some two pieces of complex surfaces and glue
them analytically to obtain the complex surface.

The construction of Epρ1, ρ2q

The Matsumoto-Fukaya fibration is a genus-one achiral Lefschetz fibration f : S4 Ñ S2, having two critical
points of opposite signs. It can be seen as the composition of the Hopf fibration h : S3 Ñ S2 and its suspension
Σh : ΣS3 Ñ ΣS2.

Let a1 P S2 be the positive critical value of f , and let a2 be the negative one. Decompose the base space
S2 as the union of two disks D1 and D2 such that aj P IntDj , and put Nj � f�1pDjq. Then Nj is a tubular
neighborhood of Fj � f�1pajq � S4 and the restriction fj � f|Nj

: Nj Ñ Dj � B2 is the (achiral) Lefschetz

fibration having only one critical point. Now we remove a neighborhood X � B4 of the negative singularity
from N2 so that the restriction of f2 to N2 � IntX is the total space of a trivial annulus bundle over D2. Since
N2 � IntX is diffeomorphic to B2 � A, where A � S1 � r0, 1s, we obtain a decomposition of S4 � IntX � B4

into the two pieces N1 and B2�A. Moreover, looking at the orientation reversing diffeomorphism between BN1

and BN2, we obtain the following (see [2] for details).

Proposition 4. If we glue B2 � A to N1 along S1 � A so that for each t P BB2 � �BD2
1 � S1, the annulus

ttu � A embeds in f�1ptq � T 2 as a thickened meridian, and it rotates in the longitude direction once when
t P S1 rotates once, then the resulting manifold is diffeomorphic to B4, and so the interior is diffeomorphic to
R4.

We realize these pieces and the gluing by complex manifolds as follows.
We use the notations ∆pr0, r1q � tz P C | r0   |z|   r1u and ∆prq � tz P C | |z|   ru. Fix positive

numbers ρ0, ρ1 and ρ2 such that 1   ρ2   ρ�1
1   ρ�1

0 . We consider the quotient pC� � ∆p0, ρ1qq{Z, where for
any n P Z, the action is given by n � pz, wq � pzwn, wq. This elliptic fibration extends over ∆pρ1q. Let us denote
the completion by W1. It is a fibered tubular neighborhood of a singular elliptic curve of type I1 in the sense
of Kodaira (see [6]). On the other hand, we put W2 � ∆p1, ρ2q �∆pρ�1

0 q. W1 and W2 are the complex analytic
models for IntN1 and IntN2 �X.

Next, we want to glue W1 with W2 analytically along ∆p1, ρ2q � ∆pρ�1
1 , ρ�1

0 q � W2, so that the attaching
map is isotopic to that of the Matsumoto-Fukaya fibration. We take an attaching region V in W1 which is
biholomorphic to the product ∆p1, ρ2q � ∆pρ�1

1 , ρ�1
0 q as follows. Define a multi-valued holomorphic function

ϕ : ∆pρ0, ρ1q Ñ C� by

ϕpwq � exp

�
1

4πi
plogwq2 � 1

2
logw



.

Then, it induces a holomorphic section of the elliptic fibration f1 : W1 Ñ ∆pρ1q restricted to pC��∆p0, ρ1qq{Z.
Hence we can define V � W1 as the image of the holomorphic embedding Φ: ∆p1, ρ2q � ∆pρ�1

1 , ρ�1
0 q Ñ W1

given by Φpz, wq � rpzϕpw�1q, w�1qs. Using this embedding, we can define the complex manifold Epρ1, ρ2q by

Epρ1, ρ2q �W1 YV W2.

By construction, it is diffeomorphic to R4 and contains elliptic curves inside W1. Hence it is non-Kähler by
Lemma 1. Moreover, the elliptic fibration f1 : W1 Ñ ∆pρ1q and the second projection f2 : W2 Ñ ∆pρ�1

0 q are
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fit together to define the surjective holomorphic map f : Epρ1, ρ2q Ñ CP 1, where we see CP 1 as the gluing of
∆pρ1q and ∆pρ�1

0 q. Now, it is not so difficult to classify all the compact holomorphic curves in Epρ1, ρ2q and to
prove that Epρ1, ρ2q and Epρ11, ρ12q are not biholomorphic if pρ1, ρ2q � pρ11, ρ12q.

There are many properties of Epρ1, ρ2q which have been already proved, but we omit them here for want
of space (see [3,5] for details).
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Viatcheslav Kharlamov. Real rational symplectic 4-manifolds
The foundational results of Gromov–Taubes and Seiberg–Witten allowed to understand rather well the

structure of rational and ruled symplectic 4-manifolds and, in particular, to prove that every such symplectic
manifold is Kähler. The aim of our joint work with V. Shevchishin (work in progress) is to show at what extent
the latter result can be extended to rational symplectic manifolds equipped with an anti-symplectic involution.
Our approach is based on appropriate real versions of Lalonde–McDuff inflation and rational blow-ups. It
shows, in particular, that the classification of anti-symplectic involutions on real rational symplectic 4-folds is
very similar to that of the classification of real rational surfaces.

Cheikh Khoule. Convergence of contact structures into integrable
hyperplanes fields

In this note we give a necessary and sufficient condition to the convergence of contact structures into
codimension 1 foliation in 2n � 1-dimensional compact manifold. And I generalize of certain result of J. B.
Etnyre.

Yuri Kifer. Limit theorems for nonconventional polynomial arrays
I’ll discuss ergodic and limit theorems for sums of the form

Ņ

n�1

¹̀
j�1

TPjpn,Nqfj

(and more general ones) where Pjpn,Nq, j � 1, ..., `, are polynomials in n and N taking on integer values, T is an
invertible measure preserving transformation satisfying certain (depending on the problem) mixing assumptions
and fj , j � 1, ..., `, are bounded measurable (or more regular depending on the problem) functions.

Alexander Kolpakov. A hyperbolic counterpart to Rokhlin’s
cobordism theorem

(Joint work with Michelle Chu, University of California, Santa Barbara, USA)

A classical result by V. Rokhlin states that every compact orientable 3-manifold bounds a compact orientable
4-manifold, and thus the three-dimensional cobordism group is trivial. One can recast the question of bounding
in the setting of hyperbolic geometry, which generated plenty of research directions over the past decades.

A hyperbolic manifold is a manifold endowed with a Riemannian metric of constant sectional curvature �1.
Here and below all manifolds are assumed to be connected, orientable, complete, and of finite volume, unless
otherwise stated. We refer to [14] for the definition of an arithmetic hyperbolic manifold.

A hyperbolic n-manifold M bounds geometrically if it is isometric to BW , for a hyperbolic pn�1q-manifold
W with totally geodesic boundary.
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Indeed, some interest in hyperbolic manifolds that bound geometrically was kindled by the works of D. Long,
A. Reid [10], [11], [12] and B. Niemershiem [15], motivated by a preceding work of M. Gromov [5], [6] and a
question by F. Farrell and S. Zdravkovska [4]. This question is also related to hyperbolic instantons, as described
by J. Ratcliffe and S. Tschantz [18], [19].

As [10] shows many closed hyperbolic 3-manifolds do not bound geometrically: a necessary condition is
that the eta invariant of the 3-manifold must be an integer. The first known closed hyperbolic 3-manifold that
bounds geometrically was constructed in [18] and has volume of order 200.

The first examples of knot and link complements that bound geometrically were produced by L. Slavich
in [16], [17]. However, [8] implies that there are plenty of cusped hyperbolic 3-manifolds that cannot bound
geometrically, with the obstruction being the geometry of their cusps.

In [1], M. Belolipetsky, T. Gelander, A. Lubotzky, and A. Shalev showed that the asymptotic growth
rate of the number αnpvq of all orientable arithmetic hyperbolic manifolds, up to isometry, with respect to
volume v is super-exponential, in all dimensions n ¥ 3. That is, there exist constants A,B,C,D ¡ 0 such
that AvBv ¤ αnpvq ¤ CvDv. In our present work, we use the ideas of [1], [12], [13] together with the more
combinatorial colouring techniques from [9] in order to prove the following facts:

Theorem 1. Let βnpvq � the number of non-isometric compact arithmetic hyperbolic n-manifolds of volume
¤ v that bound geometrically. Then, if 2 ¤ n ¤ 8, we have that AvBv ¤ βnpvq ¤ CvDv, for some constants
A,B,C,D ¡ 0.

Theorem 2. Let γnpvq � the number of non-isometric cusped arithmetic hyperbolic n-manifolds of volume
¤ v that bound geometrically. Then, if 2 ¤ n ¤ 19, or n � 21, we have that AvBv ¤ γnpvq ¤ CvDv, for some
constants A,B,C,D ¡ 0.

The proofs of both theorems above rely heavily on reflectivity of certain quadratic forms studied by È.
Vinberg, I. Kaplinskaya [7], [20] and V. Bugaenko [2], [3].
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Sergey Komech. Random averaging in ergodic theorem and boundary
deformation rate in symbolic dynamics

(Based on joint work with B. M. Gurevich and A. A. Tempelman)

A connection between the deformation rate of a small set boundary in the phase space of a dynamical
system and the metric entropy of the system was claimed (not too rigorously) in physics literature [8], [9] and
later studied for some discrete time systems in the mathematical papers [1], [4], [2].

First it was done for symbolic systems, specifically for topological Markov shifts and synchronized systems.
We keep track of the boundary deformation of a small ball during a large time interval, our arguments resembled
the proof of the Shannon–McMillan–Breiman theorem. Namely, let X � pX, ρq be a metric space and B � X.
We denote the ε-neighborhood of B by OεpBq. When B � txu is a point, OεpBq is a ball of radius ε centered
at x, we denote it by Bpx, εq. Let S : X Ñ X be a continuous map and hµpSq be the entropy of S with respect
to an S-invariant probability measure µ. For the case of symbolic systems the following L1 convergence holds
(see [1], [4]):

(1) lim
εÑ0

1

tpεq ln
µpOεpStpεqBpx, εqqq

µpBpx, εqq � hµpSq.

It is seen from (1) that t depends on ε. This is inevitable if we want to obtain valuable results: when
first passing to the limit in t and then in ε, as is assumed in [8], we can get for large t the whole space X
as OεpStBq, and the ratio on the left-hand side of (1) ceases dependance on t. We use tpεq that satisfies the
following conditions:

(2) lim
εÑ0

tpεq � 8, lim
εÑ0

tpεq{ log ε � 0.

This dependence was introduced in [1] and appeared in all subsequent works on this subject.
For a smooth system on a Riemannian manifold it is reasonable to measure the boundary distortion in

terms of the Lebesgue measure (even if it is not invariant) and to study the asymptotic behavior of the quantity

(3)
1

tpεq ln
µpOεpf tpεqBpx, εqqq

µpBpx, εqq ,

where f is a diffeomorphism of a compact Riemannian manifold M , µ is the Lebesgue measure (Riemannian
volume), and t depends on ε as in (2).

For a torus automorphism with invariant Lebesgue measure, the convergence of (3) to the entropy at each
point of the torus was proved in [5].

In [3] it was proved that (3) tends, at least for Anosov diffeomorphisms, to the sum of the positive Lya-
punov exponents of an arbitrary f -invariant ergodic measure ν almost everywhere with respect to this measure.
Therefore, if f -invariant measure ν is a Sinai-Ruelle-Bowen measure, then (3) tends to the entropy a.e.

Only quite recently a class of continuous time systems was considered (see [3]). These systems are suspension
flows over discrete time dynamical systems (maps in the base). It turned out that in order to prove the above-
mentioned relationship between the deformation rate and the entropy for the flow, one has to prove this for the
base map in a more general setting, namely, when the observation time depends on the center of the ball under
consideration. This problem arises since the number of visits to the base along time depends on the center of
the ball. So we revisited the results for Markov shifts and synchronized systems (although a Markov shift is a
particular case of a synchronized system, the conditions we impose on invariant measures in these two cases are
slightly different) and modified it in the following way, see [6]:

(4) lim
εÑ0

1

tpx, εq ln
µpOεpStpx,εqBpx, εqqq

µpBpx, εqq � hµpSq,

where tpx, εq could “slightly” vary in x.
In order to establish this result it was necessary to prove a version of the statistical ergodic theorem with

averaging over a random sequence of sets.
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Konstantinos Kourliouros. Local classification of symplectic structures
with respect to a Lagrangian variety

We consider here a converse to a classical theorem of A. B. Givental concerning the local analytic classifi-
cation (stability) of symplectic structures under diffeomorphisms preserving a Lagrangian variety. In particular
we show that the class of (a primitive of) the symplectic form in the de Rham cohomology of the Lagrangian
variety is a complete invariant of the classification problem (as conjectured by Y. C. de Verdière for plane
curves), as long as the Lagrangian variety satisfies a formal-analytic comparison theorem in its 1st cohomology.
We then present classes of Lagrangian varieties which satisfy this condition and others that don’t. The problem
is related to resolution of singularities and the vanishing of certain cohomology classes supported on the singular
locus.

Tatyana Kozlovskaya. Cyclically presented Sieradski groups
and 3-manifolds

We study the problem if a given presentation of group is geometric, i. e. it corresponds to a spine of a
closed orientable 3-manifold. The Sieradski groups are defined in [1] by the following presentation: Spmq �
xx1, x2, . . . , xm | xixi�2 � xi�1, i � 1, . . .my, where all subscripts are taken by modm. The groups Spm, p, qq �
xx1, . . . , xm | xi xi�q � � � xi�pq�1qdq�q xi�pq�1qdq � xi�1 xi�q�1 � � � xi�pq�1qdq�q�1, i � 1, . . . ,my are called the
generalised Sieradski groups. All subscripts are taken by modm. Parameters p and q are co-prime integers
such that p � 1� dq, d P Z.

It was shown by Cavicchioli, Hegenbarth and Kim in [2] that Sieradski group presentation Spm, p, qq cor-
respond to spine of some 3 manifold which we denote by Mpm, p, qq. Moreover, Mpm, p, qq are m-fold cyclic
coverings of S3 branched over the torus pp, qq-knot. If m � 2n these manifolds have also symmetry of order
n corresponding to another cyclic presentation of the same groups. Thus, Mp2n, 3, 2q are the n-fold cyclic
coverings of the lens space Lp3, 1q [3] and Mp2n, 5, 2q are the n-fold cyclic coverings of the lens space Lp5, 1q [4].
The corresponding cyclic presentations are described in [3] and [4].

We consider the generalised Sieradski group S(2n, 7, 2) n ¥ 1.

Theorem 1. For n ¥ 1 group S(2n,7,2) has a presentation with n generators y0, y1, . . . , yn�1 and defining
relations

tyiyi�1yi�2yi�3yi�3yi�4yi�5yiyi�5
�1y�1

i�4y
�1
I�3yi�2yi�3yi�4

yi�5y
�1
i�4y

�1
i�3y

�1
i�2yi�1yi�2yi�3yi�4y

�1
i�3y

�1
i�2y

�1
y�1, i � 0, . . . , n� 1u.

These presentation is geometric and corresponds to n-fold cyclic branched covering of the lens space Lp7, 1q.

For small n manifolds Sp2n, 7, 2q can be distinguished by using 3-Manifold Recognizer [5]. Namely, Sp2, 7, 2q
is the Seifert manifold pS2, p2, 1q, p7, 2q, p7, 2q, p1,�1qq and Sp6, 7, 2q is the Seifert manifold pS2, p6, 1q, p7, 3q, p7, 3q,
p1,�1qq.

This work was supported by the Ministry of Science and Higher Education of Russia (state assignment No.
1.13557.2019/13.1).
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Roman Krutowski. Basic cohomology of moment-angle manifolds
For any fan we may construct a corresponding moment-angle manifold which admits complex structures.

These manifolds represent a wide family of non-Kähler manifolds with a holomorphic action of a compact torus.
This action induces a canonical foliation on a moment-angle manifold which in case of a rational fan becomes
a locally trivial bundle over a toric variety corresponding to the same fan. During the talk I am going to
show how to compute basic de Rham and Dolbeault cohomology of any complex moment-angle manifold with
respect to the canonical foliation. Furthermore, using this data I will describe how to approach the calculation
of Dolbeault cohomology of complex moment-angle manifolds.

Victor Krym. The Schouten curvature tensor for a nonholonomic
distribution in sub-Riemannian geometry can be identical with the Riemannian

curvature on a principal bundle

1. The Schouten curvature

Distribution on a smooth manifold N is a family of subspaces A pxq � TxN , x P N . General theory of
the variational calculus with nonholonomic restrictions ϕpt, x, 9xq � 0 was published by G.A. Bliss [2]. If the
restrictions are linear for velocities, ωxp 9xq � 0, where ω is a 1-form, we get distributions [2,3].

The Romanian mathematician G. Vranceanu first introduced the term of the nonholonomic structure on
a Riemannian manifold in 1928 [4]. The Dutch mathematician J.A. Schouten defined the connection and
appropriate curvature tensor for horizontal vector fields on a distribution in 1930 [5,6,7].

Let us consider the distribution A of dimension m on a smooth manifold N of dimension n. Locally the
distribution can be defined by its basis vector fields

(1) ek � Bk �
ņ

α�m�1

AαkBα, k � 1, . . .,m,

or by the family of differential 1-forms ωα �
m°
s�1

Aαs dx
s � dxα, α � m�1, . . ., n. The Lie brackets rei, ejs �

n°
α�m�1

FαijBα, where Fαij is called the tensions tensor.

The metric tensor of a distribution is a square form x�, �yx defined for horizontal vectors at any point x P N .
We study the internal geometry of a distribution therefore this metric should not be extended for all tangent
bundle TN . Locally

(2) gijpxq � xei, ejyx, i, j � 1, . . .,m.

To define covariant differentiation ∇ on the distribution, we must introduce a symmetric Riemannian
connection. The property of being Riemannian is defined in a standard way:

(3) XxY, Zy � x∇XY,Zy � xY,∇XZy,
while the symmetry condition must be modified as [7]

(4) ∇XY �∇YX � prprX,Y sq,

where pr �
m°
k�1

ek b dxk is the horizontal projection on the distribution [8,9,10]. To make this projection

invariant with respect to transformations of coordinates, we must impose the following constraints: Bxk
Byα � 0,
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k � 1, . . .,m, α � m�1, . . ., n, and
�Bxβ
Byα

�
α,β�m�1,...,n

is the identity matrix. The coordinates xα are called

verticals. Since these matrices form a group our definition is correct. Formally this is a restriction on a smooth
structure of the manifold, but in fact a distribution with this projection is a principal bundle.

Theorem 1. Let a distribution be equipped with the horizontal projection. If this distribution and its metric
tensor do not depend on the vertical coordinates then the Riemannian and pr-symmetric connection ∇ matches
the Riemannian and symmetric connection of a manifold with metric (2) [11,12].

For any point x P N and any three vectors u, v, w P A pxq the curvature map of a distribution A at a point
x is defined by the Schouten tensor [5,6,7]

(5) Rpu, vqw � ∇ũ∇ṽw̃ �∇ṽ∇ũw̃ �∇prrũ,ṽsw̃ � pr
�p1� prqrũ, ṽs, w̃�,

where ũ, ṽ, w̃ are horizontal vector fields on a neighbourhood of x such that ũpxq � u, ṽpxq � v, w̃pxq � w.
The curvature does not depend on the way of expansion of u, v, w to vector fields.

Theorem 2. Let a distribution be equipped with the horizontal projection. If this distribution and its metric
tensor do not depend on the vertical coordinates then its Schouten tensor matches the Riemannian curvature
tensor of a manifold with metric (2) [11,12].

If the distribution satisfies the conditions of Theorem 2 we say that the distribution satisfies the cyclicity
condition.

