Solvability of the Nonlinear Equation with the Dzhrbashyan — Nersesyan Fractional Derivatives

Izhberdeeva Elizaveta Monirovna Plekhanova M.V.

Chelyabinsk State University

"O.A. Ladyzhenskaya centennial conference on PDE's" 16 - 22 July, 2022, St. Petersburg

1 / 8

Dzhrbashyan — Nersesyan Derivative

Let \mathcal{Z} be a Banach space, $z : \mathbb{R}_+ \to \mathcal{Z}$. The Riemann — Liouville fractional integral of an order $\alpha > 0$ for a function z has the form

$$J^{\alpha}_t z(t) := \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} z(s) ds, \quad t>0.$$

The Riemann — Liouville fractional derivative of an order $\alpha > 0$ for a function z is defined as ${}^{R}D_{t}^{\alpha}z(t) := D_{t}^{m}J_{t}^{m-\alpha}z(t)$, where $m-1 < \alpha \leq m \in \mathbb{N}$, $D_{t}^{m} := \frac{d^{m}}{dt^{m}}$ is the integer order derivative. Further, we use the notation $D_{t}^{-\alpha} := J_{t}^{\alpha}$ for $\alpha > 0$.

Let $\{\alpha_k\}_0^n = \{\alpha_0, \alpha_1, \dots, \alpha_n\}$ be the set of real numbers $\alpha_k \in (0, 1], k = 0, 1, \dots, n \in \mathbb{N}$. Denote

 $\sigma_k := \sum_{j=0}^{k} \alpha_j - 1, \quad k = 0, 1, \dots, n, \text{ so, } -1 < \sigma_k \le k - 1.$ Further, it is assumed everywhere that the

condition $\sigma_n > 0$ is met. The fractional Dzhrbashyan — Nersesyan derivative of an order σ_n , associated with a sequence $\{\alpha_k\}_0^n$, is determined by relations

$$D^{\sigma_0} z(t) := D^{\alpha_0 - 1} z(t),$$

 $D^{\sigma_k}z(t):=D^{\alpha_k-1}D^{\alpha_{k-1}}D^{\alpha_{k-2}}\dots D^{\alpha_0}z(t), \quad k=1,2,\dots,n.$

Special Banach spaces

The space of functions $v \in C((t_0, T]; \mathcal{Z})$, such that $(t - t_0)^{\gamma} v(t) \in C([t_0, T]; \mathcal{Z})$ at some $\gamma > 0$ denote by $C_{\gamma}([t_0, T]; \mathcal{Z})$ and endow with the norm

$$\|v\|_{C_{\gamma}([t_0,T];\mathcal{Z})} := \max_{t \in [t_0,T]} \|(t-t_0)v(t)\|_{\mathcal{Z}}.$$
(1)

On the space $C^1_{\gamma}([t_0, T]; \mathcal{Z})$ of functions $v \in C([t_0, T]; \mathcal{Z}) \cap C^1((t_0, T]; \mathcal{Z})$, such that $(t - t_0)^{\gamma} v'(t) \in C([t_0, T]; \mathcal{Z})$ at some $\gamma > 0$, define the norm

$$\|v\|_{C^{1}_{\gamma}([t_{0},T];\mathcal{Z})} := \max_{t \in [t_{0},T]} \|v(t)\|_{\mathcal{Z}} + \max_{t \in [t_{0},T]} \|(t-t_{0})^{\gamma}v'(t)\|_{\mathcal{Z}}.$$
(2)

In these notations $C_0([t_0, T]; \mathcal{Z}) := C([t_0, T]; \mathcal{Z}), C_0^1([t_0, T]; \mathcal{Z}) := C^1([t_0, T]; \mathcal{Z}).$

Lemma (1)

Let $\gamma \in (0,1)$, then $C_{\gamma}([t_0,T]; \mathbb{Z})$ with norm (1) and $C_{\gamma}^1([t_0,T]; \mathbb{Z})$ with norm (2) are Banach spaces.

Izhberdeeva E.M. (CSU)

3 / 8

イロト 不得下 イヨト イヨト

Lemma (2)

Let $\gamma \in (0,1), \beta \geq \gamma$, then $J_t^{\beta} \in \mathcal{L}(C_{\gamma}([t_0,T];\mathcal{Z}); C([t_0,T];\mathcal{Z})).$

Let $\alpha_0 = 1$, $\alpha_k \in (0, 1]$, k = 1, 2, ..., n. Consider the set $C^{\{\alpha_k\}_0^{n-1}}([t_0, T]; \mathcal{Z})$ of functions $v \in C_{1-\alpha_1}^1([t_0, T]; \mathcal{Z})$, such that there exist the derivatives $D^{\sigma_k}v \in C_{1-\alpha_{k+1}}^1([t_0, T]; \mathcal{Z})$, k = 1, 2, ..., n-1. Endow this set with the norm

$$\|v\|_{C^{\{\alpha_k\}_0^{n-1}}([t_0,T];\mathcal{Z})} := \|v\|_{C^1_{1-\alpha_1}([t_0,T];\mathcal{Z})} + \sum_{k=1}^{n-1} \|D^{\sigma_k}v\|_{C^1_{1-\alpha_{k+1}}([t_0,T];\mathcal{Z})}.$$
(3)

Theorem (1)

Let $\alpha_0 = 1$, $\alpha_k \in (0,1]$, k = 1, 2, ..., n. Then the set $C^{\{\alpha_k\}_0^{n-1}}([t_0,T]; \mathcal{Z})$ with norm (3) is a Banach space.

