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Used designations

(z',2,) = 2 € R™, where 2’ € R™™!

B™(R) — n-dimensional ball of radius R in R™,  Bo(R) := B" '(R) x {0}
R} :={x€R" |z, 20}, Bi(R):=B"(R)NRYL

R}, :=R? U{z, =0}, Bo+(R):=B"(R)NRE 4 = Bo(R)U Bx(R)

®, : R" — R™ — for an upward convex function z : R" — R, a multi-valued mapping

D, (x0) = {p eER" ‘ 7p(x) := (P, — xo) + z(xo) — supporting plane to z}

conv(E) C R™ — a convex hull of a set E C R™.

conv[u] : dom(u) — R — a convex hull of a function u : dom(u) — R. Which is the
minimal convex upwards function majorizing u.

uy = max{0,u}

Zy = {z € dom(u) | u(xz) = convlui](x)} — a contact set for function u
Qu :={xz € Q| u(x) >0}
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“Book” type stratified set

Consider K n-dimensional hyperplanes embedded into R™* having R™™* x {0}? as

their joint intersection and denote each by R™[* For the planes we choose first n — 1

coordinates ' to be a basis of R" 1. And set the n-th coordinate z

in each plane.

We name the union of R™[* 3 stratified
space, denoting it R®, and define one more

entity:

which is a “book” type stratified set.
Finally, we can define the domain of our
interest simply as a ball of radius R in Rf:

K
B = {ceR®|lz| <R} = |JBM(R
k=1

And we name it a stratified ball.
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Functions on stratified set

Consider a function u : B — R. It can be represented as a set of it's components
u1,Uz,...,ur defined over the halfball By 4 (R) and forced to be equal on By(R):
Uil By(R) = Uj|Bo(r). Thus, function u could be rewritten as:

u(x[k]) = u(x)

The key idea of Aleksandrov-Bakelman type estimates is normal mapping which
requires a function’'s convex hull to be defined. For this purpose we introduce Lemma:

Lemma 1
Consider functions v1,v2 : Bo,+(R) — R, v1,v2 € C(Boer(R)). An implication holds:
v1lBo(r) = V2lBo(r) = conv{ui]|By(r) = conv[va]|B,(r)

In other words, function’s convex hull restriction onto Bo(R) does not depend on
function’s values out of By(R).

In accordance with the Lemma, we define a convex hull for u component-wise:

convlu] (") := convluy](z)
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Problem setting
Define operators over BH_C] (R):

n

£y = Z [k]( )D;Dju + Zb (z)D

i,j=1 i=1

satisfying a[ leLe, WeL,, (ay;])zj:l > v,

Then define an operator over Bo(R):

n—1 n—1
Bu := Z —m (2" )DiDpu + Zﬁl )Diw + Ju
l,m=1 =1
n—1

having aip, € Loo, 51 € Lp—1, (alm) >vl, 1

l,m=1

Where 7 is a “conjugation” operator, defined for u € (0, C' (B([)kL_(R)) with formula

Zﬂ . hm Dou(z’, zlF)

—>0+
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Main result

Theorem (Maximum principle at stratified set)

Let n > 2. Consider u:B — R, such that u € (), C* (B([)kL_(R)) u€C(B), ulo <0
and let ,8,[1’“] < 0. The following estimate holds:

)
v k=1 v

: (;:H(ﬁ w+|| (B @®) +|/(8 W, 1,(Bo(m)), )

Let M = maxu4 >0, z = conv[u,]. Define a subset of Byo(R) where the normal
derivative of z is nonpositive in all k directions, which will come in for the estimates

[k

maxuy < N<n (Hb Hm(BT(z%))u)K ”B'”nl,(Bo(m)u> R
=0 + X 9 L
¢ 14

y
Z.= {xGZuHBO(R) ‘ Y : Df]z(x’,o)go}
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Normal map on stratified set

The structure of the normal map is as follows:

{cbz(x”“]) = (@, @), oM e B¥(R)
. (z) = Ui, (-, (2)", 2 € Bo(R)

Now we define a special set D. Consider @(z) := max{ui(x),...,ux(x)} and convex
hull Z := conv[uy].

Let Px be a set of p € By,— (M/2R) for which a supporting plane 7, of Z touches the
subgraph of uy. All Py are measurable and their union gives the whole halfball
Bo,—(M/2R). Now we consider Dy, := Py, \ Uf;ll P; and define the desired set:

K
D= D} CR®
k=1

Lemma 2 (main property of D)
D\ ®:(B\Bo(R)) S @(2) J
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Proof of the Theorem (sketch)

The proof is based on the following two inequalities. First, for g : R® — Ry, +

/ 9p)dp < — / g(DU(x))(E““] — (), Du(x )>)ndm

(vn)"
. (BY (m)) z.nBF(R)

Second, we denote §(p) := maxy g(p/, pL]) :R"™ = Ry 4. Then

1
g(p)dp <

D\ @(B\Bo(R))
0
§(D/u(:c',()), pn)dpn dx’
—M/2R
The second inequality is a consequence of the main froperty of D. We prove the

Theorem by applying techniques first described by A.D. Aleksandrov and l.Ya.
Bakelman and utilizing the two inequalities.
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