2. The equations of geodesics

Let the distribution A on a manifold Nn be defined by the differential 1-forms ωα �
m°
s�1

Aαs dx
s � dxα,

α � m�1, . . ., n. The geodesics equations for a distribution with the cyclicity condition are [13]

(6) a0
Dγ1

dt
�

ņ

α�m�1

lαF̂
αγ1 � 0,

where D
dt – covariant derivative, pa0, lq – the Lagrange multipliers, which cannot be altogether zero. Operator

F̂α is the tensions tensor Fαij � BjAαi � BiAαj with the second index raised by the inverse metric tensor of the
distribution. A geodesic γ is called normal (or regular), iff there is the only one set of multipliers pa0, lq with
a0 � 1 for γ. If a0 � 0 the geodesic is abnormal. Here we consider regular geodesics only.

3. Variations and equations of variations

Let γ : rt0, T s Ñ N be a C1-smooth horizontal path, ωpγ1q � 0, where ω is a 1-form. Horizontal variation

of γ is a 1-parametric family of maps σp�, τq : rt1, t2s Ñ N , |τ |   ε, if there are continuous vector fields X � Bσ
Bt ,

Y � Bσ
Bτ , the central line is just σpt, 0q � γptq and the field X is horizontal, Xpt, τq P A pσpt, τqq and there are

continuous second derivatives B2σ
BtBτ , B2σ

BτBt for all allowed t and τ .

Since the horizontality condition ωαpBσBt q � 0 is fulfilled as an identity we can differentiate it for τ . We get
n°

j,k�1

Bωαk
Bxj

Bσj
Bτ

Bσk
Bt �

n°
k�1

ωαk
B2σk

BtBτ � 0. At τ � 0 we obtain the equations of variations along γ:

(7)
ņ

k�1

ωαk
dY k

dt
�

ņ

j,k�1

Bωαk
Bxj γ

1kY j � 0, α � m�1, . . ., n.

The vector field Y p�, 0q along γ is denoted as Y . These equations are of the form ΦαpY 1, Y q � 0, α � m�1, . . ., n.
This is a system of n �m differential equations. Since the rank of the matrix pωαk q is n �m, the horizontal
projection of the field Y is arbitrary and the vertical components Y α are defined by the initial conditions.

4. The Jacobi equation

Let us assume that both the distribution and the metric tensor of the distribution are independent of
vertical coordinates (the cyclicity condition). Hence the Lagrange multipliers are time-independent (constant).
The Jacobi equation for this class of distributions can be written in geometric covariant form. The distribution
is assumed to be totally nonholonomic.

Consider the minimization problem for the energy functional Jpγq � 1
2

³T
t0
xγ1, γ1y dt for horizontal paths with

fixed endpoints and time. This is the Lagrange problem. We shall omit the subscript α and the summation

sign in sums involving Lagrange multipliers such as
n°

α�m�1
lαω

α and
n°

α�m�1
lαF

α.
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Definition 3. A pair pỸ , λq, where Ỹ is a vector field along a geodesic γ with Lagrange multipliers l, will be

called a Jacobi field if Ỹ satisfies the variations equations (7) and its horizontal projection Y � prỸ satisfies
the nonholonomic Jacobi equation [11,12]

(8)
D

dt

DY

dt
�RpY, γ1qγ1 � lF̂

�DY
dt

�� lp∇Y F̂ qpγ1q � λF̂ pγ1q � 0.

The F̂ operator is the tensions tensor F with the second index raised by the inverse metric tensor of the
distribution. The equations (7), (8) together with λ1 � 0 are a system of linear homogeneous differential

equations with the variables pỸ , λq. The set of solutions of this system is a linear space. Therefore there are
two types of Jacobi fields: for the first type λ � 0 (zero vector) and for the second type of Jacobi fields λ � 0.

A horizontal vector field Y along a geodesic γ with Lagrange multipliers l will be called a horizontal Jacobi
field iff it satisfies (8) with some multipliers λ.

Definition 4. Points t1, t2 P rt0, T s, t1 � t2, are said to be conjugated along a horizontal geodesic γ if there
exists a nontrivial Jacobi field Y (with some λ) along γ which vanishes at these points: Y pt1q � 0 and Y pt2q � 0.

Theorem 5. Let γ be a geodesic with the origin x0 � γpt0q and endpoint x1 � γpT q. The point x1 � explx0
puq

is conjugated with the point x0 along γ iff the rank of the differential dpu,lq expx0
is not its maximum, i.e. iff

pu, lq is a critical point of the mapping pu, lq ÞÑ explx0
puq.

By means of the curvature map described in this paper we proved that the energy functional Jpγq �
1
2

³T
t0
xγ1, γ1y dt for horizontal paths attains its weak local minimum under the usual assumptions including the

cyclicity condition [11, 12].

Theorem 6. Let the cyclicity condition be satisfied for a distribution. Suppose that the metric tensor of a
distribution is positive definite, a (regular) geodesic γ connects two given points x0 and x1, and there are no
points on the semi-interval pt0, T s that are conjugated to t0. Then, on the path γ, the energy functional attains
its weak local minimum in the problem with fixed endpoints.

Hence we propose the Jacobi equation for horizontal geodesics on a distribution in sub-Riemannian geometry
which involves the curvature tensor of a distribution and its tensions tensor.
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Gebilde. Math. Ann., 103:752–783, 1930.

[6] J. A. Schouten and W. van der Kulk. Pfaff’s problem and its generalizations. Oxford: At the Clarendon
Press. XI, 542 p., 1949.

[7] E. M. Gorbatenko. The differential geometry of nonholonomic manifolds according to V.V. Vagner (in
Russian). Geom. Sb. Tomsk univ., 26:31–43, 1985.

[8] V. R. Krym and N. N. Petrov. Causal structures on smooth manifolds. Vestn. St. Petersbg. Univ.,
Math., 34(2):1–6, 2001.

[9] V. R. Krym and N. N. Petrov. Local ordering on manifolds. Vestn. St. Petersbg. Univ., Math.,
34(3):20–23, 2001.

[10] V. R. Krym and N. N. Petrov. The curvature tensor and the Einstein equations for a four-dimensional
nonholonomic distribution. Vestn. St. Petersbg. Univ., Math., 41(3):256–265, 2008.

[11] V. R. Krym. The Jacobi equation for horizontal geodesics in Sub-Riemannian Geometry and the
Schouten curvature tensor (in Russian). Differentsialnye Uravneniya i Protsessy Upravleniya, (3):64–
94, 2018.

[12] V. R. Krym. The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry
and Jacobi Fields. Proceedings of the School-Seminar on Optimization Problems and their Applications
(OPTA-SCL 2018), CEUR Workshop Proceedings, 2098:213–227, 2018.

[13] V. R. Krym. The Euler—Lagrange method in Pontryagin’s formulation. Vestnik St.Petersb. Univ.
Math., 42(2):106–115, 2009.

54



Sergey Kryzhevich. Invariant measures for interval translations and some
other piecewise continuous maps

1. Introduction

The famous Krylov–Bogolyubov Theorem claims that any continuous transformation of a compact metric
space admits a Borel probability invariant measure. The similar statement for discontinuous maps is wrong.

Example 1. ([6], Exercise 4.1.1) Consider the map T : r0, 1s Ñ r0, 1s given by the formula: T pxq � x{2 if
x ¡ 0; T p0q � 1. This map does not admit any Borel probability invariant measure.

Here we consider the problem of invariant measures for a special case of one-dimensional piecewise continuous
maps.

Example 2. Consider the circle T1 :� R{Z. We represent it as a union of disjoint subsegments Mj � rtj , tj�1q,
j � 0, . . . , n, t0 � tn and define the map S by the formula

Sptq � t� cj mod 1, t PMj .

Here cj are real values. Such map is called interval translation (ITM) or, if it is one-to-one, it is called interval
exchange (IEM).

Similarly one may consider interval translation maps on the segment r0, 1s.
The Lebesgue measure is invariant for any interval exchange map. Moreover, the map S admits at most

n Borel probability invariant non-atomic ergodic measures (see [6, §14.5,§ 14.6] for the basic theory of Interval
Exchange maps and [9] for deeper results). The case of non-invertible ITMs, first considered by M. Boshernitzan
and I. Kornfeld [2] is much more sophisticated.

Definition 3. We say that an Interval Translation Map S is finite if there exists a number m P N such that

SmpT1q �
8£
k�1

SkpT1q.

Otherwise, the map S is infinite.

It was demonstrated in [2] that many ITMs are finite and thus may be restricted to interval exchange maps.
However, there are examples with ergodic measures supported on Cantor sets. J. Schmeling and S. Troubet-
zkoy [8] provided some estimates on the number of minimal subsets for ITMs. H. Bruin and S. Troubetzkoy [5]
studied ITMs of a segment of 3 intervals (n � 3). It was shown that in this case typical ITM is finite. In any
case, results on Hausdorff dimension for attractors and unique ergodicity are given. These results are gener-
alised in [3] for ITMs with arbitrary many pieces. There is an uncountable set of parameters leading to type
8 interval translation maps but the Lebesgue measure of these parameters is zero. Furthermore conditions are
given that imply that the ITMs have multiple ergodic invariant measures. H. Bruin and G. Clark [4] studied
the so-called double rotations (n � 2 for maps of the circle). Almost all double rotations are of finite type.
The parameters that correspond to infinite type maps, form a set of Hausdorff dimension strictly between 2
and 3. J. Buzzi and P. Hubert [1] studied piecewise monotonous maps of zero entropy and no periodic points.
Particularly, they demonstrated that orientation-preserving ITMs without periodic points may have at most
n ergodic probability invariant measures where n is the number of intervals. D. Volk [10] was studying ITMs
of the segment. He demonstrated that almost all (w.r.t. Lebesgue measure on the parameters set) ITMs of
3 intervals is conjugated to a rotation or to a double rotation and, hence, are of finite type. B. Pires in his
preprint [7] proved that almost all ITMs admit a non-atomic invariant measure (he assumed that the map does
not have any connections or periodic points).

Represent the circle T1 as a finite union of closures of disjoint arcs Mj (j � 1, . . . , n) such that

IntMj

£
IntMk � ∅ if j � k

and consider an interval translation map (see Example 2).
Observe that the measure Leb is not invariant for S unless this map is invertible almost everywhere.

Definition 4. We say that an arc Q � T1 is periodic if there is k P N such that SkpQq � Q and all iterations
Sl|Q are continuous for each 1 ¤ l ¤ k.

This implies that all points of Q are periodic.

Definition 5. We say that an arc Q � T1 is eventually periodic if there is m P N such that SmpQq is a periodic
arc pwe admit the case Q � T1q.
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2. Borel probability invariant measures for interval translation maps

Definition 6. A measure is called non-atomic if the measure of every singleton is zero.

Theorem 7. Any interval translation map admits a Borel probability non-atomic invariant measure.

Corollary 8. For any map S the set Ξ � �8
k�1pSkpT1qq is uncountable.

The next result demonstrates that any interval translation map endowed with a non-atomic invariant
measure is metrically equivalent to an interval exchange map of the segment r0, 1s.
Theorem 9. Let µ� be the non-atomic invariant measure for an interval translation map S that exists by
Theorem 7. Then the restriction S|suppµ� is metrically equivalent to an interval exchange map T : r0, 1s Ñ r0, 1s
with the Lebesgue measure. The semi-conjugacy map is one-to-one everywhere, except a countable set.

Definition 10. We call a point x recurrent (Poisson stable) with respect to the map S if there exists an
increasing sequence tmk P Nu such that Smkpxq Ñ x.

Theorem 11. Let µ� an the invariant measure for the mapping S. Then recurrent points are dense in suppµ�.

So, for any ITM, the number of recurrent points is infinite.
Detailed proofs of Theorems 7, 9, 11 may be found in arXiv:1812.04534. We just highlight the principal

ideas of these proofs.
In Theorem 7, we approximate all parameters cj and tj (see Example 2) by rational values. For obtained

maps (call them Sk), all points are eventually periodic with bounded periods, hence there exists a sequence of
Sk invariant measures µk. Then we proceed to a weak-� limit µ� along a subsequence km. The main technical
challenge is to prove that the measure µ� is non-atomic and hence the measure of the discontinuity set is zero.

In Theorem 9, there is an evident candidate for the semi-conjugacy map: the distribution function for the
measure µ�. But the proof is still non-trivial cause it is not clear that what we obtained by the conjugacy is an
interval exchange map, not just an ITM.

Theorem 11 is a trivial modification of its ”continuous” analog (see [6]), readers can easily restore the proof.
The work is partially supported by RFBR grant 18-01-00230-a.
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Shintarô Kuroki. Flag Bott manifolds of general Lie type and their
equivariant cohomology rings

(This is a joint work with Shizuo Kaji, Eunjeong Lee and Dong Youp Suh, see the preprint [2])

Grossberg and Karshon introduce the notion of a Bott tower as the toric manifold which is obtained by the
iterated CP 1-bundles in [1]. More precisely, a Bott tower tBj | j � 1, . . . ,mu is a sequence of the fibre bundles

CP 1 ÝÑ Bi
πjÝÑ Bj�1 such that Bj is the projectivization of the sum of two complex line bundles over Bj�1,

where the initial manifold B0 is a point. The top manifold Bm of the Bott tower tBj | j � 1, . . . ,mu is called
a Bott manifold.

There are two ways of generalizations of Bott towers. One is introduced by Masuda-Suh in [4] called a
generalized Bott manifold, which is a toric manifold diffeomorphic to an iterated complex projective bundles.
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The other is introduced by Kuroki, Lee, Song and Suh in [3] called a flag Bott manifold, which is not a toric
manifold but a manifold with a nice torus action (i.e., GKM manifold) diffeomorphic to an iterated bundle of
flag manifolds.

In this talk, we introduce a class of iterated bundles with nice torus actions called a flag Bott manifold of
general Lie type which contains both of the Bott manifolds and the flag Bott manifolds. We also give an explicit
formula of the equivariant cohomology rings of flag Bott manifolds of general Lie type.
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Vladimir Lebedev. Tame semicascades and cascades generated by affine
self-mappings of the d-torus

We give a complete characterization of the affine self-mappings ϕ of the torus Td that generate tame, in
the sense of Köhler, semicascades and cascades. Namely, we show that the semicascade generated by ϕ is tame
if and only if the matrix A of ϕ satisfies Ap � Aq, where p and q are some nonnegative integers, p � q. For
cascades the corresponding condition has the form Am � I, where m is some positive integer and I is the identity
matrix. The question of how to distinguish if the semicascade (cascade) generated by an affine self-mapping of
the torus is tame was posed by A. V. Romanov.

The results were obtained within the Academic Fund Program of the National Research University Higher
School of Economics (HSE) in 2019–2020 (grant No.19-01-008) and within the Russian Academic Excellence
Project “5–100”.

Keonhee Lee. Spectral decomposition and Ω-stability of flows with expansive
measures

(This is joint work with N. Nguyen)

We discuss some recent and ongoing works on the dynamics of flows with various expansive measures. In
particular, we present a measurable version of the Smale’s spectral decomposition theorem for flows. More
precisely, we prove that if a flow ϕ on a compact metric space X is invariantly measure expanding on its chain
recurrent set CRpϕq and has the invariantly measure shadowing property on CRpϕq then ϕ has the spectral
decomposition, i.e. the nonwandering set Ωpϕq is decomposed by a disjoint union of finitely many invariant
and closed sets on which ϕ is topologically transitive. Moreover we show that a flow ϕ is invariantly measure
expanding on CRpϕq if and only if it is invariantly measure expanding on X. Using this, we characterize the
measure expanding flows on a compact C8 manifold via the notion of Ω-stability.

Arkady Leiderman. The separable quotient problem for topological groups
The famous Banach-Mazur problem, which asks if every infinite-dimensional Banach space has an infinite-

dimensional separable quotient Banach space, has remained unsolved for 85 years, though it has been answered
in the affirmative for all Banach spaces CpKq, where K is a compact space; reflexive Banach spaces and
even Banach spaces which are duals. The similar problem for general locally convex spaces has been answered
recently in the negative, but has been shown to be true for large classes of locally convex spaces including all non-
normable Frechet spaces. In our work we investigated the analogous problem of existing of separable quotients
for topological groups. There are four natural questions: Does every non-totally disconnected topological group
have a separable quotient group which is (i) non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite metrizable.

We give positive answers for various important classes of topological groups.

Theorem 1. Let G be a topological group belonging to one of the following classes:
(1) all compact groups; (2) all locally compact abelian groups; (3) all σ-compact locally compact groups; (4)
all abelian pro-Lie groups; (5) all σ-compact pro-Lie groups; (6) all pseudocompact groups.
Then G admits an infinite separable metrizable quotient group.

However, for precompact groups we constructed a counter-example. We denote by T the circle group.
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Theorem 2. There exists an uncountable dense subgroup G of the compact abelian group Tc satisfying dimG �
0 such that every quotient group of G is either the one-element group or non-separable.

Free topological groups constitute a prominent class of topological groups — every topological group G is a
quotient group of a free topological group, namely, F pXq, where X is a space homeomorphic to G. The group
F pXq contains X as a subspace which generates F pXq algebraically and is characterized by the property that
every continuous mapping of X to a topological group H extends to a continuous homomorphism of F pXq to
H. In the category of topological abelian groups, a similar object is known as the free abelian topological group
which is denoted by ApXq. Our definition of free topological groups follows Markov’s approach.

Theorem 3. Let X be a Tychonoff space belonging to one of the following classes:
(1) all compact spaces; (2) all locally compact spaces; (3) all pseudocompact spaces; (4) all connected locally
connected spaces.
Then the groups F pXq and ApXq admit an open continuous homomorphism onto a nontrivial group (i.e. not
finitely generated) with a countable network. In particular, F pXq and ApXq admit a nontrivial separable
quotient group.

Recall that a topological space X is said to be scattered if every nonempty subset S of X has an isolated
point relative to S.

Theorem 4. Let GpXq denotes F pXq or ApXq. The following conditions are equivalent for a compact space X:
(a) The topological group GpXq admits an open continuous homomorphism onto the circle group T.
(b) The topological group GpXq admits a nontrivial metrizable quotient.
(c) The topological group GpXq admits a nontrivial metrizable and separable quotient.
(d) X is not scattered.

References:

[1] Arkady G. Leiderman, Sidney A. Morris, and Mikhail G. Tkachenko, The Separable Quotient Problem
for Topological Groups, Israel J. Math. (to appear).

[2] Arkady Leiderman and Mikhail Tkachenko, Separable quotients of free topological groups, (submitted
for publication).

[3] Arkady Leiderman and Mikhail Tkachenko, Metrizable quotients of free topological groups, (submitted
for publication).

Vladimir Leksin. Serre duality of homotopy and homology properties
of CW complexes

In the talk the following assertion about some duality in the algebraic topology will be discus
Assertion. Let X be line connected and simple connected a CW complex with integral homology groups

and homotopy groups the finite type. If X has a finite number nonzero of homology groups, then X has the
infinite number of nonzero homotopy groups. Conversely, if X has a finite number nonzero of homotopy groups,
then X has the infinite number of nonzero of homology groups.

The spheres Sn, n ¥ 2, and Eilenberg–MacLane spaces KpZ, nq, n ¥ 2, give us many examples of CW
complexes with described duality.

The proof of assertion in one side: {finite nonzero homology groups} ñ {infinite nonzero homotopy grops}
follows from the theorem Serre [1] and the theorem Umeda [3]. In other side:{finite nonzero homotomy groups}
ñ {infinite nonzero homology grops} for one floor Postnikov tower follows from calculations of J.-P. Serre [1]
and H. Cartan [2]. For Postnikov tower with n ¥ 2 floors we point the cases when the assertion holds [5].

For CW complexes when the assertion fulfilled then by Dold–Thom theorem [4], [6] the James operator of
infinite symmetric product [6] transforms such CW complexes in CW complexes for which described duality
also holds [5].
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Ivan Limonchenko. On families of polytopes and Massey products
in toric topology

(Based on a joint work with Victor M. Buchstaber)

The study of Massey operation in cohomology of a differential graded algebra is well-known in algebraic
topology and homological algebra. Nontrivial Massey products serve as an obstruction to Golodness of a local
ring in homological algebra and to formality of a space in rational homotopy theory. According to Peter
May, they also determine differentials in the Eilenberg–Moore spectral sequence and generate a kernel of the
cohomology suspension homomorphism. Until now, few examples of manifolds M with nontrivial higher Massey
products in H�pMq have been constructed.