Izhberdeeva E.M. (CSU)

イロト 不得下 イヨト イヨト

Solvability of the Nonlinear Equation

Denote by Z an open set in $\mathbb{R} \times \mathbb{Z}^n$, the operator $B: \mathbb{Z} \to \mathbb{Z}$ is nonlinear, generally speaking. Consider the initial value problem for nonlinear equation

$$D^{\sigma_n} z(t) = A z(t) + B(t, D^{\sigma_0} z(t), D^{\sigma_1} z(t), \dots, D^{\sigma_{n-1}} z(t)),$$
(4)

$$D^{\sigma_k} z(t_0) = z_k, \quad k = 0, 1, \dots, n-1.$$
 (5)

A function $z \in C((t_0, t_1]; \mathbb{Z})$ is called a solution of problem (4), (5) on $(t_0, t_1]$, if $D^{\sigma_k} z \in C([t_0, t_1]; \mathbb{Z}), k = 0, 1, \ldots, n-1, D^{\sigma_n} z \in C((t_0, t_1]; \mathbb{Z}), \text{ for all } t \in (t_0, t_1]$ the elements $(t, D^{\sigma_0} z(t), D^{\sigma_1} z(t), \ldots, D^{\sigma_{n-1}} z(t))$ belong to the set \mathbb{Z} , equality (4) is satisfied and conditions (5) are valid.

Theorem (2)

Let $A \in \mathcal{L}(\mathcal{Z})$, $z_k \in \mathcal{Z}$, $0 < \alpha_k \leq 1$, k = 0, 1, ..., n, $\sigma_n > 0$, $\alpha_0 + \alpha_n > 1$, Z be open set in $\mathbb{R} \times \mathcal{Z}$, $B \in C^2(Z; \mathcal{Z})$. Then for each $(t_0, z_0, ..., z_{n-1}) \in Z$ there exists an unique solution of problem (4), (5) on $(t_0, t_1]$ at some $t_1 > t_0$.

イロト 不得下 イヨト イヨト

The proof of Theorem 2 is based on the following lemma.

Lemma (3)

Let $A \in \mathcal{L}(\mathcal{Z})$, $z_k \in \mathcal{Z}$, $0 < \alpha_k \leq 1$, k = 0, 1, ..., n, $\sigma_n > 0$, $\alpha_0 + \alpha_n > 1$, $B \in C(Z; \mathcal{Z})$, $(t_0, z_0, ..., z_{n-1}) \in Z$. Then function $z \in C((t_0, t_1]; \mathcal{Z})$, such that $D^{\sigma_k} z \in C([t_0, t_1]; \mathcal{Z})$, k = 0, 1, ..., n - 1, is a solution of problem (4), (5) on $(t_0, t_1]$, if and only if for $t \in (t_0, t_1]$

$$z(t) = \sum_{k=0}^{n-1} (t - t_0)^{\sigma_k} E_{\sigma_n, \sigma_k + 1}((t - t_0)^{\sigma_n} A) z_k +$$

$$+ \int_{t_0}^t (t-s)^{\sigma_n - 1} E_{\sigma_n, \sigma_n}((t-s)^{\sigma_n} A) B(s, D^{\sigma_0} z(s), D^{\sigma_1} z(s), \dots, D^{\sigma_{n-1}} z(s)) ds.$$
(6)

Izhberdeeva E.M. (CSU)

Consider the problem

$$D^{\sigma_k}u(s,t_0) = u_k(s), \ k = 0, 1, \dots, n-1, \ s \in \Omega,$$
(7)

$$u(s,t) = 0, \quad (s,t) \in \partial\Omega \times (t_0,T), \tag{8}$$

$$D^{\sigma_{n}}(\lambda - \Delta)u(s, t)d\alpha = \Delta u(s, t) + F(t, D^{\sigma_{0}}u(s, t), D^{\sigma_{1}}u(s, t), D^{\sigma_{n-1}}u(s, t)), \quad (s, t) \in \Omega \times (t_{0}, T), \quad (9)$$

where D^{σ_k} are the Dzhrbashyan – Nersesyan derivatives with respect to t, k = 0, 1, ..., n. Take

$$\mathcal{X} = \{ v \in H^2(\Omega) : v(s) = 0, x \in \partial\Omega \}, \mathcal{Y} = L_2(\Omega).$$

Take $P_1(\lambda) = \kappa - \lambda$, $P_1(\lambda) \neq 0$, $\kappa > 0$, $Q_1(\lambda) = \lambda$.

Izhberdeeva E.M. (CSU)

16.07.2022-22.07.2022 7 / 8

(人間) トイヨト (日) - 日

Theorem 2 implies the next statement.

Theorem (3)

Let $0 < \alpha_k \leq 1$, k = 0, 1, ..., n, $\sigma_n > 0$, $\alpha_0 + \alpha_n > 1$, the spectrum $\sigma(\Lambda)$ do not contain the origin and zeros of the polynomial $P_1(\lambda)$, d < 4, $u_k \in \mathcal{X}$, k = 0, 1, ..., n - 1, $F \in C^{\infty}(\Omega \times \mathbb{R}^n; \mathbb{R})$. Then at some $t_1 > t_0$ there exists a unique solution of problem (7)-(9).

Note only that $Z = \mathbb{R} \times \mathcal{X}^n$ and due to the condition d < 4 we have condition $F(\cdot, x_0(\cdot), x_1(\cdot), \dots, x_{n-1}(\cdot))) \in C^{\infty}((H^2(\Omega))^n; H^2(\Omega))$ by theorem, hence, a mapping $B(x_0(\cdot), x_1(\cdot), \dots, x_{n-1}(\cdot))) := L^{-1}F(\cdot, x_0(\cdot), x_1(\cdot), \dots, x_{n-1}(\cdot))) \in C^{\infty}((H^2(\Omega))^n; L_2(\Omega)).$

Izhberdeeva E.M. (CSU)

Solvability of the Nonlinear Equation

イロト イ押ト イヨト イヨト