In this talk, using the theory of direct families of polytopes, we introduce sequences of moment-angle
manifolds over 2-truncated cubes tMnu8n�1 such that for any n ¥ 2: Mn is a submanifold and a retract of
Mn�1, and there exists a nontrivial Massey product xαn1 , . . . , αnky in H�pMnq with dimαni � 3, 1 ¤ i ¤ k
for each 2 ¤ k ¤ n. As an application of our constructions, we examine nontriviality of differentials of the
Eilenberg–Moore and Milnor spectral sequences for Mn.

Khudoyor Mamayusupov. A parameter plane of cubic Newton maps with
a parabolic fixed point at infinity

Introduction, cubic parabolic Newton maps

We consider the Newton’s method applied to the entire maps of the form paz2 � bz � cqexppdz � eq. After
appropriate conjugation, we see that it is enough to represent any such a cubic Newton map with a single

complex number λ � 0, and denote these maps by fλpzq � z2
z � λ� 1

pλ� 1qz � 1
, and denote F the family of such a

cubic Newton maps fλ. We have f 1λp0q � f 1λp8q � 0 and f 1λp1q � 1 at the three persistent fixed points. Thus the

Julia sets are connected by Shishikura’s theorem. The derivative f 1λpzq �
zp2pλ� 1qz2 � pλ2 � 4qz � 2λ� 2q

ppλ� 1qz � 1q2
shows that if λ � �1 then there are two critical points that are not fixed by fλ counted with multiplicities, and
at least one of them always converges under the iterates of fλ to the parabolic point at 1. We call the other
critical point a “free” critical point.

In general, any cubic rational map with three fixed points two of which are superattracting and the third
is multiple fixed point, then necessarily of multiplicity �1, can be conformally conjugated to the form fλ.

The moduli space of F is double covered by the λ�parameter plane Czt0u, with identifications of λ and
�λ, has an orbifold structure with a singular boundary locus t0,8u, both boundary points are of an elliptic
type.

Since the parabolic fixed point 1 is persistent for the family F , it makes sense to consider parameters
λ P Czt0u such that the free critical point of fλ belongs to basins of attracting cycles or the parabolic basin of
z � 1 and call such an fλ stable. More precisely, these stable maps are J-stable maps. Stable parameters form
an open set in the λ�parameter plane and the connected components are called stable components. Our main
result is that every stable component is a topological disk, with a unique center which is a cubic postcritically
minimal Newton map, defined in [1,2,3]. For the main parabolic stable component, denoted H, charactered by
maps fλ for which the free critical point belongs to the immediate basin of 1, if there is no critical orbit relation
then any two such maps are globally quasiconformal conjugate. If there is a critical orbit relation for fλ then
the quasiconformal conjugacy class of fλ consists of the single fλ.

For stable components parametrized by maps for which its free critical point belongs to the immediate
basin of one of the two superattracting fixed points, it is well known that the value of the Bötcher map of the
superattracting fixed point evaluated at the orbit point of the free critical point first visits the immediate basin
gives a surjective conformal map from the stable component to the unit disk and parametrizes these types of
stable components.
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Figure 1. The parameter plane of cubic Newton maps. Left-top is the parameter plane with
two zoom-ins on the right and the bottom: around a little island and a cascade of apple
shaped regions. Yellow areas – the free critical point belongs to the parabolic basin, the main
parabolic component H. Grey areas – the free critical point belongs to the basins of the two
superattracting fixed points. White areas – the free critical point belongs to the basin of
attracting periodic point of higher period. Black dots represent centers (pcm) and half-centers
(pcnm) of the corresponding stable component.

Blaschke products and Model space

Denote βapzq � 1�ā
1�a � z�a1�āz the unique automorphism of D sending a P D to the origin and normalized to fix

z � 1. For complex constants a1, a2, a3 in D, we define a cubic Blaschke product by Bpzq � βa1pzq�βa2pzq�βa3pzq
normalized to fix 1. The result by Heins states that for a set of critical points in D we can find a Blaschke
product of degree d that has critical points exactly at these points. The Blaschke product is unique up to
post-composition by an automorphism of D. Moreover, every Blaschke product can be normalized to fix 0 and
1 by a post-composition of an automorphism of D. We want z � 1 to be a triple fixed point, the parabolic fixed
point: around z � 1 the maps have the form 1 � pz � 1q � Apz � 1q3 � oppz � 1q3q, for a complex A � 0. It
means that B1p1q � 1 and B2p1q � 0.

Denote B3 the model space consisting of cubic parabolic Blaschke products B such that Bp1q � 1, B1p1q � 1,
B2p1q � 0, and with critical points at 0 and w in D. It is natural to parametrize B3 by the location of the
critical point w of B.

Proposition 1 (Normal forms for Blaschke products of B3). Every cubic parabolic Blaschke product in
the model space B3 has a normal form Bpzq � βapz2 � βbpzqq for a complex number b P D, where a �

p1�b̄qp3p1�bq�bp1�b̄qq
p1�bqp�6�3b�8b̄�3|b|2�b̄2p3�bqq . The model space B3 is parametrized by a complex number b P D (real 2 di-

mensional) and the dependence is real analytic. In particular, the other critical point w of a Blaschke product

is given by w � b
4|b|2

�
3� |b|2 �ap3� |b|2q2 � 16|b|2

	
depending real analytically on b P D. The location of

the critical point w also parametrizes B3, which is complex analytic.

Let M � M pB3q denote the moduli space of B3 consisting of conformal conjugacy classes of maps in B3.

Proposition 2. The moduli space M of the model space B3 is an orbifold D{Γ, a topological open disk, with
an elliptic point of order 2 at the origin and a group action is by Γ � tid, z ÞÑ �z 1�z̄

1�z u for z P D.

For every cubic Newton map fa P H corresponds a conformal class in the moduli space M , and thus H can
be identified with M , which is a topological open disk.

Theorem 3. The main parabolic stable component H is simply connected with its unique center. The qua-
siconformal conjugacy classes of maps in H are of two types: type-I, a single class, which is topologically an
infinitely punctured disk, and its punctures are of type-II. The set of type-II quasiconformal conjugacy classes
is in one-to-one correspondence with the set of all cubic postcritically non-minimal Newton maps. Moreover,
the boundary BH is a Jordan curve.

The main result in summary is the following.

Theorem 4. Every stable component of the parameter plane of F is an open topological 2-cell with its unique
center that is a cubic postcritically minimal Newton map. There exists a bijective map from the space of
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Figure 2. The main parabolic component H with a checkerboard structure in a suitable parametrization

Häıssinsky equivalent classes of centers (hyperbolic postcritically finite maps) of hyperbolic components of the
space of standard cubic Newton maps of cubic polynomials to the centers of stable components of this space
of parabolic cubic Newton maps. This bijection preserves the dynamics on the corresponding Julia sets and is
obtained by parabolic surgery.
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Ciprian Manolescu. Homology cobordism and triangulations
The study of triangulations on manifolds in dimensions at least 5 is closely related to understanding

the three-dimensional homology cobordism group Θ3
Z. Indeed, in the 1970’s, Galewski-Stern and Matumoto

rephrased the problems of existence and classification of triangulations on high-dimensional manifolds in terms
of questions about Θ3

Z and the Rokhlin homomorphism µ : Θ3
Z Ñ Z{2.

New information about Θ3
Z can be obtained from gauge theory. In the 1990’s, using Yang-Mills theory,

Fintushel-Stern and Furuta showed that Θ3
Z has a Z8 subgroup. Later, Frøyshov showed it has a Z8 summand.

More recent methods include Pinp2q-equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer
homology. For example, one can show that there are no 2-torsion elements in Θ3

Z of Rokhlin invariant one. This
implies the existence of non-triangulable manifolds in dimensions at least five.

Elena Mart́ın-Peinador. Locally quasi-convex groups and the
Mackey–Arens Theorem

(This is joint work with M. J. Chasco and V. Tarieladze)

The locally quasi-convex groups were defined by Vilenkin in the 50’s of the last century. They are an
important class of topological abelian groups which encloses as a subclass the locally convex topological vector
spaces. Thus, central results of Functional Analysis may have extended versions for locally quasi-convex groups,
which usually present some obstructions making the theory reacher. In order to deal with local quasi-convexity
several authors have developed techniques with roots on numerical analysis, and there has been a great activity
in this field in the last 25 years.

The Mackey–Arens Theorem is one of the most relevant results of linear Functional Analysis. It asserts that
for a real topological vector space pX, τq, the set LCTpX, τq of all compatible locally convex topologies on X has
a maximum, subsequently called the Mackey topology. In [1] the Mackey-Arens Theorem was studied within the
category of abelian topological groups. The main problem left open in the mentioned paper was the existence
of the analogue to the Mackey topology for abelian groups. Explicitly, if pG, τq is an abelian topological group,
is there a maximum in the family LQCpG, τq of all the locally quasi-convex topologies compatible with τ?. For
a broad class of topological groups including the locally compact and the complete metrizable abelian groups,
the existence was already established in [1].
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Finally, in 2018 the question has been solved in the negative. Aussenhofer and Gabriyelyan (simultaneously)
provided an example of a topological group which does not admit a Mackey topology: namely the free abelian
topological group on a convergent sequence. Some other examples have just appeared.

In this lecture the Mackey theory for groups will be presented, stressing the similarities and differences with
the classical Mackey theory for locally convex spaces.
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Mikiya Masuda. Torus orbit closures in the flag varieties
(Based on joint work with Eunjeong Lee (IBS) and Seonjeong Park (Ajou Univ.))

Let FlpCnq be the flag variety consisting of complete flags in Cn. It has the natural action of the torus
T � pC�qn and the T -fixed point set FlpCnqT in FlpCnq can be identified with the permutation group Sn on n
letters.

In this talk, we discuss the topology and combinatorics of T -orbit closures in FlpCnq. To an arbitrary
T -orbit closure Y in FlpCnq, we associate a retraction

Rg
Y : Sn Ñ Y T � Sn

which maps an element in Sn to its closest element in Y T with respect to a metric on Sn. The retraction Rg
Y

determines the fan of Y . On the other hand, for any subset M of Sn, we define a retraction

Ra
M : Sn Ñ M � Sn

algebraically. It turns out that these two retractions agree when Y T � M and they are related to Coxeter
matroids in Sn.

Michael Megrelishvili. Group actions on treelike compact spaces
(This is a joint work with E. Glasner [2])

We study dynamical properties of group actions on treelike compact spaces and show that every continuous
group action on a dendron is representable on a Rosenthal Banach space, hence also dynamically tame. Similar
results are obtained for compact median pretrees using some results of A. V. Malyutin [5]. We show also that
Helly’s selection principle can be extended to bounded monotone sequences defined on median pretrees (e.g.,
dendrons or linearly ordered sets).

Dendron D is a connected compact space such that every pair of distinct points can be separated in D by
a third point, [7]. Dendrite is a metrizable dendron.

Theorem 1. Let D be a dendron. For every topological group G and a continuous action Gñ D, the dynamical
G-system D admits a faithful representation on a Rosenthal Banach space. Hence, D is a tame G-space.

As in [6, 3], a representation of a G-space X on a Banach space V is a pair

h : GÑ IsopV q, α : X Ñ V �,

where h : GÑ IsopV q is a continuous co-homomorphism into the linear isometry group IsopV q (with its strong
operator topology) and α : X Ñ V � is a weak� continuous bounded G-mapping with respect to the dual action
G� V � Ñ V �. If α is an embedding then the representation is said to be faithful.

Representations on Banach spaces with “good” geometry lead to a natural hierarchy in the world of con-
tinuous actions G ñ X of topological groups G on topological spaces X. In particular, representations on
Banach spaces without a copy of l1 (we call them Rosenthal Banach spaces) play a very important role in this
hierarchy. According to the Rosenthal l1-dichotomy [8], and the corresponding dynamical version of Bourgin-
Fremlin-Talagrand dichotomy [3], there is a sharp dichotomy for metrizable dynamical systems; either their
enveloping semigroup is of cardinality smaller or equal to that of the continuum, or it is very large and contains
a copy of βN.

When X is compact metrizable, in the first case, such a dynamical system pG,Xq is called tame. By A.
Köhler’s [4] definition, tameness of a compact (not necessarily, metrizable) G-space X means that for every
continuous real valued function f : X Ñ R the family of functions fG :� tfgugPG is “combinatorially small”;
namely, fG does not contain an independent sequence.

Recall that [8] a sequence tfn : X Ñ RunPN of functions on a set X is independent if D a   b such that£
nPP

f�1
n p�8, aq X

£
nPM

f�1
n pb,8q � ∅

for all finite disjoint subsets P,M of N.
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Definition 2. A pretree structure p on a set X is a generalized interval system p : X �X Ñ P pXq, ppa, bq �
ra, bs � X such that

(A0) ra, bs � ta, bu.
(A1) ra, bs � rb, as.
(A2) If c P ra, bs and b P ra, cs then b � c.
(A3) ra, bs � ra, cs Y rc, bs for every a, b, c P X.

This concept (see for example [10, 1, 5]) naturally unifies several important structures including betweenness
relation on dendrons and semi-lattices (e.g., linear orders).

Following [5] we define the so-called shadow topology τs on pX, pq. Given an ordered pair pu, vq P X2, u � v,
let

Svu :� tx P X : u P rx, vsu
be the shadow in X defined by the ordered pair pu, vq. Pictorially, the shadow Svu is cast by a point u when the
light source is located at the point v. The family S � tSvu : u, v P X,u � vu is a subbase for the closed sets of
the topology τs.

Example 3.

(1) Every dendron D is a compact (in its shadow topology) median pretree with respect to the standard
betweenness relation (see [5, 7]).

(2) Every linearly ordered set is a median pretree. Its shadow topology is just the interval topology of the
order.

(3) Let X be a Z-tree (a median pretree with finite intervals ru, vs). Denote by EndspXq the set of all its
ends. According to Malyutin [5, Section 12] the set XYEndspXq carries a natural τs-compact median
pretree structure.

For every triple a, b, c in a pretree X the median mpa, b, cq is the intersection

mpa, b, cq :� ra, bs X ra, cs X rb, cs.
When it is nonempty the median is a singleton. A pretree for which this intersection is always nonempty is
called a median pretree.

Every median pretree is a median algebra. A map f : X1 Ñ X2 between two median algebras is monotone
(i.e., interval preserving) if and only if f is median-preserving ([9, page 120]) if and only if f is convex ([9, page
123]). Convexity of f means that the preimage of a convex subset is convex.

Lemma 4. Let pX, pq be a median pretree. Then the retraction map

ϕu,v : X Ñ ru, vs, x ÞÑ mpu, x, vq
is monotone and continuous in the shadow topology for every u, v P X.

For a τs-compact median pretree X we denote by H�pXq the topological group of monotone (equivalently,
median-preserving) homeomorphisms. We treat H�pXq as a topological subgroup of the full homeomorphism
group HomeopXq.

The following result generalizes Theorem 1. In the case of a dendron D we have H�pDq � HomeopDq.
Theorem 5. For every compact median pretree X and its automorphism group G � H�pXq the action of the
topological group G on X is Rosenthal representable.

By Example 3.3, Theorem 5 applies when X is a Z-tree and we get

Corollary 6. Let X be a Z-tree. Denote by EndspXq the set of all its ends. Then for every monotone group

actionGñ X with continuous transformations the induced action ofG on the compact space pX :� XYEndspXq
is Rosenthal representable.

Such compact spaces pX as in Corollary 6 are often zero-dimensional. So, at least, formally this case cannot
be deduced from the dendron’s case.

Theorem 7. Let X be a median pretree. Then every pair of monotone (equivalently, convex) real valued
functions fi : X Ñ R, i P t0, 1u is not independent.

Using results of Rosenthal [8] and Theorem 7 we get

Theorem 8. (Generalized Helly’s selection principle) Let X be a median pretree (e.g., dendron or a linearly
ordered set) and tfn : X Ñ RunPN be a bounded sequence of monotone real valued functions. Then there exists
a pointwise converging subsequence.
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Sergey Melikhov. Brunnian link maps in the 4-sphere
A link map is a map X1 \ � � � \Xm Ñ Y such that the images of the Xi are pairwise disjoint, and a link

homotopy is a homotopy whose every time instant is a link map. For example, link maps Sp \ Sq Ñ Sp�q�1

are classified (up to link homotopy) by the linking number, and link maps S1 \ S1 \ S1 Ñ S3 are classified by
Milnor’s triple µ̄-invariant. A nontrivial link map S2 \ S2 Ñ S4 was constructed by R. Fenn and D. Rolfsen
(1986) using that each component of the Whitehead link is null-homotopic in the complement ot the other
one. P. Kirk (1988) introduced an invariant of link maps S2 \ S2 Ñ S4 with values in the infinitely generated
free abelian group Zrxs ` Zrys and found its image. According to a 2017 preprint by R. Schneiderman and P.
Teichner, the long-standing problem of injectivity of Kirk’s invariant has an affirmative solution.

A natural extension of Kirk’s invariant to link maps of m copies of S2 in S4 was described by U. Koschorke
(1991) and takes values in

�
ZrZm�1{ts�m, where tp~vq � �~v. We show that the Kirk–Koschorke invariant is not

injective for m ¡ 2. To prove this, we introduce a new “non-abelian” invariant of m-component link maps in
S4 with values in

�
ZrRFm�1{T, cs

�m
, where RFk is the Milnor free group (RF2 is also known as the discrete

Heisenberg group), T pgq � g�1 and c stands for conjugation. Loosely speaking, the new invariant is related to
the Kirk–Koschorke invariant in the same way as Milnor’s µ̄-invariants of link homotopy are related to pairwise
linking numbers.

For link maps S2 \ S2 \ S2 Ñ S4 we also find the image of their Kirk–Koschorke invariant. The main
step is a new elementary construction of Brunnian link maps S2 \ � � � \ S2 Ñ S4: they are described by an
explicit link-homotopy-movie (just like the Fenn–Rolfsen link map), which is closely related to the minimal
solution of the Chinese Rings puzzle. The existence of nontrivial Brunninan link maps in S4 (of more than
two components) was established previously by Gui-Song Li (1999), but his construction requires a lot more of
4-dimensional imagination (it is based on iterated Whitney towers and a process of their desingularization) and
does not suffice to generate the image of the Kirk–Koschorke invariant.

Our interest in finding the images of invariants of link maps in S4 actually comes from a study of classical
links. In arXiv:1711.03514 = JKTR 27:13 (2018), 1842012, the computation of the image of Kirk’s invariant of
link maps S2\S2 Ñ S4 is applied to reprove the Nakanishi–Ohyama classification of links S1\S1 Ñ S3 up to self
C2-moves. Now, our computation of the image of the Kirk–Koschorke invariant of link maps S2\S2\S2 Ñ S4

has the following application: Two links S1 \ S1 \ S1 Ñ S3 that are link homotopic to the unlink are related
by Cxxx2 -moves (=self C2-moves) and Cxx,yz3 -moves (of Goussarov and Habiro) if and only if they have equal
µ̄-invariants (with possibly repeating indices) of length at most 4.

Grigory Mikhalkin. Real algebraic curves in the plane and in the 3-space:
indices and their extremal properties

(The talk is based on a series of joint works with Stepan Orevkov)

Several types of indices, i.e. integer numbers invariant under isotopies, are known for plane and spatial real
algebraic curves. For plane curves an index is given by the area of the logarithmic image of the curve (this area
turns out to be integer under certain assumptions). For spatial curves an index is given by Viro’s encomplexed
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writhe. Some other indices are given by natural framings of real algebraic curves in the 3-space. It turns out
that these indices are subject to extremal properties. In particular, topology of curves of a given degree with
the maximal possible values of theses indices can be explicitly described.

Andrey Mikhovich. On p–adic variation of Segal theorem
By definition, a finite type presentation of a discrete group G is an exact sequence

(1) 1 Ñ RÑ F
πÝÑ GÑ 1

in which F � F pXq is the free group with a finite set X of generators, and R is a normal subgroup in F
generated by a finite number of defining relations r P R. By a pro–p–group one calls a group isomorphic to
inverse limit of finite p–groups. This is a topological group (with the topology of direct product) which is a
compact totally disconnected group. For such groups one has a presentation theory which is in many aspects
similar to the combinatorial theory of discrete groups. By analogy with finite type presentation of a discrete
group, we shall say that a pro–p–group G is given by a finite type pro–p–presentation if G is included into an
exact sequence (1) in which F is a free pro–p–group with finite number of generators, and R is a closed normal
subgroup topologically generated by a finite number of elements in F , contained in the Frattini subgroup of the
group F .

For discrete groups, p will run over all primes, while for pro–p–groups p is fixed. Let G be a (pro–p)group
with a finite type (pro–p)presentation (1), and R � R{rR,Rs be the corresponding G–module of relations
(relation module), where rR,Rs is the commutant, and the action of G is induced by conjugation by F on R.

Introduce the notation Zpppqq for Z in the case of discrete groups and Zp in the case of pro–p–groups.

Definition 1. We shall call the (pro–p)presentation (1) quasirational (QR–(pro–p)presentation) if one of the
following three equivalent conditions is satisfied:

(i) for each n ¡ 0 and for each prime p ¥ 2, the F {RU -module R{rR,RU s has no p–torsion (p is fixed for
pro–p–groups and runs over all primes p ¥ 2 in the discrete case) for any normal subgroups U E F of finite
index | G{U |� pn, n P N;

(ii) the quotient module of coinvariants RG � RF � R{rR,F s has no torsion;
(iii) H2pG,Zpppqqq has no torsion.

The proof of equivalence of conditions (i)–(iii) is contained in [1, Proposition 4] and [2, Proposition 1].
QR–presentations are curious in particular due to the fact that they contain aspherical presentations of dis-
crete groups and their subpresentations (so they are important in the study of asphericity), and also pro–p–
presentations of pro–p–groups with one defining relation [3] (the study of J.-P. Serre’s question).

In [3] the importance of study of p–adic permutation representations of finite p–groups for asphericity
questions is shown. In particular it is intersting to verify a difference between Burnside and Representations
rings of a group. Let G be a finite group and ApGq be its Burnside ring, that is a Grothendieck ring of
isomorphism classes of finite G–sets with disjoint union taken as commutative addition and Cartesian product
of G–sets as multiplication [5, 1.1]. We also need RkpGq - the representation ring (over a field k) of a finite
group G, it is a Grothendieck ring of isomorphism classes of finite-dimensional k–representations of G. Consider
a natural homomorphism of rings

hk : ApGq Ñ RkpGq,
which assign for any isomorphism class of G–sets rXs the corresponding class hkprXsq in the representation ring
RkpGq of a finite group G. According to Segal theorem [5, Theorem 4.4.1] for any finite p–group G the natural
homomorphism

hQ : ApGq Ñ RQpGq
is the epimorphism of rings. However this is no longer true when for the homomorphism of rings

hQ2 : ApGq Ñ RQ2pGq
in the case of 2–groups [4]. We develop Burnside ring theory for pro–p–groups with connection to the structure
of relation modules.
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Dmitry Millionshchikov. Massey products and representation theory
Massey products in cohomology have found a lot of interesting applications in topology and geometry.

For instance, the existence of a non-trivial Massey product in H�pM,Rq is an obstruction for a (symplectic)
manifold M to be Kähler. An initial data of almost all known examples of non-Kähler symplectic manifolds
are nilmanifolds that admit some non-trivial Massey products in their cohomology. We consider n-fold Massey
products in the cohomology of finite dimensional positively graded graded Lie algebras (and of the corresponding
nilmanifolds) with rational structure constants. Feigin, Fuchs and Retakh proposed to used pn�1q-dimensional
graded modules V over positively graded Lie algebra g for the construction of defining systems for n-fold Massey
products xa1, . . . , any in H2pgq, where a1, . . . , an are all cohomology classes from H1pgq. We will discuss old
and new problems and results related to this approach.
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Aleksandr Mishchenko. Geometric description of the Hochschild
cohomology of Group Algebras

A description of the algebra of outer derivations of a group algebra of a finitely presented discrete group is
given in terms of the Cayley complex of the groupoid of the adjoint action of the group. This task is a smooth
version of Johnson’s problem concerning the derivations of a group algebra. It is shown that the algebra of
outer derivations is isomorphic to the group of the one-dimensional cohomology with compact supports of the
Cayley complex over the field of complex numbers.

On the other hand the group of outer derivation is isomorphic to the one dimensional Hochschild cohomology
of the group algebra. Thus the whole Hochschild cohomology group can be described in terms of the cohomology
of the classifying space of the groupoid of the adjoint action of the group under the suitable assumption of the
finiteness of the supports of cohomology groups.

The report presents the results partly obtained jointly with A. Arutyunov, and also with the help of
A. I. Shtern.
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Nikolai Mnev. On local combinatorial formulas for Euler class of
triangulated spherical fiber bundle

Suppose we have a PL spherical fiber bundle with a fiber Sn triangulated over the base simplicial complex.
The bundle determines n�1 dimensional Euler characteristic class in the base. Local combinatorial formula for
the Euler class is a universal combinatorial function of elementary triangualeted Sn-bundles over n�1 simplices
universally representing Euler cocycle of the bundle in simplicial cohomology of the base. Such functions exist
for rational coefficients in cohomology. They can be constructed as explicit local chain-level formulas for Gysin
homomorphism in Gysin sequence of the bundle. To get an access to local chain combinatorics of spectral
sequence of the bundle we may use Guy Hirsh homology model of the bundle as a local system and then
applying homology perturbation theory obtain local formulas as certain measure of twisting in combinatorial
Hodge structure of the elementary bundle. The answer can be interpreted and evaluated statistically as certain
combinatorial counting using Catanzaro–Chernyak–Klein higher Kirchhoff theorems.
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Egor Morozov. Surfaces containing two parabolas through each point
We prove that any surface in R3 containing two arcs of parabolas with axes parallel to Oz through each

point has a parametrization
�
P pu,vq
Rpu,vq ,

Qpu,vq
Rpu,vq ,

Zpu,vq
R2pu,vq

	
for some P,Q,R,Z P Rru, vs such that P,Q,R have degree

at most 1 in u and v, and Z has degree at most 2 in u and v (under some additional technical assumptions). This
result can be considered in the context of describing surfaces containing two isotropic circles through each point
in isotropic geometry (in the Euclidean case all such surfaces are described in the recent paper of M. Skopenkov
and R. Krasauskas). We also consider some other problems about surfaces containing isotropic circles and lines
through each point.

Michele Mulazzani. The complexity of orientable graph manifolds
(Joint work with Alessia Cattabriga)

Graph manifolds, introduced and classified by Waldhausen in [10] and [11], are compact 3-manifolds obtained
by gluing Seifert fibre spaces along toric boundary components.

S. Matveev in [7] (see also [8] and [9]) introduced the notion of complexity for compact 3-dimensional
manifolds, as a way to measure how “complicated” a manifold is. Indeed, for closed irreducible and P2-
irreducible manifolds the complexity coincides with the minimum number of tetrahedra needed to construct the
manifold, with the only exceptions of S3, RP3 and Lp3, 1q, all having complexity zero. Moreover, complexity is
additive under connected sum and it is finite-to-one in the closed irreducible case. The last property has been
used in order to construct a census of manifolds according to increasing complexity: for the orientable case, up to
complexity 12, in the Recognizer catalogue (available at http://matlas.math.csu.ru/?page=search) and for
the non-orientable case, up to complexity 11, in the Regina catalogue (available at https://regina-normal.

github.io).
Upper bounds for the Matveev complexity of infinite families of 3-manifolds are given in [6] for lens spaces,

in [5] for closed orientable Seifert fibre spaces and for orientable torus bundles over the circle, in [4] for orientable
Sefert fibre space with boundary and in [1] for non-orientable compact Seifert fibre spaces. All the previous
upper bounds are sharp for manifolds contained in the Recognize and Regina catalogues. Very little is known
for the complexity of graph manifolds: in [2] and [3] upper bounds are given only for the case of graph manifolds
obtained by gluing along the boundary two or three Seifert fibre spaces with disk base space and at most two
exceptional fibres.

We present an upper bound for the Matveev complexity of the whole class of closed connected orientable
prime graph manifolds that is sharp for all 14502 graph manifolds of the Recognizer catalogue.
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Oleg Musin. Borsuk–Ulam type theorems for f–neighbors
(The talk is based on joint work with Andrei Malyutin)

We introduce and study a new class of extensions for the Borsuk–Ulam theorem. Our approach is based on
the theory of Voronoi diagrams and Delaunay triangulations. One of our main results is as follows.

Theorem 1. Let Sm be a unit sphere in Rm�1 and let f : Sm Ñ Rn be a continuous map. Then there are
points p and q in Sm such that


 }p� q} ¥
b

2 � m�2
m�1 ;


 fppq and fpqq lie on the boundary BB of a closed metric ball B � Rn whose interior does not
meet fpSmq.

Note that
b

2 � m�2
m�1 is the diameter of a regular simplex inscribed in Sm.

The Borsuk–Ulam theorem states that every continuous map of a Euclidean n-sphere Sn to Euclidean n-
space Rn of the same dimension sends a pair of antipodal points to the same point. Theorem 1 is an extension
of the Borsuk–Ulam theorem in the sense that the latter says that the images of two extremely distant points
are extremely close and the former says that the images of two quite distant points are close in a certain sense.
A number of extensions and generalizations of the Borsuk–Ulam theorem exploit the symmetry argument and
variate the condition on the initial points while preserving the condition of coinciding images. As a rule, these
extensions and generalizations are not applicable to the case Sm Ñ Rn with m   n. We study a new class of
extensions covering the case with m   n. In these extensions, the condition of coinciding images is replaced with
weaker conditions on the images “to be close in a certain sense”. We consider several concepts of “closeness”.

Definition 2. Let f : Sm Ñ Rn be a map.


 We say that two points a and b in Sm are topological f–neighbors if fpaq and fpbq are connected by a
path in Rm whose interior does not meet fpSmq.


 We say that a and b are visual f–neighbors if the interior of the line segment with endpoints at fpaq
and fpbq does not meet fpSmq.


 We say that a and b are spherical f–neighbors if fpaq and fpbq lie on the boundary of a metric ball
whose interior does not meet fpSmq.

The concept of spherical f–neighbors can be generalised as follows.

Definition 3. Let f : X ÑM be a map of metric spaces. We say that a subset Z of X is a family of spherical
f–neighbors if fpZq lie on the boundary of a metric ball B �M whose interior does not meet fpXq.

fpS1q

fpp2q

fpp1q

fpp3q

Figure 1. Images of spherical f–neighbors

Theorem 1 is a consequence of the following theorem.

Theorem 4. Let Sm be a unit sphere in Rm�1 and let f : Sm Ñ Rn be a continuous map. Then each point
inside of Sm is contained in the convex hull of a family of spherical f–neighbors.

Theorem 4 can be seen as an extension of the Borsuk–Ulam theorem if we reformulate the latter as follows:
if Sm is a unit sphere in Rm�1 and f : Sm Ñ Rm is a continuous map, then for each point p inside of Sm there
exist two points a and b in Sm such that fpaq � fpbq and p is contained in the line segment with endpoints at a
and b.

Theorem 4 has the following generalization.
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Theorem 5. Let Q be a compact subset in Rm, let BQ be the boundary of Q, and let f : BQ Ñ Rn be a
continuous map. Then every point of Q is contained in the convex hull of a family of spherical f–neighbors.

We prove Theorems 4 and 5 in the framework of the theory of Voronoi diagrams and Delaunay triangulations.
Another approach with non-null-homotopic coverings allows us to extend the theory to the case of maps to
arbitrary contractible metric spaces. We give two examples.

Theorem 6 (cf. Theorem 1). Let Sm be a unit sphere in Rm�1 and let f : Sm ÑM be a continuous map to a
contractible metric space M . Then there are spherical f–neighbors p and q in Sm with

}p� q} ¥
c
m� 2

m
.

Note that
b

m�2
m is the distance between the centers of two pm � 1q-dimensional faces of the same m-

dimensional facet of a regular simplex inscribed in Sm.

Theorem 7. Let f be a continuous map from the boundary of an m-dimensional cube to a contractible metric
space. Then there are spherical f–neighbors lying on disjoint faces of the cube.

The reported study was funded by RFBR according to the research project n. 17-01-00128 A.

Abdigappar Narmanov. On the group of diffeomorphisms of
foliated manifolds

The diffeomorphism groups of smooth manifolds are of great importance in differential geometry and in
analysis. The fundamental works in this area are the studies of V. I. Arnold, H. Omori, A. M. Lukatsky [1,2,4].
Intensive development of the theory of groups of diffeomorphisms began after the work of V. I. Arnold, in which
it was shown that the motions of an ideal incompressible fluid are geodesic on a group of diffeomorphisms that
preserve volume element.

It is known that the group DiffpMq is topological group in compact open topology ([5], page 270), [3].
We will denote by pM,F q manifold M with k�dimensional foliation F on M [6].
In this talk we investigate some subgroups of the group DiffF pMq of diffeomorphisms of the foliated

manifold pM,F q.
Let Lppq be a leaf of the foliation F passing through point the p, TpF� the tangent space to the the leaf

Lppq at p. We get subbundle (smooth distribution) TF � tTpF : p P Mu of the tangent bundle TM of the
manifold M.

Let us denote by V pMq, V pF q the set of smooth sections of bundles TM, TF respectively.

Definition 1. If for the some Cr� diffeomorphism ϕ : M ÑM the image ϕpLαq of any leaf Lα of foliation F
is a leaf of foliation F, we say that the f is Cr� diffeomorphism of foliated manifold and write as f : pM,F q Ñ
pM,F q.
Example 2. Let M � R2px, yq� Euclidean plane with the Cartesian coordinates px, yq. Leaves Lα of foliation
F are given by the equations x2 � y � α � const. Then the plan diffeomorphism ϕ : R2 Ñ R2 determined by
the formula

ϕpx, yq � px, y � λfpx, yqq
is diffeomorphism of foliated plane pR2, F q, for every λ P R, such that λ � 1. It sends a leaf Lα to Lp1�λqα. It

is easy to check that in fact ϕ : R2 Ñ R2 is an isometry of foliated plane pR2, F q.
Example 3. Let pM,F q� foliated manifold, where F� is k� dimensional smooth foliation where 0   k   n.
Recall a vector field X is called a foliated field if for every vector field Y, tangent to F, Lie brocket rX,Y s also
is tangent to F. It is known that flow of every foliated field consists of diffeomorphisms of foliated manifold
pM,F q [6].

For foliated plane from Example 2 vector field X � px2 � yq BBy is foliated field and its flow consists of

diffeomorphisms ϕt : px, yq P R2 Ñ px, x2 � e�tpx2 � yqq P R2 of foliated plane pR2, F q. Every diffeomorphism
ϕt : px, yq P R2 Ñ px, x2 � e�tpx2 � yqq P R2 sends a leaf Lα to Le�tα.

Let’s denote as DiffF pMq� the set of all Cr diffeomorphisms of foliated manifold pM,F q, where r ¥ 0.
The group DiffF pMq is subgroup of DiffpMq and therefore it is topological group in compact open topology.

Theorem 4. Let pM,F q is foliated manifold where M is a smooth connected finite-dimensional manifold. Then
the group DiffF pMq is a closed subgroup of DiffpMq in compact open topology.

The closedness of the set DiffF pMq allows us to state the following corollary.

Corollary 5. Factor space DiffpMq{DiffF pMq is regular homogeneous topological space.
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We will introduce some topology on the group DiffF pMq, which depends on foliation F and coincides with
compact open topology when F is n-dimensional foliation.

Let tKλu be a family of all compact sets where each Kλ is a subset of some leaf of foliation F and let tUβu�
family of all open sets on M . We consider for each pair Kλ and Uβ set of all mappings f P GrF pMq, for which
fpKλq � Uβ . This set of mappings we denote through rKλ, Uβs � tf : M ÑM |fpKλq � Uβu.

It isn’t difficult to show that every possible finite intersections of sets of the form rKλ, Uβs forms a base for
some topology. This topology we call foliated compact open topology or in brief F�compact open topology.
Let’s denote as Diff0

F pMq set of all Cr diffeomorphisms g P DiffF pMq of foliated manifold pM,F q, such that
gpLαq � Lα for every Lα leaf of foliation F. Flow of every tangent vector field consists of diffeomorphisms of
foliated manifold pM,F q, which belong to the group Diff0

F pMq.
It can be proven following theorems.

Theorem 6. Let pM,F q — foliated manifold where M — is a smooth, connected and finite-dimensional
manifold. Then the group Diff0

F pMq is a topological group with F�compact open topology.

Theorem 7. Let all leaves of foliated manifold pM,F q are closed subsets of M. Then the group Diff0
F pMq is

closed subset of DiffF pMq in F�compact open topology.
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Amos Nevo. The Shannon–McMillan–Breiman theorem for Rokhlin entropy
in actions of general groups

(Based on joint work with F. Pogorzelski (Leipzig University))

In recent years, the classical theory of entropy for a measure-preserving dynamical system has been revolu-
tionized by ground-breaking work initiated by Lewis Bowen and by Brandon Seward. Two distinct definitions
of entropy were proposed, which apply to actions of very general groups, including non-amenable ones. The
first, initiated by Bowen in 2008, applies to sofic groups, a very large class of groups which generalizes the class
of amenable groups. It was termed sofic entropy by Bowen, and is based on the elaborate auxiliary machinery
provided by the sofic structure. A completely different definition, initiated by Seward in 2014, applies to all
countable groups whatsoever. This definition is simpler and makes no appeal to auxiliary structures, and is very
natural and direct. Its motivation is a classical theorem of Rokhlin which gives an alternative characterization
of the Kolmogorov–Sinai entropy of a a measure-preserving transformation, and Seward has thus termed this
invariant Rokhlin entropy.

We will start with a very brief account of Seward’s definition of Rokhlin entropy and some of its proper-
ties, and then describe our own recently developed approach to the construction of orbital Rokhlin entropy for
probability-measure-preserving free actions of all countable groups. This construction is motivated by Seward’s
definition and Danilenko’s notion of orbital entropy (which he developed in the amenable case). We will then
formulate our main result, namely that orbital Rokhlin entropy actually coincides with Rokhlin entropy and
satisfies a natural version of the Shannon–McMillan–Breiman pointwise convergence theorem. We will demon-
strate the dynamical significance of the entropy equipartition result for finite partitions that this convergence
theorem entails, and its relation to the boundary of the group in the case of actions of free non-Abelian groups.

Vladimir Nezhinskii. Rational graphs
The work deals with the spatial graph theory. In the talk, analogues of rational knots will be defined and

classified (up to isotopy).

70



Mikhail Ovchinnikov. On classification of nonorientable 3-manifolds of
small complexity

The talk is devoted to the problem of enumeration of nonorientable compact 3-manifolds in increasing order
of their complexity.

Let M be a compact 3-manifold and P be a 2-polyhedron lying in M . P is called spine of M if MzP �
BM �p0, 1s, either � IntB3. A spine is called simple spine if the link of each its singular point is homeomorphic
to the circle with diameter, either to the circle with three radii. The minimal number of the second type
singular points over all simple spines of a given 3-manifold M is called complexity cpMq. There are some results
on enumeration of orientable compact 3-manifolds and closed nonorientable 3-manifolds in increasing order of
their complexity ([1,2]).

We consider nonorientable 3-manifolds with arbitrary boundary. The set of 26 simple spines with two second
type singular points which contains all minimal spines of complexity two nonorientable 3-manifolds has been
generated by computer program. As a result of a detailed consideration we have the most natural presentations
for 3-manifolds of the set. In the most complexive cases manifolds are described by pairs of the kind (direct
product of the Mobius band and interval, proper arc). We get the corresponding manifold by removing a regular
neighbourhood of the arc. For each manifold a 2-polyhedron lying in the 3-space is constructed which naturally
shows the embedding of the spine in appropriate simple nonorientable 3-manifold (“thicken” Mobius band in
the last example). In particular some pairs of homeomorphic manifolds have been recognized.

The work is supported by RFBR grant No.17-01-00690
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Makoto Ozawa. Multibranched surfaces in 3-manifolds
A multibranched manifold is a second countable Hausdorff space that is locally homeomorphic to multi-

branched Euclidean space. In this talk, we concentrate compact 2-dimensional multibranched manifolds (multi-
branched surfaces) embedded in 3-manifolds. We give a necessary and sufficient condition for a multibranched
surface to be embedded in some closed orientable 3-manifold. Then we can define the genus of a multibranched
surface in virtue of Heegaard genera of 3-manifolds, and show an inequality between the genus, the number of
branch loci and regions. We determine whether two multibranched surfaces have same neighborhood by means
of local moves. Similarly to the graph minor, we also introduce a minor on multibranched surfaces, and con-
sider the obstruction set for the set of multibranched surfaces embedded in the 3-sphere. This talk is a survey
including recent joint works with Kazufumi Eto, Shosaku Matsuzaki, Mario Eudave-Munoz, Kai Ishihara, Yuya
Koda, Koya Shimokawa.

Multibranched manifold

A multibranched manifold is a second countable Hausdorff space that is locally homeomorphic to multi-
branched Euclidean space.

Figure 1. multibranched Euclidean space (The quotient space obtained from i copies
of Rn� � tpx1, . . . , xnq P Rn|xn ¥ 0u by identifying with their boundaries BRn� �
tpx1, . . . , xnq P Rn|xn � 0u via identify mappings.)
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Degree and wrapping number

Any multibranched surface X can be constructed from a closed 1-manifold BX � B1 Y � � � Y Bm (brach
loci) and a compact 2-manifold with boundary SX � S1 Y � � � Y Sn (regions) by identifying via a covering map
f : BSX Ñ BX . The degree of a branch locus Bi is defined as degpBiq � d if f |f�1pBiq : f�1pBiq Ñ Bi is a d-fold
covering (d ¡ 2). For each component C of BSX , the wrapping number of C is defined as wrappCq � w if f |C
is a w-fold covering.

C3

C1

C2

Figure 2. degpBiq � 6, wrappCiq � i

We say that a multibranched surface X is regular if for each branch locus Bi of X, degpBiq � k�wrappCq
for some k P N and any component C of f�1pBiq.

Embeddability in R4 and 3-manifolds

By the Menger–Nöbeling theorem, any finite 2-dimensional CW complex can be embedded into the 5-
dimensional Euclidian space R5. Furthermore, we have

Proposition 1 ([5]). Any multibranched surface can be embedded in the 4-dimensional Euclidean space R4.

Proposition 2 ([5]). A multibranched surface can be embedded in some closed orientable 3-manifold if and
only if it is regular.

The following is a fundamental problem.

Problem 3. For a given multibranched surface, determine whether it can be embedded in the 3-sphere S3 (or
equivalently R3).

Genus – filtration via 3-manifolds

It is known that any closed orientable 3-manifold M has a decomposition into two handlebodies V1 and
V2, where M � V1 Y V2 and V1 X V2 � BV1 � BV2. The Heegaard genus gpMq of M is defined as the minimal
genus among all such decompositions. For a regular multibranched surface X, we define the genus of X as the
minimal Heegaard genus gpMq among all closed orientable 3-manifold M , where X can be embedded in M .

Theorem 4 ([5]). If a regular multibranched surface X has m branch loci and n regions, then

gpXq ¤ m� n.

Moreover, if the wrapping number of each branch locus is 1, then

gpXq ¤ n.

For a graph G, we obtain a regular multibranched surface by taking a product with S1, that is, for each
vertex vi of G, vi � S1 forms a loop and for each edge ej of G, ej � S1 forms an annulus.

Theorem 5 ([3]). gpG� S1q ¤ 2gpGq.
When gpGq � 0, namely, G is planar, G�S1 can be embedded in the 3-sphere S3 and hence gpG�S1q � 0.

Thus Theorem 5 is best possible when gpGq � 0.
When gpGq ¥ 1, G has a K5 or K3,3 minor. In the following theorem, we determine the genus of K5 � S1

and K3,3 � S1, and therefore Theorem 5 is best possible when gpGq � 1.

Theorem 6 ([3]). gpK5 � S1q � 2 and gpK3,3 � S1q � 2.

Remark 7. Theorem 5 is now in progress. We have almost approached the equality in Theorem 5.

72



IX-move and XI-move

Let A be an annulus region of X whose boundary consists of two branch loci, where at least one branch
locus Bi has the wrapping number 1, or a Möbius-band region whose boundary has the wrapping number 1.
An IX-move along A is an operation shrinking A into the core circle. An XI-move is a reverse operation of an
IX-move.

Figure 3. IX-move ([4])

Neighborhood equivalence

Here, we assume that a multibranched surface is regular, does not have disk regions, and the degree degpBiq
is greater than 2 for each branch locus Bi.

Theorem 8 ([4]). Let X, X 1 be multibranched surfaces in an orientable 3-manifold M . If NpXq is isotopic to
NpX 1q in M , then X is transformed into X 1 by a finite sequence of IX-moves, XI-moves and isotopies.

Minor

Here, we allow the degree degpBiq of a branch locus Bi to be 1 or 2. We denote by M the set of all
regular multibranched surfaces (modulo homeomorphism). For X, Y P M , we write X   Y if X is obtained
by removing a region of Y , or X is obtained from Y by an IX-move. We define an equivalence relation � on
M as follows: if X   Y and Y   X, then X � Y . We define a partial order   on M { � as follows. Let X,
Y P M . We denote rXs   rY s if there exists a finite sequence X1, . . . , Xn P M such that X1 � X, Xn � Y
and X1   � � �   Xn.

Obstruction set

A multibranched surface class rXs is called a minor of a multibranched surface class rY s if rXs   rY s. In
particular, rXs is called a proper minor of rY s if rXs   rY s and rY s �� rXs. A subset P of M { � is said to be
minor closed if for any rXs P P, every minor of rXs belongs to P. For a minor closed set P, we define the
obstruction set ΩpPq as follows:

ΩpPq � trXs P M { �| rXs R P, Every proper minor of rXs belongs to P.u
The set of multibranched surfaces embeddable into S3, denoted by PS3 , is minor closed. As a 2-dimensional

version of Kuratowski’s and Wagner’s theorems, we consider the next problem.

Problem 9. Characterize the obstruction set ΩpPS3q.
Theorem 10 ([3], [1], [5]). The following multibranched surfaces belong to ΩpPS3q.


 non-orientable closed surfaces

 K5 � S1 and K3,3 � S1 [3]

 X1, X2, X3 given in [1]

 Xgpp1, p2, . . . , pnq given in [5]
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A partial order on multibranched surfaces

In this subsection, we restrict multibranched surfaces to the set X of all connected compact multibranched
surfaces X embedded in a closed orientable 3-manifold M satisfying the following conditions: X is maximally
spread (that is, applied XI-moves to X as much as possible), essential in M , has no open disk sector, no branch
of degree 1 or 2.

We define a binary relation ¤ over X as follows.

Definition 11. For X, Y P X , we denote X ¤ Y if

(1) there exists an isotopy of Y in M so that Y � NpXq and BY � NpBXq, and
(2) there exists no essential annulus in NpXq � Y .

For equivalence classes rXs, rY s P X { �, we define a binary relation ¨ over X { � so that rXs ¨ rY s if
X ¤ Y .

Theorem 12 ([6]). The relation ¨ is well-defined on X { � and pX { �;¨q is a partially ordered set.

Theorem 13 ([6]). For equivalence classes rXs, rY s P X { �, if rXs ¨ rY s and rXs � rY s, then either BY is
toroidal or SY is cylindrical.

The author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 17K05262) and (B) (No.
16H03928), The Ministry of Education, Culture, Sports, Science and Technology, Japan
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Burak Özbaǧci. Genus one Lefschetz fibrations on disk cotangent
bundles of surfaces

We describe a Lefschetz fibration of genus one on the disk cotangent bundle of any closed orientable
surface S. As a corollary, we obtain an explicit genus one open book decomposition adapted to the canonical
contact structure on the unit cotangent bundle of S.

Taras Panov. A geometric view on SU-bordism
(Based on joint work with Zhi Lu, Ivan Limonchenko and Georgy Chernykh)

The development of algebraic topology in the 1960 culminated in the description of the special unitary
bordism ring. Most leading topologists of the time contributed to this result, which combined the classical
geometric methods of Conner–Floyd, Wall and Stong with the Adams–Novikov spectral sequence and formal
group law techniques that emerged after the fundamental 1967 work of Novikov. Thanks to toric topology, a
new geometric approach to calculations with SU-bordism has emerged, which is based on representing genera-
tors of the SU-bordism ring and other important SU-bordism classes by quasitoric manifolds and Calabi–Yau
hypersurfaces in toric varieties.

Seonjeong Park. Torus orbit closures in Richardson varieties
(Based on joint work with Eunjeong Lee and Mikiya Masuda)

The flag variety F `n is a smooth projective variety consisting of chains pt0u � V1 � � � � � Vn � Cnq of
subspaces of Cn with dimC Vi � i. Then the standard action of T � pC�qn on Cn induces a natural action of
T on F `n. For v and w in the symmetric group Sn with v ¤ w in Bruhat order, the Richardson variety Xv

w

is defined to be the intersection of the Schubert variety Xw and the opposite Schubert variety w0Xw0v, and it
is an irreducible T-invariant subvariety of F `n. In general, Richardson varieties are not a toric variety. In this
talk, we give some combinatorial interpretation of the generic torus orbit closures in Richardson varieties. We
also show that if Richardson variety is itself a smooth toric variety, then it is a Bott tower.
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Garik Petrosyan. On the boundary value periodic problem for a semilinear
differential inclusion of fractional order with delay

In the present paper, for a semilinear fractional order functional differential inclusion in a separable Banach
space E of the form

(1) CDqxptq P Axptq � F pt, xtq, t P r0, T s,
we consider the problem of existence of mild solutions to this inclusion satisfying the following periodic boundary
value condition

(2) xp0q � xpT q.
The symbol CDq denotes the Caputo fractional derivative of order q P p0, 1q, xt prehistory of the function

until t P r0, T s, that is xtpsq � xpt � sq, s P r�h, 0s, 0   h   T. Everywhere in the sequel we suppose that the
linear operator A satisfies condition

pAq A : DpAq � E Ñ E is a linear closed (not necessarily bounded) operator generating a bounded
C0–semigroup tUptqut¥0 of linear operators in E.

We will assume that the multivalued nonlinearity F : r0, T s � Cpr�h, 0s;Eq Ñ KvpEq, where KvpEq - a
collection of all nonempty compact convex subsets of E, obeys the following conditions:

pF1q for each ξ P Cpr�h, 0s;Eq the multifunction F p�, ξq : r0, T s Ñ Kv pEq admits a measurable selection;
pF2q for a.e. t P r0, T s the multimap F pt, �q : E Ñ Kv pEq is upper semicontinuous;
pF3q there exists a function α P L8� pr0, T sq such that

}F pt, xtq}E ¤ αptqp1� }xt}Cpr�h,0s;Eqq for a.e. t P r0, T s,
pF4q there exists a function µ P L8pr0, T sq such that for each bounded set ∆ � Cpr�h, 0s;Eq we have:

χpF pt,∆qq ¤ µptqϕp∆q,
for a.e. t P r0, T s, where ϕp∆q � supsPr�h,0s χp∆psqq, χ is the Hausdorff MNC in E, ∆psq �
typsq : y P ∆u .

Theorem 1. Under conditions pAq, pF1q � pF4q, suppose, additionally that

pA1q the semigroup U is exponentially decreasing in the sense that

}Uptq} ¤ e�ηt, t ¥ 0

for some η ¡ 0.

If

(3)
k

η
  1,

where k � max t}α}8, }µ}8u , then problem (1)-(2) has a solution.

The work is supported by the Ministry of Education and Science of the Russian Federation in the frameworks
of the project part of the state work quota (Project No 1.3464.2017/4.6) and by RFBR and MOST according
to the research project No 17-51-52022.
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Sergei Pilyugin. Approximate and exact dynamics in group actions
Let Φ be a uniformly continuous action of a finitely generated group G on a metric space.
The shadowing property of Φ means that, given an approximate trajectory, we can find an exact trajectory

close to it. The inverse shadowing property of Φ means that, given a family of approximate trajectories
(generated by a so-called approximate method), for any fixed exact trajectory of Φ, we can find a member of
this family that is close to this fixed trajectory.

The Reductive Shadowing Theorem (RST) states that if the action of a one-dimensional subgroup of G is
topologically Anosov (i.e., it has the shadowing property and is expansive), then the action Φ is topologically
Anosov as well (and hence, Φ has the shadowing property).

The first RST was proved in [1] for the groups Zp; later it was generalized to the case of virtually nilpotent
groups [2]. At the same time, it was shown in [2] that the RST is not valid, for example, for the Baumslag–Solitar
groups BSp1, nq with n ¡ 1.

It is shown in [3] that an analog of the RST for the case of inverse shadowing (with “topologically Anosov”
replaced by the so-called “Tube Condition”) is also valid for virtually nilpotent groups.

This research is supported by the RFBR, project 18-01-00230A.
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Grigory Polotovskiy. V. A. Rokhlin and D. A. Gudkov against the
background of the 16th Hilbert problem

(on the Rokhlin-Gudkov’s correspondence in 1971–1982)
The story is about the period of the mathematical biography of Vladimir Abramovich Rokhlin connected

with its occupations topology of real algebraic varieties and about his friendship and cooperation with the Nizhni
Novgorod mathematician Dmitry Andreevich Gudkov. The talk is based on the correspondence of D. A. Gudkov
with V. A. Rokhlin in 1971–1982 from Gudkov’s archive. In total 15 letters of V. A. Rokhlin and 8 letters of
D. A. Gudkov1 are kept. This correspondence is completely published in [1], pp. 191–208.

The 70th — 80th years of the last century can be characterized as the period of ”Storm and Drang” in the
field of the first part of the 16th Hilbert problem. The start of this period was laid by Gudkov’s classification of
nonsingular curves of degree 6 (1969) and by his conjecture (”the Gudkov congruence”) about the congruence
modulo 8 for some topological characteristic of M -curves of even degree, and the followed proofs of ”half” of
this congruence (i.e. modulo 4) by V. I. Arnold (1971) and in full (modulo 8) by V. A. Rokhlin (1972).

I will list some main subjects touched on in the specified correspondence.
1) A discussion of structure and content of the survey [2] on which D. A. Gudkov began to work not later

than 19702. In particular, V. A. Rokhlin periodically informed D. A. Gudkov about new versions of the proof
of the Gudkov congruence.

2) In turn, V. A. Rokhlin wrote (the letter of 14.11.1971): ”Of course, I will be grateful for any information
on your examples. Can you send me your articles or even your survey for me to study the subject more
thoroughly?” And Dmitry Andreevich shared in the letters all information known to him, in particular, about
plane curves of odd degree, spatial curves and algebraic surfaces in RP 3 (for example, in letters of 24.04.1972
and 11.06.1972) and bibliographic data (in the letter of 1973). V. A. Rokhlin wrote in the letter of 15.01.1974: ”I
looked for information on curves of degrees 8, 10, 12 in the compositions sent by you, but found almost nothing.
Is there any more or less full table of the constructed curves?” According to this inquiry of V. A. Rokhlin and
at the request of D. A. Gudkov, such table was done, sent to V. A. Rokhlin and then published in [3].

3) Different scientific-organizational questions. In particular, the topic of the development of topological
education in Gorky was discussed. As a result, Gudkov with the help and support of Rokhlin’s students,
O. Ya. Viro and V. M. Kharlamov, created an obligatory course of topology at the Nizhni Novgorod (Gorky)
University, based on records of lectures of V. A. Rokhlin. Also the situation connected with simultaneous
emergence of papers [4] and [5] containing close results was discussed.

Unfortunately, friendly relations between V. A. Rokhlin and D. A. Gudkov were mainly epistolary. In
letters, they invited each other for a visit repeatedly, but their health problems interfered with that. So they
saw each other seldom. I can specify only three meetings, among them — a visit of V. A. Rokhlin and his wife
A. A. Gurevich to Gorky in the 70th.

1D. A. Gudkov kept draft copies or copies of many letters.
2D. A. Gudkov also consulted much with V. I. Arnold and O. A. Oleynik about this survey.
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Correspondence and friendship between V. A. Rokhlin and D. A. Gudkov quickly extended to their students:
O. Ya. Viro, V. M. Kharlamov, T. Fiedler and V. I. Zvonilov in Leningrad–St. Petersburg and G. A. Utkin,
A. B. Korchagin, E. I. Shustin and G. M. Polotovskiy in Gorky–Nizhni Novgorod. This remarkable circumstance
led to regular information exchange and exchange of results, long before they were published. This considerably
accelerated the development of research on topology of real algebraic varieties.
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Theodore Popelensky. On certain new results on
the Steenrod algebra mod p

For the Steenrod algebra mod p, p ¡ 2, three additive bases are well known. Namely, basis of admissible
monomials, Milnor basis, and P ts -basis. To be more precise, there is a family of P ts -bases. We develop certain
new additive bases in the Steenrod algebra mod p. We investigate which pairs of bases has triangular transition
matrix. Finally we plant to discuss certain applications.

Clement Radu Popescu. Resonance varieties. Definition and results
Falk introduced the resonance varieties in the context of complex hyperplane arrangements in 1997. Since

then these cohomology jump loci have been studied by several authors: Cohen–Suciu, Libgober–Yuzvinsky,
Falk–Yuzvinsky, Papadima–Suciu. They were generalised by Dimca–Papadima–Suciu. I will present results
obtained in collaboration with Berceanu, Măcinic, Papadima and Suciu.

The results are obtained over the field of complex numbers C.
Let A � pA 
, dq be a commutative differential graded algebra (for short cdga) and g be a Lie algebra. On

the tensor product A b g we define a graded differential Lie algebra structure (for short dgla) with the Lie
bracket rαb x, β b ys � αβ b rx, ys and differential Bpαb xq � dαb x.

We define the set of flat connections as F pA, gq � tω P A1 b g | Bω � 1
2 rω, ωs � 0u. If the cdga A is

connected (i.e. A0 � C � 1) and g � C, then F pA,Cq � H1pAq.
For F pA, gq there exists a filtration which contain informations about the algebra A. Given a connected

cdga A which is also of finite q�type (A¤q is finite dimensional) and a linear representation θ : g Ñ glpV q, the
tensor product A b V becomes a cochain complex with the covariant derivative dω � d b idV � adω. More
precisely, for ω P F pA, gq define dω � d b idV � adω : Ai b V Ñ Ai�1 b V . Explicitly, if ω � °

i αi b ai, with
αi P A1 and ai P g then dωpβb vq � dβb v�°

i αiβb θpaiqv. For ω P F pA, gq, d2
ω � 0 and we get the Aomoto

cochain complex:

pAb V, dωq : A0 b V
dω // A1 b V

dω // A2 b V
dω // � � �

The relative resonace varieties in degree i ¥ 0 and depth r ¥ 0, with respect to the representation θ is the
set

Ri
rpA, θq � tω P F pA, gq | dimCH

ipAb V, dωq ¥ ru
If g and V are finite dimensional then the relative resonance varieties are Zariski closed in F pA, gq. These

form a filtration of the set of flat connections. The simplest case is that of resonance varieties Ri
rpAq for which

the Lie algebra g � C and θ � idC.
Suppose that A is 1-finite and g is finite dimensional. Consider F 1pA, gq � F pA, gq consisting of tensors

η b g for which dη � 0. For a representation θ : g Ñ glpV q consider ΠpA, θq � F 1pA, gq the subvariety of
the tensors which satisfy also the equality detpθpgqq � 0. For the case g � C, F 1pA,Cq � F pA,Cq and
ΠpA, θq � t0u.

In general we obtained:
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Theorem 1. Let ω � η b g be an arbitrary element of F 1pA, gq. Then ω belongs to Rk
1 pA, θq if and only if

there is an eigenvalue λ of θpgq such that λη belongs to Rk
1 pAq. Moreover,

ΠpA, θq �
£

k:HkpAq�0

Rk
1 pA, θq.

Let A be a connected and 1-finite cdga for which the variety R1
1pAq decomposes as a finite union of linear

subspaces of A1, and let θ be a finite dimensional representation of a finite dimensional Lie algebra g.

We get the following result:

Theorem 2. Suppose R1
1pAq �

�
CPC C, a finite union of linear subspaces. For each C P C , let AC denote the

sub-cdga of the truncation A¤2 defined by A1
C � C and A2

C � A2. Then, for any Lie algebra g,

(1) F pA, gq � F 1pA, gq Y
¤

0�CPC

F pAC , gq,

where each F pAC , gq is Zariski-closed in F pA, gq. Moreover, if A has zero differential, A1 is non-zero, and
g � sl2 or sol2, then (1) holds as an equality, and, for any θ,

(2) R1
1pA, θq � ΠpA, θq Y

¤
0�CPC

F pAC , gq.

For a 1-formal 1-finite space X and the cdga A � pH 
pX,Cq, d � 0) it is known that the resonance variety,
R1

1pAq is a finite union of linear subspaces of A1.
Let Γ � pV,Eq be a finite simple graph with vertex set V and edge set E, and πΓ the right-angled Artin

group associated to Γ. An example of a space with the above mentioned properties (1-formal, 1-finite space)
is the classifying space XΓ of πΓ. For the computation of the resonance variety R1

1pAq, the model of the space

is the cdga AΓ � pH 
pπΓ,Cq, d � 0q. For this we can apply Theorem 2 and we have obtain the following
irreducible decomposition:

F pAΓ, sl2q �
¤

W�V

SW

where W runs through the subsets of the vertex set of Γ, maximal with respect to an order ¤ defined in terms
of the connected components of the induced subgraph ΓW. SW is a certain combinatorially defined, closed
subvariety of CW b sl2.

For an arbitrary Lie algebra g, we show that the variety F pAΓ, gq contains the union of the subvarieties
SW, defined in a similar manner as above. If g is semisimple and different from sl2 we show by example that
this containment can be strict.

Consider now X to be a quasi-projective manifold (irreducible, smooth, quasi-projective variety), and assume
b1pXq ¡ 0 (b1pXq is the first Betti number of X). In this case, the irreducible decomposition of R1

1pAq, for a
suitable Gysin model A of X, can be described in geometric terms. The irreducible components are all linear,
and they are indexed by a finite list, denoted EX , of equivalence classes of regular “admissible” maps f : X Ñ S,
where the quasi-projective manifolds S are 1-dimensional, and have negative Euler characteristic.

In the 1-formal situation, we use again Theorem 2 to find explicit (global) irreducible decompositions for

F pH 
pX,Cq, gq and R1
1pH


pX,Cq, θq in the case when g � sl2, solely in terms of the set EX and of the
representation θ.

In the (much more delicate) general case, we showed that F pA, gq � F 1pA, gq and R1
1pA, θq � ΠpA, θq, for

an arbitrary Gysin model A of X, and for a representation θ of g � sl2 or sol2, provided that R1
1pXq � t0u.

Consider now a particular case of a quasi-projective manifold. Let Γ be a finite simple graph with cardinality
n vertex set V and edge set E. The partial configuration space of type Γ on a space Σ is

(3) F pΣ,Γq � tz P ΣV | zi � zj , for all ij P Eu.
When Γ � Kn, the complete graph with n vertices, F pΣ,Γq is the classical ordered configuration space of

n distinct points in Σ. Consider Σ � Σg to be a compact genus g Riemann surface with partial configuration
space denoted F pg,Γq. For this quasi-projective manifold X � F pg,Γq there is a specific Gysin model A of X.
For this data we obtained the irreducible decompositions of F pA, gq (where g � sl2 or sol2) and of R1

1pA, θq for
any linear representation θ : g ÞÑ glpV q, pg as before).

Nigel Ray. Partially ordered sets in algebraic topology
Partially ordered sets and lattices have played an influential rôle in the development of analytic topology

over many decades, but their relationship with homotopy theory and algebraic topology may be less well known
to a general audience. I shall try to address this situation by focusing on two or three types of example.
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Firstly I shall consider certain posets of subgroups of a given group, and introduce Quillen’s applications of
their associated homotopy type to algebraic properties of the group; these include a conjecture from 1978
which appears still to be open. Secondly, I shall discuss the poset of compactifications of a locally compact
Hausdorff space, with special reference to cases involving configuration spaces of unordered pairs of particles
in a Riemannian manifold, and their associated laws of collision. Thirdly, if time allows, I shall refer briefly
to Bousfield’s lattice of spectra in stable homotopy theory, and its relationship to Ravenel’s unresolved 1977
Telescope Conjecture. My aim is to provide an overview, rather than technical details, and I hope to make the
talk entertaining and accessible to non-experts.

Daniil Rudenko. Non-Euclidean tetrahedra and rational elliptic surfaces
I will explain how to construct a rational elliptic surface out of every non-Euclidean tetrahedra. This surface

”remembers” the trigonometry of the tetrahedron: the length of edges, dihedral angles and the volume can be
naturally computed in terms of the surface. The main property of this construction is self-duality: the surfaces
obtained from the tetrahedron and its dual coincide. This leads to some unexpected relations between angles
and edges of the tetrahedron. For instance, the cross-ratio of the exponents of the spherical angles coincides
with the cross-ratio of the exponents of the perimeters of its faces. The construction is based on relating mixed
Hodge structures, associated to the tetrahedron and the corresponding surface.

Valery Ryzhikov. Multiple mixing, and weakly homoclinic groups of
measure-preserving actions

Rokhlin’s well-known problem on multiple mixing has remained unsolved since the publising of [1]. How-
ever we know that a theoretical counterexample has to have an absolutely continuous component in spectrum
(B. Host) and infinite rank (S. Kalikow, V. Ryzhikov), it prefers to be far from actions of algebraic nature
(B. Marcus, M. Ratner et al), see [2].

One can add that the actions that do not have multiple mixing property cannot have the ergodic homoclinic
group. The homoclinic group HpT q of a measure-preserving transformation T was introduced by M. Gordin
[3], who noticed that the ergodicity of HpT q implies the mixing property of T . In connection with this we use
the following more general definition, extending the homoclinic invariants to non-mixing systems.

Let Φ be a set of automorphisms of a probability space pX,µq. We denote by WHpΦq the (weakly homo-
clinic) group of all transformations S such that S is homoclinic with respect to any mixing sequence ϕj P Φ:

ϕ�1
j Sϕj Ñ Id, j Ñ8,

as
µpAX ϕjBq Ñ µpAqµpBq

for all measurable sets A,B.

Lemma 1. The ergodicity of the group WHpΦq implies the weak multiple mixing property of Φ: if ϕm,j
(1 ¤ m ¤ k) and ϕ�1

m1,jϕm,j (1 ¤ m1   m ¤ k ϕj) are mixing sequences, then

µpAX ϕ1,jA1 X . . . ϕk,jAkq Ñ µpAqµpA1q . . . µpAkq, j Ñ8,
holds for any measurable sets A,A1, . . . , Ak.

The following theorem implies the results on multiple mixing for Gaussian dynamical systems and Poisson
suspensions from [4], [5].

Theorem 2. The weakly homoclinic groups of the classical Gaussian action of the orthogonal group Op8q and
the weakly homoclinic group of Poisson action of the infinite-automorphism group are both ergodic. So these
actions have weak multiple mixing property.

As a rule, the problem of determining the ergodicity of weakly homoclinic groups is not simple. It is open
even for generic Z-actions. There are some open theoretical questions as well. Can an action with the ergodic
(weakly) homoclinic group have a proper factor with the trivial (weakly) homoclinic group? More generally:
is an action with the ergodic (weakly) homoclinic group disjoint from any action with the trivial (weakly)
homoclinic group?

It’s natural to begin the study from K-actions. To show the following assertion, we apply the results of
D. Ornstein on isomorphism of Bernoulli transformations and T. Austin’s theorem on weak Pinsker property
of K-automorphisms.

Theorem 3. K-automorphisms have the ergodic (weakly) homoclinic group.

Remark 4. In connection with the proof of this theorem the following question arises: given K-automorphism
T and some its Bernoulli factor B, can T be splitting into two independent factors such that one of them is a
factor of B?
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Takashi Sato. GKM-theoretical description of the double coinvariant rings of
pseudo-reflection groups

Let G be a Lie group, T a maximal torus of G, and W the Weyl group of G. A maximal torus T acts on
the flag manifold G{T by the left multiplication. The Weyl group W acts on T and H�pBT q naturally. The
equivariant cohomology ring of G{T with rational coefficients is the quotient ring of the tensor product of two
copies of the polynomial ring H�pBT q and its ideal is generated by the difference of each copies of W -invariants
polynomials. The equivariant cohomology rings of a manifold with a good torus action are described in terms
of one-dimensional orbits and fixed points. This is called the GKM theory. In the case of flag manifolds, their
equivariant cohomology rings are described by the data of the Weyl groups and the root systems.

I generalize the GKM theory from Weyl groups to pseudo-reflection groups. The double coinvariant ring
of a pseudo-reflection group is a quotient ring of the tensor product of two copies of the ring of polynomial
functions on the vector space on which the pseudo-reflection group acts. It is an analogue of the equivariant
cohomology rings of flag varieties. There is a natural homomorphism from the double coinvariant ring to the
direct product of copies of the ring of polynomial functions, and McDaniel shows that its image is described in
terms of pseudo-reflections analogously to the GKM theory.

I will introduce his work and give other description which is more suitable for combinatorics.

Khurshid Sharipov. Second-order differential invariants of submersions
In this paper, we study the second-order differential invariants of submersions with respect to the group of

conformal transformations.
The study of differential invariants of submersions has been the subject of numerous studies [3-6]. In [6]

second and third order differential invariants of submersions are found with respect to conform transformations.
Second-order differential invariants of submersions of Euclidean spaces with respect to the group of motions

are studied in the papers [3,4].
Let G be a Lie group of transformation of a Riemannian manifold M. If the group G is a k� dimensional

Lie group, then it has k infinitesimal generators (vector fields).

Definition 1. The function Ippq on M is called the invariant of the transformation group G, if Ippq � Ipgpq
for each element of g P G, p PM.

Let M,B be smooth manifolds and p P M. Let f, g : M Ñ B be smooth maps satisfying the condition
fppq � gppq � q.

1) f has a first order contact with g at a point p if pdfqp � pdgqp as TpM Ñ TpB. Mappings.
2) f has a touch of k� th order with g at a point p if the mapping pdfq : TM Ñ TB has a touch of order

pk � 1q with the mapping pdgq at each point of TpM. This fact is written as follows: f �k g at p (k� positive
number).

Denote by JkpM,Bqp,q - sets of equivalence classes with respect to ”�k at p” in the space of mappings
f : M Ñ B, that satisfy the condition fppq � q.

We set JkpM,Bq � �
pp,qqPM�B J

kpM,Bqp,q. It is known that this set is a smooth manifold of dimension

n�m
°k
i�0 C

i
n�i�1 [2].

Definition 2. The manifold JkpM,Bq is called the space of k�jets.

The action of the group G on M generates some action of the group on JkpM,Bq. This action is called the
k�th extension of the action of the group G on JkpM,Bq. The infinitesimal generators of the k�th continuation
of the group G on JkpM,Bq are the k�th extensions of the infinitesimal generators of the group G.

Definition 3. The function I P JkpM,Bq is called a differential invariant of order k of the group G, if it is
preserved under the action of the k�th continuation G on JkpM,Bq, i.e. gkpIq � I for any gk P Gk.
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The following theorem [1] is known.

Theorem 4. The function I is an invariant of order k of a transformation group G only and only if it is the
first integral of the infinitesimal generator of Gk.

Now consider a conformal vector field in three-dimensional Euclidean space:

(1) X � x1
B
Bx1

� x2
B
Bx2

� x3
B
Bx3

The flow of this vector field generates the group of conformal mappings. Let us find invariant functions and
invariant sets of this group. Now consider the submersion ϕ : R3 Ñ R,ϕpx1, x2, x3q � fpx1, x2q � x3. The
level surfaces of this submersion are regular surfaces given by the explicit function Lc � tpx1, x2, x3q P R3 :
x3 � fpx1, x2q � cu. Find the second-order differential invariants of this submersion (invariants of level surface)
with respect to conformal transformations generated by the flow of a vector field (1). To do this, we find the
continuation of the flow of a conformal vector field (1) in J2px1, x2, x3, p1, p2, p11, p12, p22q, where p1 � Bx3

Bx1
,

p2 � Bx3

Bx2
, p11 � B2x3

Bx2
1
, p12 � B2x3

Bx1Bx2
, p22 � B2x3

Bx2Bx2
.

Let the flow of a vector field (1) translate the point px1, x2, x3q. To the point px11, x12, x13q. Let us find the
transformation formulas for the derivatives under this conformal transformation.

The extension of a vector field (1) in J2px1, x2, x3, p1, p2, p11, p12, p22q, has the following form:

(2) X2 � x1
B
Bx1

� x2
B
Bx2

� x3
B
Bx3

� p11
B

Bp11
� p12

B
Bp12

� p22
B

Bp22

The directions in the tangent plane where the curvature takes its maximum and minimum values are always
perpendicular, if k1 does not equal k2, and are called principal directions.

Theorem 5. Under the transformations generated by the flow of the vector field (1), the principal directions
of the level surfaces of the submersion are transferred to the principal directions.

Let k1, k2 be principal curvatures of level surface the submersion ϕ : R3 Ñ R,ϕpx1, x2, x3q � fpx1, x2q�x3.

Theorem 6. The ratio
k1
k2

of principal curvatures of level surface of the submersion is second-order differential

invariant of the group of conformal transformations generated by the flow of a vector field (1).

Example 7. Consider the submersion ϕ : R3 Ñ R, defined by the formula

(3) ϕpx1, x2, x3q � 1

2

�
x2

1 � x2
2

�� x3.

The level surfaces of this submersion are elliptic paraboloids.
The principal directions of an elliptic paraboloid are defined by the quadratic equation:

x1x2λ
2 � px2

2 � x2
1qλ� x1x2 � 0.

From here we find the main directions of the elliptic paraboloid ÝÑa � p�x2, x1q and
ÝÑ
b � px1, x2q, they are

known to be orthogonal.
Principal curvatures of an elliptic paraboloid are calculated by the formulas

(4) k1 � 1

p1� x2
1 � x2

2q
1
2

, k2 � 1

p1� x2
1 � x2

2q
3
2

.

Their ratio k1
k2
� 1�x2

1 �x2
2 does not change under the conformal transformations generated by the flow of

the vector field (1).

Recall that the direction at a point on a surface is called asymptotic if the normal curvature in this direction
is zero.

Theorem 8. Under conformal transformations generated by the flow of the vector field (1), the asymptotic
direction of the level surfaces of the submersion is transferred to the asymptotic direction.
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Evgeny Shchepin. Leibniz differential and Non-standard Calculus
Leibniz believed that the numerical line, representing the variable x, divided into infinitely-small segments

of the fixed infinitely small length, which he denoted dx and called the differential of the variable x. Leibniz
notation for the integral, based on this view, they played an outstanding role in the development of mathematics
and physics.

After the ”expulsion” of infinitesimal from the analysis completed by Weierstrass, notation of Leibniz was
preserved, although mathematicians they were attached to the other, ”contravariant”, meaning. Rehabilitation
of infinitesimal by Robinson (the non-Standard analysis) was not quite adequate to the Leibniz Notations. The
report will propose a ”covariant” approach to the introduction of a definite infinitesimal differential, which, on
the one hand is much easier the approach of Robinson and, on the other — better fits Leibniz and physicists.

Within the framework of this approach, new natural definitions of integral, differential forms and distribu-
tions (generalized functions) significantly expand the scope of these concepts. The notion of an integral based
on the Leibniz differential turns out to be the most powerful (equivalent to Kurzweil–Henstock, see [1]) and
ideally corresponds to the language of physicists.
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Eugenii Shustin. Around Rokhlin’s question
The talk is concerned with the embedded topology of smooth real algebraic curves on smooth real algebraic

surfaces. This topic is included into the generally understood Hilbert’s 16th problem (first part). In a series of
papers in 70’s, V. A. Rokhlin made fundamental contributions to the Hilbert’s 16th problem and posed several
questions which initiated new research directions related to the real algebraic geometry. We address one of
Rokhlin’s questions and discuss its consequences.

Let C � P2 be a smooth real algebraic curve. A connected component of RC is called oval if it is null-
homologous. Two ovals are ordered if one of them is inside the disc bounded by the other oval. A nest is a
linearly ordered sequence of ovals. Two nests are called disjoint, if no oval of one of them is comparable with
an oval of the other nest. Given two disjoint nests N1, N2, their total length is bounded from above as follows:

lpN1q � lpN2q ¤ degC

2
.

This comes from Bézout’s theorem applied to C and an auxiliary real straight line through two points inside
the deepest ovals in N1 and N2. More generally, if N1, ..., Nc are pairwise disjoint nests of C and there exists an
auxiliary real curve of degree m having a real connected component passing through c points inside the deepest
ovals of the given nests, then (cf. [8], Formula (12))

lpN1q � ...� lpNcq ¤ m

2
degC .

In [8] Rokhlin poses a question: What is the maximal number cpmq such that through any cpmq real generic
points in P2, one can trace a real plane curve of degree m with the real point set having a unique one-dimensional
component? He also mentions the bound cpmq ¥ 3m� 1 (for the proof see [2], Proposition 4.7.2).

Since real rational curves have at most one one-dimensional component of the real point set, the following
question naturally arises:

Question (Rokhlin-Kharlamov). Is it true that through any configuration of 3m � 1 real generic points
in P2 one can trace a real rational curve of degree m?

J.-Y. Welschinger [11] discovered a signed count of real rational pseudo-holomorphic curves in real rational
symplectic four-folds, which does not depend on the choice of the point constraints (that is, in fact, an open
Gromov-Witten invariant). Thus, an affirmative answer to the above question would follow from the non-
vanishing of the corresponding Welschinger invariant W0pP2,mq, and this is indeed so:

Theorem 1 (Mikhalkin [7], Itenberg-Kharlamov-Sh. [3]). For any integer m ¥ 1, one has W0pP2,mq ¡ 0. In
particular, through any generic configuration of 3m� 1 real points in P2 one can trace a real rational curve of
degree m.

Moreover, this result can be extended to a wide range of real del Pezzo surfaces:
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Theorem 2 (Itenberg-Kharlamov-Sh. [5], Brugallé [1], Sh. [10]). For any real del Pezzo surface X of degree ¥ 2
with a nonempty, connected real part RX and any conjugation-invariant big and nef divisor class D P PicpXq,
one has W0pX,Dq ¡ 0. In particular, through any generic configuration of �DKX � 1 points in RX, one can
trace a real rational curve C P |D|.

It happens that, whenever one has the positivity of Welschinger invariants, it yields their asymptotic
behavior comparable with that for the genus zero Gromov-Witten invariants GW0:

Theorem 3 (Itenberg-Kharlamov-Sh. [5], Sh. [10]). Under hypotheses of Theorem 2, one has

lim
nÑ8

logW0pX,nDq
n log n

� lim
nÑ8

logGW0pX,nDq
n log n

� �DKX .

The key ingredient behind Theorems 2 and 3 is a real version of the Caporaso-Harris type formula (equiv-
alently, symplectic sum formula) developed in [4], [5], [1], [10].

For the multi-component real del Pezzo surfaces, an analogue of the Rokhlin-Kharlamov question can be
reduced to the study of Welschinger invariants of positive genera introduced in [9], which count real curves
having precisely one one-dimensional component in each connected component of the real surface. Examples
of Bézout type restrictions to the topology of real algebraic curves on real del Pezzo surfaces, based on the
non-vanishing of the invariants of [9], can be found in [6].
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Arkadiy Skopenkov. Analogue of Whitney trick for eliminating
multiple intersections

The Whitney trick for cancelling double intersections is one of the main tools in the topology of manifolds.
Analogues of the Whitney trick for multiple intersections were ‘in the air’ since 1960s. However, only in this
century they were stated, proved and applied to obtain interesting results, most notably by Mabillard and
Wagner [2], see a survey [4]. I shall describe simplifications and extensions of their construction which allowed
to extend the multiple Whitney trick to codimension 2 [1] and to the case when general position multiple
intersections have positive dimension [3], [5].
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Mikhail Skopenkov. Surfaces containing two circles through each point
(This is a joint work R. Krasauskas)

Motivated by potential applications in architecture, we find all analytic surfaces in 3-dimensional Euclidean
space such that through each point of the surface one can draw two transversal circular arcs fully contained in
the surface. The search for such surfaces traces back to the works of Darboux from XIXth century. We prove
that such a surface is an image of a subset of one of the following sets under some composition of inversions:

- the set tp� q : p P P, q P Qu, where P and Q are two circles in 3-dimensional Euclidean space;
- the set t2rpxqs{|p� q|2 : p P P, q P Qu, where P and Q are two circles in the unit 2-dimensional sphere;
- the set tpx, y, zq : Apx, y, z, x2 � y2 � z2q � 0u, where A is a polynomial in Rrx, y, z, ts of degree 2 or 1.
The proof uses a new factorization technique for quaternionic polynomials. A substantial part of the talk

is elementary and is accessible for high school students.
This research was conducted within the framework of the Academic Fund Program at the National Research

University Higher School of Economics (HSE) in 2015-2016 (Grant No 15-01-0092) and supported within the
framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation
of the Global Competitiveness Program, and also by the President of the Russian Federation Grant MK-
6137.2016.1, Dynasty foundation, and the SimonsIUM fellowship.

Gregory Soifer. Discreteness of deformations of co-compact
discrete subgroups

(Based on joint work with G. Margulis)

In late 50th Selberg proved local rigidity of co-compact discrete subgroup Γ of G � SLnpRq, n ¥ 3 [5]. One
of the ingredient in his proof of this result is the statement that, after a small perturbation in G, the subgroup
Γ remains co-compact and discrete. While compactness can be easily proved the proof of discreteness is quite
complicated. Selberg’s proof of discreteness is based on the analysis of fundamental domains for the action of
Γ on the symmetric space associated with G. He conjectured that the statement still true for a group acting
on symmetric space with a compact fundamental domain. This conjecture was proved by A. Weil. He proved
discreteness of a small perturbation of a co-compact discrete subgroup Γ of any connected Lie group G [6].
Weil’s proof is very different from Selberg’s proof and is based on the analysis of coverings of G{Γ by (small)
open sets and the corresponding coverings of G.

The purpose of our work is to simplify and generalize Weil’s proof and to prove

Theorem 1. Let X̃ be a locally compact simply connected metric space. Let Γ be a subgroup of IsomX̃.
Suppose that Γ acts properly discontinuously and freely on X̃ such that the space Γ ä X̃ is compact. Then
there exist a neighbourhood U of the inclusion Γ ãÑ IsomX̃ such that for every ϕ P U the group ϕpΓq acts

properly discontinuously on X̃.

While we use the basic Weil’s construction we prove the discreteness of small deformations of a discrete
co-compact subgroup of isometries of a locally compact metric space under some natural restrictions.
Weil’s theorem [6] was generalized in [1], [2]. We would like to note that proofs in these papers are based on
the study of a fundamental domain. This is not required in our proof based on the Weil construction. Recently
Weil’s theorem was extended to uniform lattices of locally compact groups [3].
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Grigory Solomadin. Monodromy in weight graphs and its applications to
torus actions

A non-singular projective variety Xn � CPN is toric iff the corresponding homogeneous ideal IpXq is prime
and unital binomial, i.e. is generated by elements of the form xu � xv, where xu :� xu1

1 � � �xuN

N are monomials.
There is an algorithm [2] to check the (unital) binomiality of a given ideal using computer evaluations.

Consider an effective algebraic torus action pC�qk : Xn. Assume that the connected component Aut0X
of the group AutX of algebraic automorphisms is an algebraic group. Then all maximal tori are conjugate in
Aut0X and have the same dimension (called the rank of AutX) by the Cartan’s theorem. Hence, there is a
maximal (w.r.t. the extension) torus action extending the given one. In this way, the existence of an effective
pC�qn-action on X reduces to the existence of an extension of a given torus action to an effective pC�qn-action
on X.

A simple observation is that the rank of AutX provides the (best possible) upper estimate on the dimension
of the effecive torus action on X. For example, the automorphism group AutGrpk, nq of the complex Grassma-
nian Grpk, nq of k-planes in Cn is well-known [1] to be the algebraic group of rank n � 1. Hence, the natural
pC�qn�1-action on Grpk, nq is maximal.

An interesting (seemingly open) question is to determine the dimension of the maximal effective (algebraic)
torus action on the generic hypersurface Hi,j � CP i � CP j of bidegree p1, 1q, called the Minor hypersurface.
There is the natural effective pC�qk-action on Hi,j with isolated fixed points, where k � maxti, ju. It is in fact
maximal, which follows from

Theorem 1. piq The subgroup G of AutpCP i � CP jq leaving Hi,j invariant, coincides with AutHi,j ;
piiq One has rkAutHi,j � maxti, ju.
In order to prove part piq of Theorem 1, one needs to consider the projective embedding of Hi,j corresponding

to the very ample anticanonical sheaf of Fano variety Hi,j . The part piiq follows from the observation that the
group G may be expressed explicitly as a certain C�-bundle over PGLi�1�PGLj�i for i ¡ j, or the semidirect
product PGLi�1 � Z2 for i � j.

If pC�qk : Xn is a GKM-variety, then the upper estimate on the dimension of the torus extending the given
effective pC�qk-action is applicable [3]. In this estimate the notion of a GKM-graph and a connection on it
plays an essential role.

We propose the necessary condition for the effective pC�qk-action on a non-singular projective variety Xn

with isolated fixed points (having Aut0X an algebraic group) to be extendible to an effective pC�qn-action on
X. This condition is formulated in terms of the weight (hyper)graph and a connection of pC�qk : Xn. Those
generalize the notions of GKM-theory, since the action pC�qk : Xn is not required to be GKM. The discussed
condition provides a useful method to decide whether a given non-singular projective variety is not toric. The
main idea of this method is to recognize invariant subgraphs of the weight (hyper)graph w.r.t. the connection
(of pC�qk : Xn), and to compare them with faces of a (supposedly existing, i.e. if X is toric) simple moment
polytope of a projective toric variety.

As an application of this method, we describe all toric varieties among some particular (non-generic) non-
singular hypersurfaces in the Cartesian product of two toric varieties, related to the problem of representatives
in the unitary bordism ring [4]. Namely, those are the generalized Buchstaber-Ray variety BRi,j � BFi�CP j ,
i ¡ j, and Ray variety Ri,j � BFi � BFj , where BFn is a bounded flag manifold (a particular tower of
CP 1-bundles) of dimension n.

Theorem 2. piq BRi,j is a toric variety iff i ¤ j or i ¡ j � 0, 1;
piiq Ri,j is a toric variety iff minti, ju � 0, 1 or i � j � 2.

We also compute the integral cohomology rings of these hypersurfaces.
The author is a Young Russian Mathematics Award winner and would like to thank its sponsors and jury.
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Vladimir Subbotin. Some classes of polyhedra with rhombic and
deltoidal vertices

The first known extension of the class of regular (Platonic) polyhedra are semi-regular (Archimedean)
polyhedra. Currently, there are many papers expanding and generalizing the class of regular polyhedra in the
case of nonconvex polyhedra, polyhedra in multidimensional and non-Euclidean spaces.

One of the generalizations of regular polyhedra is presented in the authors work [1]. In this paper, the
symmetry properties of the elements of a polyhedron are put in the basis: all polyhedrons strongly symmetric
with respect to the rotation of the faces (class FS) are found. Let’s recall the definition of this class.

A closed convex polyhedron in E3 is called strongly symmetric with respect to the rotation of the faces if
each face has an rotation axis of the polyhedron that is perpendicular to this face and intersects its relative
interior.

Note that the condition on the rotation axis of the faces can be relaxed [1]: the class FS is also obtained
if we require that each face F has a rotation axis, which is the rotation axis of the star of the face F . The star
of the face F (vertex V ) is understood as the collection of all faces that have at least one common vertex with
the face F (vertex V ).

Thus, the global condition on the rotation axis can be replaced by the local axisymmetry of the stars of the
faces.

Faces whose stars are locally axisymmetric will be called locally symmetric.
Among the FS-polytopes there are seven, each of which is not combinatorially equivalent to a regular or

semi-regular (Archimedean) polyhedron.
In this paper, we introduce one classes of closed convex polyhedra in E3: class RDS with symmetric rhombic

or deltoidal vertices and locally symmetric faces. Proof of the completeness of the found list of RDS-polyhedra
is given.

The vertex V of a polyhedron will be called n-rhombic (n-deltoidal) if its star consists of n equal rhombuses
(deltoids) having a common vertex V and converging at this vertex either with acute or obtuse angles.

If the n-rhombic (n-deltoidal) vertex is located on a nontrivial rotation axis order n of polyhedron, then we
will call such a vertex symmetric.

Theorem 1. The following types of polyhedra completely describes the RDS class:
1) two infinite bipyramid series with two n-deltoid vertices, n � 3, 5, 6, 7, . . . ;
2) thirty six combinatorially different types of polyhedra with deltoid vertices;
3) nine combinatorially different types of polyhedra with rhombic vertices;
4) two combinatorially different 150-polyhedra containing both deltoid and rhombic vertices.
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Dennis Sullivan. Revelation and Mystery
This is about two aspects of the research of Vladimir Abramovich Rokhlin [VAR] that both helped and

”hindered” my own. Firstly, it is not difficult to emerge from graduate school in Princeton as a world class expert
in one specific area and be essentially ignorant in all others. This happened to me in a specific subject dominated
by Sergei Novikov [SN] and my thesis advisor Bill Browder [BB]: the classification of higher dimensional simply
connected manifolds. The signature additivity theorem by VAR and SN turned out to be the essential tool for
a complete understanding of all invariants of the piecewise linear [PL] manifolds in this class. Then using the
technique of SN from his proof of the topological invariance of Pontryagin classes one could almost show the
complete set of PL invariants were actually topologically invariant. This was a kind of holy grail at the time
[middle 60’s], but its acquisition was protected by a slight twist in the invariants related to an earlier theorem
of VAR about the signature mod 16 of certain PL or smooth four manifolds. In 1969-70 it was determined by
Kirby and Siebenman that this little twist of VAR’s mod 16 theorem is actually the block of granite upon which
rests the entire difference between the PL and topological theory of manifolds in higher dimensions. Yet, there
is still a mystery about this Rokhlin invariant that persists to this time.

Secondly, the revelation related to VAR’s research refers to ergodic theory, Lebesgue measure theory and
dynamical systems: topics of total ignorance after my fascinating but specific education at Princeton. A new
challenge [60’s & 70’s] was the problem of Ahlfors to show the Poincare limit set of a finitely generated discrete
group of holomorphic transformations of the Riemann sphere was either the entire sphere or had Lebesgue
measure zero. Armed with VAR’s monograph treating separable Lebesgue spaces in a completely revealing
way, one could attack from first principles the nature of the countable equivalence relation on the Riemann
sphere presented by the above problem. The clarity of VAR’s presentation of generating partitions and the
idea of Lebesgue density points revealed some simple universal dichotomies about all examples. These could
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be shown to be inadequate to solve the Ahlfors problem as stated using all known available techniques to
prove ergodicity unless further geometric information could be obtained. However, the first principles based
on VAR’s monograph plus the known technique of deformation due to Ahlfors Bers [AB], lead naturally to an
angular ergodic theorem, which actually solved the real question motivating Ahlfors problem, showing there an
analogue of Mostow rigidity for these groups relative to the Poincare limit set. These VAR type ideas plus the
AB deformation idea could be transferred to the subject of holomorphic iteration [Fatou Julia theory] on the
Riemann sphere with considerable success. Yet the analogous rigidity relative to the Julia limit set suitably
formulated is still open. It is a main problem for forty years now. It seems to require a new revealing treatise
extending that of VAR to treat all together: Lebesgue spaces, dynamics and holomorphic functions obtained
by high iterates of a single rational function on the Riemann sphere.

András Szűcs. Geometry versus algebra in homology theory and cobordism
theory of singular maps

By Thom’s theorem any Z2-homology class in any space X can be represented by a continuous map of a
manifold. It remains an open question, how nice can we choose the map? (if the space X is a manifold.) We
answer this question in the negative:

Theorem 1. a) For any k ¡ 1 there is a manifold of dimension 4k and a k-dimensional cohomology class that
can not be realized by an immersion.

b) Any finite set τ of multisingularities is insufficient to realize every k-dimensional cohomology class in
any manifold by a map with multisingularities only from the set τ.

The proof of b) is based on the construction of classifying spaces of cobordisms of singular maps. For each
such classifying space there is a spectral sequence converging to the homotopy groups of the classifying spaces
of cobordisms of singular maps that can be considered as the geometric version of the algebraic chain complex
formed from the singularities introduced by Vassiljev. The differentials encode the adjacencies of the singularity
strata. In an interesting special case these differentials are expressed through the multiplicative structure of the
RING of stable homotopy groups of spheres `8n�1π

spnq.

Sergey Tikhonov. Group actions: mixing, spectra, generic properties
(Based on joint work with A. M. Stepin)

The talk will consist of two parts.
1. Survey of results obtained by partisipants Anosov seminar on the topics going back to V. A. Rokhlin.
2. Our recent contributions as follows:
a. Diagonalization of log-integrable operator-valued R-cocycles;
b. New examples of smooth-integrable G-invariant Hamiltonian systems with compact homogenious phace

spaces
T� pG{Γq

and positive topological entropy;
c. We have a classification of mixing Z2-actions T such that

µ
�
T giA1 X ThiA2 XA3

�Ñ 0,

as iÑ8 for some sets
 
Aj | µ pAjq � 1

2

(
j�1,2,3

and increasing sequences tgiu , thiu , tgi � hiu � Z2;

d. It is shown that a generic mixing actions can be approximated in the leash metric [1] by actions
with a sufficiently wide set of limit operators. The results are used to prove that some properties of mixing
transformations are generic. For example, generic Zd-actions have a multiple mixing.

e. We get examples of mixing transformations with arbitrary spectral multiplicity function M pT q from [2];
for instance, M pT q can be of the form tp, q, pqu, tp, q, r, pq, qr, pr, pqru.

References:

[1] Tikhonov, S. V. Complete metric on mixing actions of general groups, J. Dyn. Control. Syst (2013)
19: 17. https://doi.org/10.1007/s10883-013-9162-y.

[2] Ryzhikov, V. V. Spectral multiplicities and asymptotic operator properties of actions with invariant
measure Mat. Sb.(2009) 200:12 107–120.

Maria Trnkova. Spun triangulations of closed hyperbolic 3-manifolds
(This is a joint work with Feng Luo and Matthias Goerner)

W. Thurston showed that every hyperbolic 3-manifold can be decomposed into a set of ideal tetrahedra (and
also simple closed geodesics in the case of closed manifolds). Unfortunately such a decomposition sometimes
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produces overlapping tetrahedra, a so called non-geometric ideal triangulation. There is a conjecture that every
cusped hyperbolic 3-manifold admits a geometric ideal triangulation. We are interested in ideal triangulations
of closed hyperbolic 3-manifolds. SnapPy’s computations provide several examples of non-geometric ideal
triangulations of closed manifolds. The smallest of them is known as Vol3. In this talk we show that Vol3
does not have any geometric ideal triangulation of small complexity. The main techniques that we use are
Thurston’s Dehn surgery theorem, Dehn parental test and a gluing variety.

Alexey Tuzhilin. Gromov–Hausdorff distances to simplexes
and some applications

(Based on joint work with A. O. Ivanov)

In the talk we present some formulas for Gromov–Hausdorff distances from a bounded metric space to
simplexes, i.e., to metric spaces such that all their non-zero distances are equal to each other. Then we apply
the formulas to calculate the edges lengths of minimal spanning trees; to solve a generalized Borsuk problem
concerning possibility to partition a metric space into a given number of parts having smaller diameters; to
calculate clique cover number and chromatic number of a graph.

Introduction

The Gromov–Hausdorff distances from bounded metric spaces to so-called simplexes, i.e., the metric spaces
having just one non-zero distance, play important roles in different mathematical problems. In [1] and [2] they
were used to prove triviality of the isometry group of the Gromov–Hausdorff space. In [3] it was observed the
relation between the distances and the lengths of minimum spanning tree edges. Recently we found a few more
applications: for solving a generalized Borsuk problem [4], and to calculating the clique cover number and the
chromatic number of a graph [5]. All that will be discussed in the talk.

Preliminaries and Main Results

For an arbitrary set X, we denote by #X its cardinality. If X is an metric space, then the distance between
its points x and y is denoted by |xy|. If A,B � X are non-empty, then we put |AB| � inf

 |ab| : a P A, b P B(.
For each point x P X and a number r ¡ 0 we denote by Urpxq the open ball with center x and radius r; for any
non-empty A � X and r ¡ 0 we put UrpAq � YaPAUrpaq.

For non-empty A, B � X we define the Hausdorff distance as

dHpA,Bq � inf
 
r ¡ 0 : A � UrpBq & B � UrpAq

(
.

For metric spaces X and Y , a triple pX 1, Y 1, Zq consisting of a metric space Z and its subsets X 1 and Y 1

isometric to X and Y , respectively, is called a realization of pX,Y q. The Gromov–Hausdorff distance dGHpX,Y q
between X and Y is the infimum of real numbers r such that there exists a realization pX 1, Y 1, Zq of pX,Y q
with dHpX 1, Y 1q ¤ r. It is well-known [8] that the dGH restricted to the family of isometry classes of compact
metric spaces is a metric.

Let m ¡ 0 be a cardinal number and λ ¡ 0 a real number. Denote by λ∆m the metric space of cardinality
m such that all its non-zero distances equal λ. We call this space a simplex of cardinality m.

For any metric spaceX, the value diamX � sup
 |xy| : x, y P X(

is called the diameter ofX. If diamX   8,
then X is called bounded.

For an arbitrary set X and a cardinal number 0   m ¤ #X we denote by DmpXq the set of all partitions
of X into m non-empty parts. Then, for a metric space X and each D � tXiuiPI P DmpXq we put

diamD � sup
iPI

diamXi, αpDq � inf
 |XiXj | : i � j

(
, αmpXq � sup

DPDmpXq
αpDq.

Theorem 1 ([7]). Let X be an arbitrary bounded metric space, m a cardinal number, and λ a positive real
number. Then


 for m ¡ #X it holds 2dGHpλ∆m, Xq � maxtλ, diamX � λu;

 for 0   m ¤ #X it holds

2dGHpλ∆m, Xq � inf
DPDmpXq

maxtdiamD, λ� αpDq, diamX � λu.

Corollary 2. Let X be an arbitrary bounded metric space, 0   m ¤ #X a cardinal number, and λ a positive
real number. Then

(1) for λ ¥ 2 diamX we have 2dGHpλ∆m, Xq � λ� αmpDq;
(2) for 0   λ   diamX we have�

2dGHpλ∆m, Xq � diamX
� ô �

diamD � diamX for all D P DmpXq
�
.
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Let G � pV,Eq be an arbitrary graph with the vertices set V and the edges set E. Suppose that V is a
metric space. Then for such G the length |e| of each its edge e � vw is defined as the distance |vw|; the length
|G| of the graph G is the sum of its edges lengths.

Let X be a finite metric space. The shortest tree of the form pX,Eq is called a minimum spanning tree on
X. We denote its length by mstpXq, and the set of all minimum spanning trees on X by MSTpXq. Evidently,
MSTpXq � ∅. For G P MSTpXq we denote by σpGq the vector, whose coordinates are the lengths of edges of
the tree G, written in the descending order.

Proposition 3. For any G1, G2 P MSTpXq we have σpG1q � σpG2q.
Definition 4. For any finite metric space X, we denote by σpXq the vector σpGq for an arbitrary G P MSTpXq.
Theorem 5 ([3], [6]). If X is a finite metric space, #X � n, σpXq � pσ1, . . . , σn�1q, m P N, 2 ¤ m ¤ n, and
λ ¥ 2 diamX, then

σm�1 � αmpXq � λ� 2dGHpλ∆m, Xq.
The classical Borsuk Problem asks for how many parts one needs to cut a bounded subset of the Euclidean

space to obtain pieces of smaller diameters. In 1933 Borsuk conjectured that any bounded subset of Rn can
be cut into n � 1 subsets of smaller diameters. This conjecture was proved by Hadwiger for convex subsets
with convex smooth boundaries (see [9] and [10]), but in 1993 it was disproved in general case by Kahn and
Kalai [11].

Let us first generalize the problem for arbitrary bounded metric spaces and any partitions (not only finite).
For a bounded metric space X, a cardinal number 0   m ¤ #X, and D � tXiuiPI P DmpXq, we say that D is
a partition into parts of strictly smaller diameters if there exists ε ¡ 0 such that diamXi ¤ diamX � ε for all
i P I. By Generalized Borsuk Problem we mean the following: Is it possible to partition a given bounded metric
space X into m parts of strictly smaller diameters.

Theorem 6. Let X be a bounded metric space and 0   m ¤ #X a cardinal number. Choose an arbitrary 0  
λ   diamX, then X can be partitioned into m parts of strictly smaller diameters iff 2dGHpλ∆m, Xq   diamX.

For a cardinal number n ¡ 0 we denote by Mn the set of isometry classes of bounded metric spaces of
cardinality at most n, endowed with the Gromov–Hausdorff distance. For X P Mn and r ¥ 0 let SrpXq � tY P
Mn : dGHpX,Y q � ru be the sphere with center X and radius r.

Corollary 7. Let d ¡ 0 be a real number and 0   m ¤ n cardinal numbers. Choose an arbitrary 0   λ   d,
then Sd{2p∆1q X Sd{2pλ∆mq consists exactly of all metric spaces from Mn, whose diameters are equal to d and
that cannot be partitioned into m parts of strictly smaller diameters.

A subgraph of an arbitrary simple graph G is called clique, if any its two vertices are connected by an edge
(such subgraph is a complete graph itself). Let us note that each single-vertex subgraph is also a clique. The
family of all cliques in a graph G forms a cover of the graph G vertices set. The least possible number of cliques
forming a cover of the vertices set of a graph G is called the clique cover number of G and is often denoted by
θpGq.

Let G � pV,Eq be a finite graph. Fix two real numbers 0   a   b ¤ 2a and define a metric on V as follows:
the distance between adjacent vertices of G equals a, and non-adjacent vertices of G equals b.

Observation 8. The space V can be partitioned into m subsets of strictly smaller diameters iff θpGq � m �
#V , and cannot iff m   θpGq.
Corollary 9 ([5]). Let m be the greatest positive integer with 2dGHpa∆m, V q � b, then θpGq � m � 1 (if
there is no such m, then we put m � 0).

A chromatic number of a simple graph G is the smallest numbers of colors to get an admissible coloring:
adjacent vertices have different colors. The chromatic number of G is sometimes denoted by γpGq. The dual
graph G1 to G is the graph with the same vertices set, and with edges which join all non-adjacent vertices in G,
and only them. It is well-known that γpGq � θpG1q.

Let G � pV,Eq be a finite graph. Fix two real numbers 0   a   b ¤ 2a and define a metric on V as follows:
the distance between adjacent vertices of G equals b, and non-adjacent vertices of G equals a.

Corollary 10 ([5]). Let m be the greatest positive integer with 2dGHpa∆m, V q � b, then γpGq � m � 1 (if
there is no such m, then we put m � 0).

Remark 11. In [5] we obtained exact formulas for Gromov–Hausdorff distances between two-distance metrics
spaces and simplexes.

The work is partly supported by RFBR (Project 19-01-00775-a) and by President Program of Leading
Scientific Schools Support (Project NSh–6399.2018.1, Agreement No. 075–02–2018–867).
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Victor Vassiliev. On the homology of spaces of equivariant maps
I will describe a method of calculating the cohomology groups of spaces of continuous maps X Ñ Y , where

X is n�dimensional and Y is n�connected, and, more generally, of the spaces of such maps equivariant under
the free finite group action on X and Y . For the main promotional example, I give the explicit calculation of
rational cohomology groups of spaces of odd or even maps Sn Ñ Sm, n   m, or, which is the same, of the
stable homology groups of spaces of non-resultant homogeneous polynomial maps Rn�1 Ñ Rm�1. A couple of
unsolved questions in equivariant homotopy theory will be formulated.

Anatoly Vershik. V. A. Rokhlin — an outstanding mathematician and a
person of extraordinary fate

Short mathematical biography and walk of life of Vladimir Rokhlin.

Vladimir Vershinin. Surfaces, braids, homotopy groups of spheres
and Lie algebras

(Based on the joint works with V. Bardakov, Jingyan Li, R. Mikhailov and Jie Wu)

We consider general surfaces: compact, possibly with punctures and boundary components. The only
condition is that the fundamental group of the surface should be finitely generated. The fundamental group
of a configuration space of a surface is the braid group of the surface. We consider in particular Brunnian
braids, that is the braids which become trivial after deleting of any strand. We describe Brunnian braids of the
projective plane and of the sphere with the help of homotopy groups of 2-sphere. The Cohen braids are the
generalization of the Brunnian ones. We describe also the Lie algebras of pure braids on surfaces and the Lie
algebras connected with Brunnian braids.

Yakov Veryovkin. Polyhedral products and commutator subgroups of
right-angled Artin and Coxeter groups
(This is a joint work with Taras Evgenievich Panov)

We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter
groups, general graph product groups and their commutator subgroups. By way of application, we give a
criterion of freeness for the commutator subgroup of a graph product group, and provide an explicit minimal
set of generators for the commutator subgroup of a right-angled Coxeter group.

This work is supported by the Russian Foundation for Basic Research, grants no. 18-51-50005, 17-01-00671.
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Oleg Viro. Vladimir Abramovich Rokhlin and the topology of real algebraic
varieties

Barak Weiss. Horocycle flow on the moduli space of translation surfaces
For the horocycle flow

on surfaces with translation structures
we would like to know

all possible orbit-closures.
For homogeneous flows, indeed,

such fantastic results were achieved,
and if here the situation were the same
then any orbit-closure would be tame.

Showing that a classification holds
in this geometric setting

was a long term research goal of McMullen, Mirzakhani and Eskin.
But with Chaika and Smillie we show

that the answer to naive conjectures is ”no!”
Some orbit closures are bizarre creatures,
with spiky, spindly, fractal-like features.

Benjamin Weiss. Recent results on the Rokhlin Lemma
Many years ago Don Ornstein and I showed how to prove a version of the fundamental Rokhlin Lemma for

a wide class of locally compact amenable groups that includes all countable amenable groups. This was based
on a purely group theoretic construction of a quasi-tiling of the group by finitely many approximately invariant
sets. In recent years this group theoretic construction was improved by Tomasz Downarowicz, Dawid Huczek
and Guohua Zhang to show that exact tilings can also be found. It has been known for a long time that using
towers with two different heights one can eliminate the small measure set inherent in the classic Rokhlin lemma.
Using these exact group tilings Clinton T. Conley, Steve C. Jackson, David Kerr, Andrew S. Marks, Brandon
Seward and Robin D. Tucker-Drob showed how to extend this (with a finite number of tiles) for free actions of
any countable amenable group. I will give a survey of these new results.

Oyku Yurttas. Geometric intersection of curves on non-orientable surfaces
(This is joint work with Ferihe Atalan and Mehmetcik Pamuk)

In this talk we describe a coordinate system which provides an explicit bijection between the set of mul-
ticurves on a non-orientable surface Nk,n of genus k with n punctures and one boundary component and

pZ2pn�k�2q � Zkqz t0u, and calculate the geometric intersection number of a given multicurve with so-called
elementary curves, taking as input their coordinates. This coordinate system is an analog of the Dynnikov
Coordinate system on the finitely punctured disk which has a wide range of dynamical and combinatorial
applications.

This work is supported by TUBITAK (Project Number MFAG-117282).

Daniele Zuddas. Branched coverings of CP2 and other basic 4-manifolds
(This is a joint work with Riccardo Piergallini)

Let M and N be compact PL oriented connected 4-manifolds. We are interested to the following question:
is there a branched covering p : M Ñ N?

In our paper [13] we answer this question when M is an arbitrary closed oriented PL 4-manifold and N
is one of the following manifolds: CP 2, CP 2, S2 � S2, S2 r� S2 or S3 � S1. More generally, we consider also
the cases when N is one of the followings connected sums: #m CP

2 #n CP
2, #npS2 � S2q and #npS3 � S1q.

Here CP 2 denotes CP 2 with the opposite orientation, and S2 r� S2 denotes the total space of the non-trivial
S2-bundle over S2.

Moreover, the above question was answered by Piergallini [11] when the base N is a sphere: every closed
oriented PL 4-manifold M is a branched covering of S4.
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Branched coverings of CP 2 arise in algebraic geometry: every smooth algebraic surface S � CPn admits a
holomorphic branched covering S Ñ CP 2. Moreover, Auroux [1] extended this result to all closed symplectic
4-manifolds M , proving that that they are realizable as symplectic branched coverings of CP 2.

Suppose now that a PL (or smooth) closed oriented connected 4-manifold M admits a PL (or smooth)
branched covering p : M Ñ CP 2. Let CP 1 � CP 2 be a projective line, which can be assumed to intersect the
branch set of p transversally up to isotopy. Then the preimage F � p�1pCP 1q is a closed oriented surface in M ,
and the square rF s2 of its homology class coincides with the degree of p. Therefore, b�2 pMq ¥ 1. This inequality

represents an obstruction for a 4-manifold M to be a branched covering of CP 2.
In fact, the non-vanishing of b�2 pMq is a necessary and sufficient condition for the existence of a branched

covering p : M Ñ CP 2. This is one of the main results of this note (Theorem 1).
We briefly recall the notion of branched covering, in order to introduce some terminology (see [2], [3] or [6]

for more details).
A map p : M Ñ N between compact oriented PL n-manifolds is called a branched covering if it is a non-

degenerate orientation preserving PL map with the following properties: 1) there is an pn � 2q-dimensional
polyhedral subspace Bp � N , the branch set of p, such that the restriction p| : M � p�1pBpq Ñ N � Bp is
an ordinary covering of finite degree dppq (we assume Bp to be minimal with respect to this property); 2) in
the bounded case, p�1pBNq � BM and p preserves the product structure of a collar of the boundaries (which
implies that the restriction to the boundary p| : BM Ñ BN is a branched covering of the same degree of p).

Moreover, p is called simple if the monodromy of the above mentioned ordinary covering sends any meridian
around Bp to a transposition. In this case, also the restriction to the boundary p| : BM Ñ BN is simple.

For a closed oriented connected 4-manifold M we denote by bipMq the i-th Betti number of M , namely the
dimension of HipM ;Rq, and by b�2 pMq (resp. b�2 pMq) the maximal dimension of a subspace of H2pM ;Rq where
the intersection form βM of M is positive (resp. negative) definite.

Theorem 1. Let M be a closed connected oriented PL 4-manifold. Then, there exists a branched covering
p : M Ñ N with:

a N � CP 2 ô b�2 pMq ¥ 1;

b N � CP 2 ô b�2 pMq ¥ 1;
c N � S2 r� S2 ô b�2 pMq ¥ 1 and b�2 pMq ¥ 1;
d N � S2 � S2 ô b�2 pMq ¥ 1 and b�2 pMq ¥ 1;
e N � S3 � S1 ô b1pMq ¥ 1.

In all cases, we can assume that p is a simple branched covering of degree d ¤ 4, whose branch set Bp is a
closed locally flat PL surface self-transversally immersed in N . Moreover, Bp can be desingularized to become
embedded in N , with the following estimates for the degree d: d ¤ 5 in cases a and b for b2pMq ¥ 2 and βM
odd, case c for βM odd, case d for βM even, and case e; d ¤ 6 in cases a and b for b2pMq ¥ 2 and βM even, case
c for βM even, and case d for βM odd; d ¤ 9 in cases a and b for b2pMq � 1.

We also mention the following generalization, which we state without insisting on the upper bounds for the
degree for having a non-singular branch surface (in general, the cusps of the branch set of a simple branched
covering can be removed in opposite pairs if dppq ¥ 4, while the nodes can be removed in pairs if dppq ¥ 5, see
Iori and Piergallini [9]).

Theorem 2. Let M be a closed connected oriented PL 4-manifold and let m and n be non-negative integers.
Then, there exists a branched covering p : M Ñ N with:

a N � #m CP
2 #n CP

2 ô b�2 pMq ¥ m and b�2 pMq ¥ n;
b N � #npS2 � S2q ô b�2 pMq ¥ n and b�2 pMq ¥ n;
c N � #npS3 � S1q ô π1pMq admits a free group of rank n as a quotient.

In all cases, we can assume that p is a simple branched covering of degree d ¤ 4, whose branch set Bp is a closed
locally flat PL surface self-transversally immersed in N .

Remark 3. As a consequence of Theorem 2 a and b, we obtain some simply connected 4-manifolds N admitting
a simple branched covering p : T 4 Ñ N . Namely, they are #m CP

2 #n CP
2 and #npS2�S2q for any m ¤ 3 and

n ¤ 3. This extends the previous result by Rickman [15] concerning the case when N is #2pS2 � S2q. All such
manifolds N are quasiregularly elliptic (see Bonk and Heinonen [4] for the definition), since the composition
of the universal covering of T 4 with p is a quasiregular map R4 Ñ N . The question of which closed simply
connected manifolds are quasiregularly elliptic was posed by Gromov in [7], [8]. According to Prywes [14],
b2pMq ¤ 6 for any closed connected orientable quasiregularly elliptic 4-manifold M , in particular #npS2 � S2q
is not quasiregularly elliptic for n ¥ 4. Hence our result implies a sharp answer to the Gromov question for
such connected sums, while the cases of #m CP

2 #n CP
2 with m�n ¤ 6 and maxpm,nq ¥ 4 remain still open.

The proofs of our results make use of an extension theorem for branched coverings, which was proved in
our paper [12]. This theorem can be stated, in the special case we actually need, as follows (see Theorem 1.2
in [12]).
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Definition 4. Let M be a closed oriented 3-manifold. A simple branched covering q : M Ñ S3 is said to be
ribbon fillable if it can be extended to a simple branched covering q̃ : W Ñ B4 whose branch set Bq̃ is a ribbon
surface in B4. In this case, it immediately follows that M � BW , Bq � BBq̃ is a link, and dpqq � dpq̃q.
Theorem 5 ([12]). Let W be a compact connected oriented PL 4-manifold with boundary, and let p : BW Ñ
BB4 � S3 be a simple d-fold covering, branched over a link L � S3, with d ¥ 4. If p is ribbon fillable, then it
can be extended to a simple d-fold branched covering p̃ : W Ñ B4. Moreover, we can assume that the branch
set Bp̃ � B4 is a properly self-transversally immersed PL locally flat surface in B4, with BBp̃ � L. If d ¥ 5, we
can assume Bp̃ an embedded surface.

Remark 6. in Theorem 5 the ribbon filling of p need not be defined on the given manifold W , but in a certain
4-manifold W 1 with the same boundary. On the other hand, the branch surface of p̃ may not be ribbon.

For brevity we only outline the proof of Theorem 1 a, and we refer the reader to [13] for a detailed proof of
this and the other statements.

Proof of Theorem 1 a. That b�2 pMq ¥ 1 is a necessary condition has been observed above.
For the converse, assume that b�2 pMq ¥ 1. We start considering a homology class α P H2pM ;Zq such

that α2 � 4. Its existence follows from classical results for the intersection form of a smooth closed oriented
4-manifold (Donaldson’s diagonalization theorem [5] for definite forms and the Serre classification of symmetric
bilinear indefinite unimodular forms for the other cases [16], [10]).

Let S � M be a closed oriented connected surface of genus g that represents α. Then, there is a 2-fold
branched covering q : S Ñ CP 1 � S2. We can stabilize q up to degree 4, obtaining a simple 4-fold branched
covering q1 : S Ñ CP 1.

Now take a fiberwise extension p1 : TS Ñ TCP 1 between tubular neighborhoods TS and TCP 1 of S and of
CP 1, respectively. We make use of the disk bundle structure of tubular neighborhoods. Such an extension
exists because rSs2 � dpq1q. Let X �M � IntTs and Y � CP 2 � IntTCP 1 , and observe that Y � B4.

Now, the crucial point is that the restriction r � p1| : BTS Ñ BTCP 1 � S3 is ribbon fillable. This follows
from the fact that q1 is branched over 2g� 6 points in the sphere, 2g� 2 of which have monodromy p1 2q, while
the remaining four points have monodromies p2 3q, p2 3q and p3 4q, p3 4q, with respect to a suitable Hurwitz
system. Hence, they can be paired with the same monodromy.

The circle bundle BTCP 1 Ñ CP 1 is the Hopf fibration S3 Ñ S2, hence r is branched over some fibers of
the Hopf fibration, precisely the fibers over the branch points of q1. These fibers in pairs bound disjoint twisted
annuli, which are the preimages, by the Hopf fibration, of g � 3 disjoint arcs in CP 1 connecting two branch
points of q1 with the same monodromy as above. By pushing the interiors of such annuli inside B4, we get the
labeled ribbon surface providing the ribbon filling of r.

Now we can apply Theorem 5 to extend r over the ball Y as a simple branched covering p2 : X Ñ Y .
Finally, the desired simple 4-fold branched covering is

p � p1 YB p2 : M Ñ CP 2.

�

Remark 7. The above results hold also in the C8-category. Indeed the techniques involved in the proofs can
be easily adapted to fit in a smooth environment. It is a standard fact that the PL and the C8-categories
contain the same objects in dimension four.

By following similar ideas, we can obtain branched covering representation theorems for submanifolds. We
state only the case of CP 2.

Theorem 8. Let M be closed oriented 4-manifold and let S �M be a locally flat connected oriented surface.
If d � rSs2 ¥ 4, then there is a simple d-fold branched covering p : M Ñ CP 2 such that CP 1 intersects Bp
transversally and S � p�1pCP 1q.

I acknowledge support of the 2013 ERC Advanced Research Grant 340258 TADMICAMT.
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Victor Zvonilov. Maximally inflected real trigonal curves
Let π : Σ Ñ B be a real geometrically ruled surface with the exceptional section E, E2 � �d   0.
A real trigonal curve is a reduced real curve C � Σ disjoint from E and such that the restriction π : C Ñ B

is of degree 3. In an affine chart on Σ, such a curve C is defined by the equation y3� bpxqy�wpxq � 0, where b
and w are certain sections. A curve C is maximally inflected if C is nonsingular and all zeros of the discriminant
dpxq � 4b3 � 27w2 are real.

A nonsingular real algebraic curve is of type I (of type II) if the set of its real points divides (not divides)
the set of its complex points.

In [1], it was given a description of maximally inflected trigonal curves of type I in terms of the combinatorics
of sufficiently simple graphs and, in the case B � CP 1, it was obtained a complete classification of such curves.

In this talk, we extend the results of [1] to maximally inflected trigonal curves of type II.
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